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1 More about Bruhat order

Let (W,S) be a Coxeter system with length function ` : W → N. Recall the strong exchange principle:

Theorem (Strong exchange condition). Let w = s1 · · · sr (si ∈ S) with `(w) ≤ r. Suppose t ∈ T is such
that `(wt) < `(w). Then there exists an index i ∈ [r] such that wt = s1 · · · ŝi · · · sr. If `(w) = r, then the
index i is unique.

Recall the main definition from last time:

Definition. The Bruhat order on W is the partial order < which is the transitive closure of the relation
with w < wt whenever w ∈W and t ∈ T and `(wt) < `(w).

Note that if s ∈ S and w ∈W then ws < w if and only if `(ws) < `(w). A conceptually more useful and
appealing characterization of the Bruhat order is given by the following result proved last time.

Theorem. If v, w ∈ W then v ≤ w if and only if for some (equivalently, every) reduced expression
w = s1 · · · sr there are indices 1 ≤ i1 < i2 < · · · < iq ≤ r such that v = si1si2 · · · siq .

Corollary. The Bruhat order of (WJ , J) for J ⊂ S agrees with the Bruhat order of (W,S).

The following technical property from last time will be of use again today:

Lemma (Lifting Property). If u, v ∈W and u ≤ v and s ∈ S, then us ≤ v or us ≤ vs (or both).

For the next proposition, we need a new lemma.

Lemma. Let v, w ∈W with v < w and `(w) = `(v) + 1. Suppose s ∈ S is such that v < vs and vs 6= w.
Then w < ws and vs < ws.

Proof. By the lifting property, we have vs ≤ w or vs ≤ ws. The first case cannot occur since `(vs) = `(w)
but vs 6= w. Therefore vs ≤ ws. As v 6= w, we must have vs < ws. This implies that `(vs) < `(ws). As
`(vs) = `(w), it follows that w < ws.

A chain in a partially ordered set is a sequence of elements a0, a1, a2, . . . , an such that a0 < a1 < a2 <
· · · < an. Such a chain is between two elements a and b if a = a0 and an = b. We have the following
result about chains in W with respect to the Bruhat order.

Proposition. Let v, w ∈ W with v < w. Then there exist w0, w1, . . . , wm ∈ W such that v = w0 <
w1 < · · · < wm = m and `(wi) = `(v) + i for all i.

Proof. We proceed by induction on the sum `(v) + `(w) which is also at least one. If `(v) + `(w) = 1
then v = 1 and w ∈ S and the result is trivial.

Assume `(v) + `(w) > 1 and let w = s1 · · · sr be a reduced expression. Set s = sr. Then v = si1 · · · siq
for some indices 1 ≤ i1 < · · · < iq ≤ r. There are two cases to consider:

(a) Suppose v < vs. We may assume that iq < r by the exchange condition, since otherwise s = sr
would be a descent of si1 · · · siq−1

. It follows that v is also a subexpression of ws < w, so v < ws.
By induction one can find a chain of the desired type from v to w and then one more steps gets us
to w.

(b) Suppose instead that vs < v. By induction we then have a chain in (W,<) of the form

vs = w0 < w1 < · · · < wm = w

with `(wi) = `(v) + i for all i. Choose i to be the smallest index such that wis < wi. Some such
index exists since w0s = v > vs = w0 but wms = ws < w = wm.
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Note that if wi 6= wi−1s then applying the previous lemma to

wi−1 < wi−1s 6= wi

gives wi < wis, contradicting the definition of i. Therefore wi = wi−1s.

For 1 ≤ j < i we have wj 6= wj−1s since wj < wjs. For such j, applying the lemma to

wj−1 < wj−1s 6= wj

gives wj−1s < wjs. Combining these observations show that

v = w0s < w1s < · · · < wi−1s = wi < wi+1 < · · · < wm = w

is a chain in the Bruhat order of W with the desired properties.

Note that if v = w0 < w1 < · · · < wm = w is any chain in the Bruhat order of W then `(wi) ≥ `(wi−1)+1
so `(w) ≥ `(v) +m and m ≤ `(w)− `(v). Therefore `(w)− `(v) is an upper bound on the length of any
chain in the Bruhat order of W from v to w. The proposition shows that this upper bound is always
achieved. In other words, every maximal chain in the Bruhat order of W between v and w has the same
length `(w)− `(v). This property is equivalent to the following statement.

Corollary. (W,<) is a graded partially ordered set with rank function `.

2 Minimal length coset representatives

Continue to let (W,S) be a Coxeter system. Let J ⊂ S and recall that WJ = 〈s ∈ J〉 ⊂W .

Define W J = {w ∈W : `(ws) > `(w) for all s ∈ J}.

Proposition. For each w ∈ W there is a unique u ∈ W J and v ∈ WJ such that w = uv. Moreover, it
holds for these elements that `(w) = `(u) + `(v). Also, u is the unique element of smallest length in the
coset wWJ = {wx : x ∈WJ}.

Proof. The proof via the exchange principle is the same as for the result for reflection groups.

Corollary. If u ∈W J and v ∈WJ then `(uv) = `(u) + `(v).

3 Fundamental domain for W

In this section, we assume that S is a finite set. Let V = R-span{αs : s ∈ S} be the usual W -module on
which s ∈ S acts by sv = v − 2(αs, v)αs for v ∈ V , where (·, ·) : V × V → R is the bilinear form with
(αs, αt) = − cos(π/m(s, t)).

We want to make the geometry of W ’s action on V more explicit. This goal is obstructed by the fact that,
unlike in the case of finite reflection groups, the bilinear form (·, ·) is no longer necessarily non-degenerate.
As a substitute, define V ∗ as the real vector space of R-linear maps V → R.

Let W act on V ∗ by defining wλ for w ∈W and λ ∈ V ∗ as the linear map with the formula

(wλ)(v) = λ(w−1v) for v ∈ V.

Check that this is an action!

For each s ∈ S, define these three sets:
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Zs = {f ∈ V ∗ : f(αs) = 0},

As = {f ∈ V ∗ : f(αs) > 0},

A′s = −As = {f ∈ V ∗ : f(αs) < 0}.

Let C =
⋂

s∈S As ⊂ V ∗.

Proposition. If s ∈ S then sf = f for all f ∈ Zs.

Proof. Let s ∈ S and f ∈ Zs. If t ∈ S then (sf)(αt) = f(sαt) is either −f(αs) = 0 = f(αt) if t = s, or
f(αt − 2(αs, αt)αs) = f(αt) by linearity if t 6= s. Therefore sf = f .

Let b1, . . . , bn be a basis of V with αs = b1 and (bi, αs) = 0 for i > 1.

Let f1, . . . , fn be the dual basis of V ∗ so that fi(bj) = δij for all i, j.

Proposition. It holds that sfi = fi for i > 1.

Proof. Fix i > 1. We have (sfi)(b1) = (sfi)(αs) = −fi(αs) = 0 = f(b1).

Likewise (sfi)(bj) = fi(sbj) = fi(bj) for j > 1.

We may identify V with Rn by fixing a basis, e.g., {αs : s ∈ S}, and letting it correspond to the standard
basis of Rn. We then identify V ∗ with Rn via the associated dual basis.

Proposition. Let s ∈ S. In the standard topology of Rn under this identification:

(1) Zs is closed, As and A′s are open, and C is open.

(2) The closure As of As is As ∪ Zs.

(3) Define D as the closure of C. Then D =
⋂

s∈S As.

Proof. For part (1), note that Zs is the inverse image of the closed set {0} under the linear (continuous)
map f 7→ f(αs). The sets As and A′s are likewise the inverse images under continuous maps of the open
sets (0,∞) and (−∞, 0). Part (2) is clear and part (3) follows from part (2).

Also, note that the action of W on V ∗ is continuous.

We partition D = {f ∈ V ∗ : f(αs) ≥ 0 for all s ∈ S} into sets

CJ =

(⋂
s∈J

Zs

)
∩

(⋂
s/∈J

As

)

for J ⊂ S. Note that the choice of J just determines which of this |S| inequalities ≤ in the definition of
D is an equality = or a strict inequality <, so the sets CJ are disjoint and form a partition of D. At the
extremes, we have C∅ = C and Cs = {0}.

Since s ∈ S fixes Zs pointwise, WJ fixes CJ pointwise. Conversely:

Proposition. If s ∈ S and f ∈ CJ and sf = f , then s ∈ J .

Proof. Let s ∈ S and f ∈ CJ . If s /∈ J then f(αs) > 0. However, if sf = f then f(αs) = (sf)(sαs) =
f(−αs) = −f(αs) so f(αs) = 0. Therefore sf = f implies s ∈ J .
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Finally, let U =
⋃

w∈W w(D) =
⋃

w∈W
⋃

J⊂ w(CJ).

Since D is a convex cone (meaning that if f, g ∈ D and θ ∈ [0, 1] and λ ∈ (0,∞) then θf + (1− θ)g ∈ D
and λf ∈ D) the set U must also be at least a cone: this is called the Tits cone. It will turn out that
this cone is also convex. To prove this, we’ll need a lemma.

Lemma. Let s ∈ S and w ∈W . Then `(sw) > `(w) if and only if w(C) ⊂ As. Also, `(sw) < `(w) if and
only if w(C) ⊂ A′s.

Proof. We only prove the first assertion since the second follows similarly. Note that `(sw) > `(w) is
equivalent to w−1αs > 0. In this case, if f ∈ C then (wf)(αs) = f(w−1αs) > 0 so wf ∈ Af . Therefore
`(sw) > `(w) implies w(C) ⊂ As. Conversely, if (wf)(αs) = f(w−1αs) > 0 for all f ∈ C then, by
considering such f which take very small positive values on αt for t 6= s, it follows that w−1αs > 0 so
`(sw) > `(w).

We now have today’s main theorem.

Theorem. The action of W on V ∗ has the following properties:

(a) Let w ∈ W and I, J ⊂ S. If w(CI) ∩ CJ 6= ∅ then I = J and w ∈ WI so w(CI) = CI . Thus WI is
the stabilizer of the each point of CI in W , and the sets w(CI) for w ∈W , I ⊂ S are disjoint.

(b) The W -orbit of each point in U intersects D in exactly one point.

(c) The cone U is convex and every closed line segment in U intersects finitely many of the sets

C = {w(CI) : w ∈W, I ⊂ S}.

Proof. We prove part (a) by induction on `(w), the case when w = 1 being obvious. Assume `(w) > 0
and write w = s(sw) for some s ∈ S with `(sw) < `(w). The lemma forces us to have w(C) ⊂ s(As) = A′s
so by continuity w(D) ⊂ A′s = A′s ∪ Zs. As D ⊂ As, we have w(D) ∩D ⊂ Zs, so s fixes each point in
w(D) ∩D, and hence also each f ∈ CJ ∩ w(CI). Two things follow.

First, s fixes some point of CJ so s ∈ J .

Second, CJ ∩ sw(CI) = s(CJ ∩ w(CI)) is nonempty.

By induction (replacing w by sw), it follows that I = J and sw ∈WI . But now since s ∈ J = I, we have
w = s(sw) ∈WI as needed.

To prove (b), note that by the definition of U , each W -orbit in U meets D is at least one point. If
f, g ∈ D both lie in the same W -orbit then wf = g for some w ∈ W . Suppose f ∈ CI and g ∈ CJ so
that w(CI) ∩ CJ 6= ∅. By (a), we then have I = J and w ∈WI , so f = wf = g.

For (c), let f, g ∈ U . It is enough to prove that the closed line segment L = {θf + (1 − θ)g : θ ∈ [0, 1]}
is covered by a finite number of sets in C . This is clear is f, g ∈ D since D is convex and covered by a
finite number of the sets CI . Without loss of generality we may assume that f ∈ D and g ∈ w(D).

We proceed by induction on `(w). The case w = 1 was just covered. Let `(w) > 0. Then L∩D is covered
by finitely many sets in C . It remains to cover L \ D. Let I ⊂ S be such that g ∈ A′s for s ∈ I and
g ∈ As for s /∈ I. Let h ∈ D be the endpoint of L \D distinct from g. If h ∈ As for all s ∈ I then all
nearby points k on L \D would have k ∈ As for s ∈ I and k ∈ As for s /∈ I, so such points would lie in
D which is impossible.

Therefore h ∈ Zs for some s ∈ I. Since g ∈ A′s, we have w(D) ⊂ A′s so w(C) ⊂ A′s. By the lemma we
have `(sw) < `(w), so by induction applied to h ∈ D and sg ∈ sw(D) we get that the segment from h to
sg has a finite cover in C . Transforming this cover by s yields a finite cover of the segment from sh = h
to s2g = g as needed.
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