1 More about Bruhat order

Let (W, S) be a Coxeter system with length function $\ell: W \rightarrow \mathbb{N}$. Recall the strong exchange principle:
Theorem (Strong exchange condition). Let $w=s_{1} \cdots s_{r}\left(s_{i} \in S\right)$ with $\ell(w) \leq r$. Suppose $t \in T$ is such that $\ell(w t)<\ell(w)$. Then there exists an index $i \in[r]$ such that $w t=s_{1} \cdots \widehat{s_{i}} \cdots s_{r}$. If $\ell(w)=r$, then the index i is unique.

Recall the main definition from last time:

Definition. The Bruhat order on W is the partial order $<$ which is the transitive closure of the relation with $w<w t$ whenever $w \in W$ and $t \in T$ and $\ell(w t)<\ell(w)$.
Note that if $s \in S$ and $w \in W$ then $w s<w$ if and only if $\ell(w s)<\ell(w)$. A conceptually more useful and appealing characterization of the Bruhat order is given by the following result proved last time.

Theorem. If $v, w \in W$ then $v \leq w$ if and only if for some (equivalently, every) reduced expression $w=s_{1} \cdots s_{r}$ there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq r$ such that $v=s_{i_{1}} s_{i_{2}} \cdots s_{i_{q}}$.

Corollary. The Bruhat order of $\left(W_{J}, J\right)$ for $J \subset S$ agrees with the Bruhat order of (W, S).
The following technical property from last time will be of use again today:
Lemma (Lifting Property). If $u, v \in W$ and $u \leq v$ and $s \in S$, then $u s \leq v$ or $u s \leq v s$ (or both).
For the next proposition, we need a new lemma.
Lemma. Let $v, w \in W$ with $v<w$ and $\ell(w)=\ell(v)+1$. Suppose $s \in S$ is such that $v<v s$ and $v s \neq w$. Then $w<w s$ and $v s<w s$.

Proof. By the lifting property, we have $v s \leq w$ or $v s \leq w s$. The first case cannot occur since $\ell(v s)=\ell(w)$ but $v s \neq w$. Therefore $v s \leq w s$. As $v \neq w$, we must have $v s<w s$. This implies that $\ell(v s)<\ell(w s)$. As $\ell(v s)=\ell(w)$, it follows that $w<w s$.

A chain in a partially ordered set is a sequence of elements $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ such that $a_{0}<a_{1}<a_{2}<$ $\cdots<a_{n}$. Such a chain is between two elements a and b if $a=a_{0}$ and $a_{n}=b$. We have the following result about chains in W with respect to the Bruhat order.

Proposition. Let $v, w \in W$ with $v<w$. Then there exist $w_{0}, w_{1}, \ldots, w_{m} \in W$ such that $v=w_{0}<$ $w_{1}<\cdots<w_{m}=m$ and $\ell\left(w_{i}\right)=\ell(v)+i$ for all i.

Proof. We proceed by induction on the sum $\ell(v)+\ell(w)$ which is also at least one. If $\ell(v)+\ell(w)=1$ then $v=1$ and $w \in S$ and the result is trivial.

Assume $\ell(v)+\ell(w)>1$ and let $w=s_{1} \cdots s_{r}$ be a reduced expression. Set $s=s_{r}$. Then $v=s_{i_{1}} \cdots s_{i_{q}}$ for some indices $1 \leq i_{1}<\cdots<i_{q} \leq r$. There are two cases to consider:
(a) Suppose $v<v s$. We may assume that $i_{q}<r$ by the exchange condition, since otherwise $s=s_{r}$ would be a descent of $s_{i_{1}} \cdots s_{i_{q-1}}$. It follows that v is also a subexpression of $w s<w$, so $v<w s$. By induction one can find a chain of the desired type from v to w and then one more steps gets us to w.
(b) Suppose instead that $v s<v$. By induction we then have a chain in $(W,<)$ of the form

$$
v s=w_{0}<w_{1}<\cdots<w_{m}=w
$$

with $\ell\left(w_{i}\right)=\ell(v)+i$ for all i. Choose i to be the smallest index such that $w_{i} s<w_{i}$. Some such index exists since $w_{0} s=v>v s=w_{0}$ but $w_{m} s=w s<w=w_{m}$.

Note that if $w_{i} \neq w_{i-1} s$ then applying the previous lemma to

$$
w_{i-1}<w_{i-1} s \neq w_{i}
$$

gives $w_{i}<w_{i} s$, contradicting the definition of i. Therefore $w_{i}=w_{i-1} s$.
For $1 \leq j<i$ we have $w_{j} \neq w_{j-1} s$ since $w_{j}<w_{j} s$. For such j, applying the lemma to

$$
w_{j-1}<w_{j-1} s \neq w_{j}
$$

gives $w_{j-1} s<w_{j} s$. Combining these observations show that

$$
v=w_{0} s<w_{1} s<\cdots<w_{i-1} s=w_{i}<w_{i+1}<\cdots<w_{m}=w
$$

is a chain in the Bruhat order of W with the desired properties.

Note that if $v=w_{0}<w_{1}<\cdots<w_{m}=w$ is any chain in the Bruhat order of W then $\ell\left(w_{i}\right) \geq \ell\left(w_{i-1}\right)+1$ so $\ell(w) \geq \ell(v)+m$ and $m \leq \ell(w)-\ell(v)$. Therefore $\ell(w)-\ell(v)$ is an upper bound on the length of any chain in the Bruhat order of W from v to w. The proposition shows that this upper bound is always achieved. In other words, every maximal chain in the Bruhat order of W between v and w has the same length $\ell(w)-\ell(v)$. This property is equivalent to the following statement.

Corollary. $(W,<)$ is a graded partially ordered set with rank function ℓ.

2 Minimal length coset representatives

Continue to let (W, S) be a Coxeter system. Let $J \subset S$ and recall that $W_{J}=\langle s \in J\rangle \subset W$.
Define $W^{J}=\{w \in W: \ell(w s)>\ell(w)$ for all $s \in J\}$.
Proposition. For each $w \in W$ there is a unique $u \in W^{J}$ and $v \in W_{J}$ such that $w=u v$. Moreover, it holds for these elements that $\ell(w)=\ell(u)+\ell(v)$. Also, u is the unique element of smallest length in the coset $w W_{J}=\left\{w x: x \in W_{J}\right\}$.

Proof. The proof via the exchange principle is the same as for the result for reflection groups.

Corollary. If $u \in W^{J}$ and $v \in W_{J}$ then $\ell(u v)=\ell(u)+\ell(v)$.

3 Fundamental domain for W

In this section, we assume that S is a finite set. Let $V=\mathbb{R}$ - $\operatorname{span}\left\{\alpha_{s}: s \in S\right\}$ be the usual W-module on which $s \in S$ acts by $s v=v-2\left(\alpha_{s}, v\right) \alpha_{s}$ for $v \in V$, where $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ is the bilinear form with $\left(\alpha_{s}, \alpha_{t}\right)=-\cos (\pi / m(s, t))$.

We want to make the geometry of W 's action on V more explicit. This goal is obstructed by the fact that, unlike in the case of finite reflection groups, the bilinear form (\cdot, \cdot) is no longer necessarily non-degenerate. As a substitute, define V^{*} as the real vector space of \mathbb{R}-linear maps $V \rightarrow \mathbb{R}$.
Let W act on V^{*} by defining $w \lambda$ for $w \in W$ and $\lambda \in V^{*}$ as the linear map with the formula

$$
(w \lambda)(v)=\lambda\left(w^{-1} v\right) \quad \text { for } v \in V
$$

Check that this is an action!
For each $s \in S$, define these three sets:

$$
\begin{aligned}
Z_{s} & =\left\{f \in V^{*}: f\left(\alpha_{s}\right)=0\right\} \\
A_{s} & =\left\{f \in V^{*}: f\left(\alpha_{s}\right)>0\right\} \\
A_{s}^{\prime} & =-A_{s}=\left\{f \in V^{*}: f\left(\alpha_{s}\right)<0\right\}
\end{aligned}
$$

Let $C=\bigcap_{s \in S} A_{s} \subset V^{*}$.
Proposition. If $s \in S$ then $s f=f$ for all $f \in Z_{s}$.

Proof. Let $s \in S$ and $f \in Z_{s}$. If $t \in S$ then $(s f)\left(\alpha_{t}\right)=f\left(s \alpha_{t}\right)$ is either $-f\left(\alpha_{s}\right)=0=f\left(\alpha_{t}\right)$ if $t=s$, or $f\left(\alpha_{t}-2\left(\alpha_{s}, \alpha_{t}\right) \alpha_{s}\right)=f\left(\alpha_{t}\right)$ by linearity if $t \neq s$. Therefore $s f=f$.

Let b_{1}, \ldots, b_{n} be a basis of V with $\alpha_{s}=b_{1}$ and $\left(b_{i}, \alpha_{s}\right)=0$ for $i>1$.
Let f_{1}, \ldots, f_{n} be the dual basis of V^{*} so that $f_{i}\left(b_{j}\right)=\delta_{i j}$ for all i, j.
Proposition. It holds that $s f_{i}=f_{i}$ for $i>1$.
Proof. Fix $i>1$. We have $\left(s f_{i}\right)\left(b_{1}\right)=\left(s f_{i}\right)\left(\alpha_{s}\right)=-f_{i}\left(\alpha_{s}\right)=0=f\left(b_{1}\right)$.
Likewise $\left(s f_{i}\right)\left(b_{j}\right)=f_{i}\left(s b_{j}\right)=f_{i}\left(b_{j}\right)$ for $j>1$.
We may identify V with \mathbb{R}^{n} by fixing a basis, e.g., $\left\{\alpha_{s}: s \in S\right\}$, and letting it correspond to the standard basis of \mathbb{R}^{n}. We then identify V^{*} with \mathbb{R}^{n} via the associated dual basis.

Proposition. Let $s \in S$. In the standard topology of \mathbb{R}^{n} under this identification:
(1) Z_{s} is closed, A_{s} and A_{s}^{\prime} are open, and C is open.
(2) The closure $\overline{A_{s}}$ of A_{s} is $A_{s} \cup Z_{s}$.
(3) Define D as the closure of C. Then $D=\bigcap_{s \in S} \overline{A_{s}}$.

Proof. For part (1), note that Z_{s} is the inverse image of the closed set $\{0\}$ under the linear (continuous) map $f \mapsto f\left(\alpha_{s}\right)$. The sets A_{s} and A_{s}^{\prime} are likewise the inverse images under continuous maps of the open sets $(0, \infty)$ and $(-\infty, 0)$. Part (2) is clear and part (3) follows from part (2).

Also, note that the action of W on V^{*} is continuous.
We partition $D=\left\{f \in V^{*}: f\left(\alpha_{s}\right) \geq 0\right.$ for all $\left.s \in S\right\}$ into sets

$$
C_{J}=\left(\bigcap_{s \in J} Z_{s}\right) \cap\left(\bigcap_{s \notin J} A_{s}\right)
$$

for $J \subset S$. Note that the choice of J just determines which of this $|S|$ inequalities \leq in the definition of D is an equality $=$ or a strict inequality $<$, so the sets C_{J} are disjoint and form a partition of D. At the extremes, we have $C_{\varnothing}=C$ and $C_{s}=\{0\}$.
Since $s \in S$ fixes Z_{s} pointwise, W_{J} fixes C_{J} pointwise. Conversely:
Proposition. If $s \in S$ and $f \in C_{J}$ and $s f=f$, then $s \in J$.
Proof. Let $s \in S$ and $f \in C_{J}$. If $s \notin J$ then $f\left(\alpha_{s}\right)>0$. However, if $s f=f$ then $f\left(\alpha_{s}\right)=(s f)\left(s \alpha_{s}\right)=$ $f\left(-\alpha_{s}\right)=-f\left(\alpha_{s}\right)$ so $f\left(\alpha_{s}\right)=0$. Therefore $s f=f$ implies $s \in J$.

Finally, let $U=\bigcup_{w \in W} w(D)=\bigcup_{w \in W} \bigcup_{J \subset} w\left(C_{J}\right)$.
Since D is a convex cone (meaning that if $f, g \in D$ and $\theta \in[0,1]$ and $\lambda \in(0, \infty)$ then $\theta f+(1-\theta) g \in D$ and $\lambda f \in D)$ the set U must also be at least a cone: this is called the Tits cone. It will turn out that this cone is also convex. To prove this, we'll need a lemma.

Lemma. Let $s \in S$ and $w \in W$. Then $\ell(s w)>\ell(w)$ if and only if $w(C) \subset A_{s}$. Also, $\ell(s w)<\ell(w)$ if and only if $w(C) \subset A_{s}^{\prime}$.

Proof. We only prove the first assertion since the second follows similarly. Note that $\ell(s w)>\ell(w)$ is equivalent to $w^{-1} \alpha_{s}>0$. In this case, if $f \in C$ then $(w f)\left(\alpha_{s}\right)=f\left(w^{-1} \alpha_{s}\right)>0$ so $w f \in A_{f}$. Therefore $\ell(s w)>\ell(w)$ implies $w(C) \subset A_{s}$. Conversely, if $(w f)\left(\alpha_{s}\right)=f\left(w^{-1} \alpha_{s}\right)>0$ for all $f \in C$ then, by considering such f which take very small positive values on α_{t} for $t \neq s$, it follows that $w^{-1} \alpha_{s}>0$ so $\ell(s w)>\ell(w)$.

We now have today's main theorem.
Theorem. The action of W on V^{*} has the following properties:
(a) Let $w \in W$ and $I, J \subset S$. If $w\left(C_{I}\right) \cap C_{J} \neq \varnothing$ then $I=J$ and $w \in W_{I}$ so $w\left(C_{I}\right)=C_{I}$. Thus W_{I} is the stabilizer of the each point of C_{I} in W, and the sets $w\left(C_{I}\right)$ for $w \in W, I \subset S$ are disjoint.
(b) The W-orbit of each point in U intersects D in exactly one point.
(c) The cone U is convex and every closed line segment in U intersects finitely many of the sets

$$
\mathscr{C}=\left\{w\left(C_{I}\right): w \in W, I \subset S\right\}
$$

Proof. We prove part (a) by induction on $\ell(w)$, the case when $w=1$ being obvious. Assume $\ell(w)>0$ and write $w=s(s w)$ for some $s \in S$ with $\ell(s w)<\ell(w)$. The lemma forces us to have $w(C) \subset s\left(A_{s}\right)=A_{s}^{\prime}$ so by continuity $w(D) \subset \overline{A_{s}^{\prime}}=A_{s}^{\prime} \cup Z_{s}$. As $D \subset \overline{A_{s}}$, we have $w(D) \cap D \subset Z_{s}$, so s fixes each point in $w(D) \cap D$, and hence also each $f \in C_{J} \cap w\left(C_{I}\right)$. Two things follow.

First, s fixes some point of C_{J} so $s \in J$.
Second, $C_{J} \cap s w\left(C_{I}\right)=s\left(C_{J} \cap w\left(C_{I}\right)\right)$ is nonempty.
By induction (replacing w by $s w$), it follows that $I=J$ and $s w \in W_{I}$. But now since $s \in J=I$, we have $w=s(s w) \in W_{I}$ as needed.

To prove (b), note that by the definition of U, each W-orbit in U meets D is at least one point. If $f, g \in D$ both lie in the same W-orbit then $w f=g$ for some $w \in W$. Suppose $f \in C_{I}$ and $g \in C_{J}$ so that $w\left(C_{I}\right) \cap C_{J} \neq \varnothing$. By (a), we then have $I=J$ and $w \in W_{I}$, so $f=w f=g$.
For (c), let $f, g \in U$. It is enough to prove that the closed line segment $L=\{\theta f+(1-\theta) g: \theta \in[0,1]\}$ is covered by a finite number of sets in \mathscr{C}. This is clear is $f, g \in D$ since D is convex and covered by a finite number of the sets C_{I}. Without loss of generality we may assume that $f \in D$ and $g \in w(D)$.
We proceed by induction on $\ell(w)$. The case $w=1$ was just covered. Let $\ell(w)>0$. Then $L \cap D$ is covered by finitely many sets in \mathscr{C}. It remains to cover $L \backslash D$. Let $I \subset S$ be such that $g \in A_{s}^{\prime}$ for $s \in I$ and $g \in \overline{A_{s}}$ for $s \notin I$. Let $h \in D$ be the endpoint of $L \backslash D$ distinct from g. If $h \in A_{s}$ for all $s \in I$ then all nearby points k on $L \backslash D$ would have $k \in A_{s}$ for $s \in I$ and $k \in \overline{A_{s}}$ for $s \notin I$, so such points would lie in D which is impossible.
Therefore $h \in Z_{s}$ for some $s \in I$. Since $g \in A_{s}^{\prime}$, we have $w(D) \subset \overline{A_{s}^{\prime}}$ so $w(C) \subset A_{s}^{\prime}$. By the lemma we have $\ell(s w)<\ell(w)$, so by induction applied to $h \in D$ and $s g \in s w(D)$ we get that the segment from h to $s g$ has a finite cover in \mathscr{C}. Transforming this cover by s yields a finite cover of the segment from $s h=h$ to $s^{2} g=g$ as needed.

