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1 More about Bruhat order

Let (W, S) be a Coxeter system with length function ¢ : W — N. Recall the strong exchange principle:

Theorem (Strong exchange condition). Let w = s1---s, (s; € S) with £(w) < r. Suppose t € T is such
that £(wt) < £(w). Then there exists an index i € [r] such that wt = s1---§; - - s,. If {(w) = r, then the
index ¢ is unique.

Recall the main definition from last time:

Definition. The Bruhat order on W is the partial order < which is the transitive closure of the relation
with w < wt whenever w € W and t € T and £(wt) < {(w).

Note that if s € S and w € W then ws < w if and only if £(ws) < £(w). A conceptually more useful and

appealing characterization of the Bruhat order is given by the following result proved last time.

Theorem. If v,w € W then v < w if and only if for some (equivalently, every) reduced expression
w = 818, there are indices 1 <4y <ip < -+ < iy <7 such that v =s;5;, -5,

Corollary. The Bruhat order of (W, J) for J C S agrees with the Bruhat order of (W, S).

The following technical property from last time will be of use again today:

Lemma (Lifting Property). If u,v € W and u < v and s € S, then us < v or us < vs (or both).

For the next proposition, we need a new lemma.

Lemma. Let v,w € W with v < w and ¢(w) = ¢(v) + 1. Suppose s € S is such that v < vs and vs # w.
Then w < ws and vs < ws.

Proof. By the lifting property, we have vs < w or vs < ws. The first case cannot occur since £(vs) = £(w)
but vs # w. Therefore vs < ws. As v # w, we must have vs < ws. This implies that £(vs) < £(ws). As
l(vs) = £(w), it follows that w < ws. O

A chain in a partially ordered set is a sequence of elements aq, a1, as, ..., a, such that ap < a1 < az <
-++ < ap. Such a chain is between two elements a and b if a = ap and a,, = b. We have the following
result about chains in W with respect to the Bruhat order.

Proposition. Let v,w € W with v < w. Then there exist wg,w1,...,w,, € W such that v = wy <
wy < -0 < Wy =m and L(w;) = £(v) + ¢ for all i.

Proof. We proceed by induction on the sum ¢(v) 4+ ¢(w) which is also at least one. If £(v) + ¢(w) = 1
then v =1 and w € S and the result is trivial.

Assume £(v) + £(w) > 1 and let w = s1 - -- s, be a reduced expression. Set s = s,.. Then v = s;, -+ 5;
for some indices 1 < 4; < --- < iy < r. There are two cases to consider:

q

(a) Suppose v < vs. We may assume that ¢, < r by the exchange condition, since otherwise s = s,
would be a descent of s;, ---s;_ _,. It follows that v is also a subexpression of ws < w, so v < ws.
By induction one can find a chain of the desired type from v to w and then one more steps gets us
to w.

(b) Suppose instead that vs < v. By induction we then have a chain in (W, <) of the form
vs=wy < wy <0 < Wy =W

with ¢(w;) = ¢(v) + i for all i. Choose ¢ to be the smallest index such that w;s < w;. Some such
index exists since wys = v > vs = wg but w,,s = WS < W = Wy,
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Note that if w; # w;_1s then applying the previous lemma to
Wi—1 < Wi—18 7 W;

gives w; < w;s, contradicting the definition of i. Therefore w; = w;_1s.

For 1 < j < ¢ we have w; # w;_1s since w; < wjs. For such j, applying the lemma to
Wji—1 < Wj—18 # Wj

gives w;j_15 < wjs. Combining these observations show that

V=wpS <wW1s <+ < Wi—1S =W < Wjy1 < -+ < Wy =W
is a chain in the Bruhat order of W with the desired properties.

O
Note that if v = wy < w; < -++ < w,, = w is any chain in the Bruhat order of W then £(w;) > ¢(w;—1)+1
so l(w) > £(v) +m and m < £(w) — £(v). Therefore £(w) — ¢(v) is an upper bound on the length of any
chain in the Bruhat order of W from v to w. The proposition shows that this upper bound is always

achieved. In other words, every maximal chain in the Bruhat order of W between v and w has the same
length ¢(w) — £(v). This property is equivalent to the following statement.

Corollary. (W, <) is a graded partially ordered set with rank function (.

2 Minimal length coset representatives

Continue to let (W, S) be a Coxeter system. Let J C S and recall that W; = (s € J) C W.
Define W7 = {w € W : {(ws) > {(w) for all s € J}.
Proposition. For each w € W there is a unique v € W and v € W such that w = wv. Moreover, it

holds for these elements that £(w) = ¢(u) + £(v). Also, u is the unique element of smallest length in the
coset wWj; = {wx :x € Wy}.

Proof. The proof via the exchange principle is the same as for the result for reflection groups. O

Corollary. If u € WY and v € W then £(uv) = £(u) + £(v).

3 Fundamental domain for W

In this section, we assume that S is a finite set. Let V = R-span{a; : s € S} be the usual W-module on
which s € S acts by sv = v — 2(«as,v)as for v € V, where (+,+) : V x V — R is the bilinear form with
(s, ) = —cos(m/m(s,t)).

We want to make the geometry of W’s action on V more explicit. This goal is obstructed by the fact that,
unlike in the case of finite reflection groups, the bilinear form (-, -) is no longer necessarily non-degenerate.
As a substitute, define V* as the real vector space of R-linear maps V' — R.

Let W act on V* by defining wA for w € W and A € V* as the linear map with the formula
(wA)(v) = Mw™ 1) forveV.
Check that this is an action!

For each s € S, define these three sets:
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Zs ={f €V flas) =0},
As={feV*: f(as) > 0},
Als:_As:{fGV*:f(as)<0}'

Let C = (N,cqgAs C V™.

Proposition. If s € S then sf = f for all f € Z;.

Proof. Let s € S and f € Z,. If t € S then (sf)(a:) = f(soy) is either —f(as) =0 = f(oy) if t = s, or
flar —2(as, ar)as) = f(ay) by linearity if t # s. Therefore sf = f. O
Let by,...,b, be a basis of V with ay = by and (b;, as) =0 for i > 1.

Let f1,..., fn be the dual basis of V* so that f;(b;) = d;; for all ¢, j.

Proposition. It holds that sf; = f; for ¢ > 1.

Proof. Fix i > 1. We have (sf;)(b1) = (sfi)(as) = —fi(as) = 0= f(b1).
Likewise (sf;)(b;) = fi(sb;) = fi(b;) for j > 1. O
We may identify V' with R™ by fixing a basis, e.g., {a;s : s € S}, and letting it correspond to the standard
basis of R™. We then identify V* with R™ via the associated dual basis.
Proposition. Let s € S. In the standard topology of R™ under this identification:

(1) Zs is closed, A; and A’ are open, and C' is open.

(2) The closure A, of Ay is Ag U Z,.

(3) Define D as the closure of C. Then D = (,cq As.
Proof. For part (1), note that Z is the inverse image of the closed set {0} under the linear (continuous)
map f — f(as). The sets A; and A/, are likewise the inverse images under continuous maps of the open
sets (0,00) and (—o00,0). Part (2) is clear and part (3) follows from part (2). O
Also, note that the action of W on V* is continuous.

We partition D = {f € V*: f(as) > 0 for all s € S} into sets

o= (0%)(0)

for J C S. Note that the choice of J just determines which of this |S| inequalities < in the definition of
D is an equality = or a strict inequality <, so the sets C'; are disjoint and form a partition of D. At the
extremes, we have Cy = C and C = {0}.

Since s € S fixes Z; pointwise, W fixes C; pointwise. Conversely:
Proposition. If s € Sand f € Cy and sf = f, then s € J.

Proof. Let s € S and f € C;. If s ¢ J then f(as) > 0. However, if sf = f then f(as) = (sf)(sas) =
f(—as) = —f(as) so f(as) = 0. Therefore sf = f implies s € J. O
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Finally, let U = (J,,cpy w(D) = Uypew Uy w(Cy).

Since D is a convex cone (meaning that if f,g € D and 6 € [0,1] and A € (0,00) then 0f + (1 —0)g € D
and Af € D) the set U must also be at least a cone: this is called the Tits cone. It will turn out that
this cone is also convex. To prove this, we’ll need a lemma.

Lemma. Let s € S and w € W. Then ¢(sw) > ¢(w) if and only if w(C) C A,. Also, £(sw) < ¢(w) if and
only if w(C) C AL.

Proof. We only prove the first assertion since the second follows similarly. Note that ¢(sw) > f(w) is
equivalent to w™ta, > 0. In this case, if f € C then (wf)(as) = f(w™ta;s) > 0so wf € Ay. Therefore
{(sw) > f(w) implies w(C) C A,. Conversely, if (wf)(as) = f(w™ras) > 0 for all f € C then, by
considering such f which take very small positive values on ay for t # s, it follows that w™'a, > 0 so
(sw) > L(w). O

We now have today’s main theorem.

Theorem. The action of W on V* has the following properties:

(a) LetweWand I,J C S. fw(C;)NCy # @ then I = J and w € Wy so w(Cy) = Cr. Thus Wy is
the stabilizer of the each point of Cr in W, and the sets w(Cr) for w € W, I C § are disjoint.

(b) The W-orbit of each point in U intersects D in exactly one point.

(¢) The cone U is convex and every closed line segment in U intersects finitely many of the sets
€ ={w(Cr):weW, ICS}

Proof. We prove part (a) by induction on ¢(w), the case when w = 1 being obvious. Assume ¢(w) > 0
and write w = s(sw) for some s € S with £(sw) < £(w). The lemma forces us to have w(C) C s(A,) = A
so by continuity w(D) C AL = AL U Zs. As D C A, we have w(D) N D C Zs, so s fixes each point in
w(D) N D, and hence also each f € C; Nw(Cr). Two things follow.

First, s fixes some point of C'; so s € J.
Second, Cy N sw(Cr) = s(Cy Nw(Cr)) is nonempty.

By induction (replacing w by sw), it follows that I = J and sw € W;. But now since s € J = I, we have
w = s(sw) € Wr as needed.

To prove (b), note that by the definition of U, each W-orbit in U meets D is at least one point. If
f,9 € D both lie in the same W-orbit then wf = g for some w € W. Suppose f € C; and g € Cy so
that w(Cr) N Cy # @. By (a), we then have I = J and w € Wi, s0 f =wf =g.

For (c), let f,g € U. Tt is enough to prove that the closed line segment L = {6f 4+ (1 —0)g : 6 € [0,1]}
is covered by a finite number of sets in %. This is clear is f,g € D since D is convex and covered by a
finite number of the sets C;. Without loss of generality we may assume that f € D and g € w(D).

We proceed by induction on ¢(w). The case w = 1 was just covered. Let ¢(w) > 0. Then LN D is covered
by finitely many sets in 4. It remains to cover L \ D. Let I C S be such that g € A, for s € I and
g € A, for s ¢ I. Let h € D be the endpoint of L\ D distinct from g. If h € A, for all s € I then all
nearby points k£ on L\ D would have k € A, for s € I and k € A, for s ¢ I, so such points would lie in
D which is impossible.

Therefore h € Z for some s € I. Since g € A/, we have w(D) C A, so w(C) C A.. By the lemma we
have £(sw) < ¢(w), so by induction applied to h € D and sg € sw(D) we get that the segment from h to
sg has a finite cover in ¥. Transforming this cover by s yields a finite cover of the segment from sh = h
to s2g = g as needed. O
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