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1 Last time: fundamental domain for W

Let (W,S) be a Coxeter system with length function ` : W → N.

Let T = {wsw−1 : w ∈W, s ∈ S}.

Some things to recall:

Definition. The Bruhat order on W is the partial order < which is the transitive closure of the relation
with w < wt whenever w ∈W and t ∈ T and `(wt) < `(w).

Note that if s ∈ S and w ∈W then ws < w if and only if `(ws) < `(w).

Proposition. If v, w ∈ W then v ≤ w if and only if for some (equivalently, every) reduced expression
w = s1 · · · sr there are indices 1 ≤ i1 < i2 < · · · < iq ≤ r such that v = si1si2 · · · siq .

Proposition. (W,<) is a graded partially ordered set with rank function `. In other words, every
maximal chain in Bruhat order v = w0 < w1 < · · · < wm = w has the same length m = `(w)− `(v).

Assume S is a finite set.

Let V = R-span{αs : s ∈ S} be the usual W -module on which s ∈ S acts by sv = v − 2(αs, v)αs for
v ∈ V , where (·, ·) : V × V → R is the bilinear form with (αs, αt) = − cos(π/m(s, t)).

Define V ∗ as the real vector space of R-linear maps V → R. Since |S| = n is finite, we can identify V
and V ∗ with Rn and we give these spaces the standard Euclidean topology via this identification. The
group W then acts on V ∗ as continuous linear transformations by the formula

(wλ)(v) = λ(w−1v) for v ∈ V.

for w ∈W and λ ∈ V ∗.

For each s ∈ S, define:

Zs = {f ∈ V ∗ : f(αs) = 0} and As = {f ∈ V ∗ : f(αs) > 0}.

Next let
C =

⋂
s∈S

As = {f ∈ V ∗ : f(αs) > 0 for all s ∈ S}.

Let D be the closure of C so that

D = C = {f ∈ V ∗ : f(αs) ≥ 0 for all s ∈ S}.

This set has a partition given by the subsets

CI =

(⋂
s∈I

Zs

)
∩

(⋂
s/∈I

As

)

for I ⊂ S. The Tits cone is the set

U =
⋃
w∈W

w(D) =
⋃
w∈W

⋃
I⊂S

w(CI).

The main theorem from last time went as follows:

Theorem. The sets C = {w(CI) : w ∈ W, I ⊂ S} form a partition of U , and WI is the stabilizer of
each point in CI for I ⊂ S. Moreover, D is a fundamental domain for the W -action on U , meaning that
each W -orbit in U intersects D in exactly one point. Finally, U is a convex cone.
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2 Finiteness criteria

Our goal in the next few lectures is to outline the classification of the finite Coxeter groups (which will
turn out to all be finite reflection groups). For this, we need to develop efficient methods detecting
whether a given Coxeter graph generates a finite group.

Recall the notion of an irreducible Coxeter group: one whose Coxeter graph is connected. We proved the
following statement earlier, under the hypothesis that W is a finite reflection group.

Proposition. Let (W,S) be a Coxeter system. Let Γ1, . . . ,Γr be the connected components of the
Coxeter graph of (W,S). Let S1, . . . , Sr be the sets of vertices in these components. Then W = WS1 ×
· · · ×WSr

and each pair (WSi
, Si) is irreducible.

Proof. The same proof works as for reflection groups, now that we know that WI ∩WJ = WI∩J .

Corollary. The group W is finite if and only if |S| < ∞ and each irreducible component of (W,S) is a
finite Coxeter system.

Thus we only need to determine the finite irreducible Coxeter groups.

For this, we relate finiteness to a topological condition on the geometric representation of W . As usual,
let V = R-span{αs : s ∈ S} be the W -module with s ∈ S acting by sv = v − 2(αs, v)αs for v ∈ V , where
(·, ·) : V × V → R is the bilinear form with (αs, αt) = − cos(π/m(s, t)).

Assume |S| = n is finite and identify V with Rn, and GL(V ) with GL(n,R) ⊂ Rn×n, where Rn×n is
the vector space of n × n matrices over R. Note that GL(n,R) is an open subset of Rn×n and for any
A ∈ GL(n,R) the map X 7→ AX is a homeomorphism Rn×n → Rn×n (that is, a continuous map with a
continuous inverse).

By passing to a dual basis, we may also identify (topologically) the dual space V ∗ with Rn and GL(V ∗)
with Rn×n.

Proposition. Let f ∈ V ∗. The map GL(V ∗)→ V ∗ given by A 7→ Af is continuous.

Proof. Write the map in coordinates: each of these is a linear function, which is continuous.

Recall that C = {f ∈ V ∗ : f(αs) > 0 for all s ∈ S} is open.

Fix an element f ∈ C and let C0 be the inverse image of C under the map GL(V ∗) → V ∗ given by
A 7→ Af .

Proposition. The set C0 is an open neighborhood of 1 ∈ GL(V ∗).

Proof. The set C0 is the inverse image of an open set under a continuous map, and 1 ∈ C0 since
1f = f ∈ C.

Let σ∗ : W → GL(V ∗) be the representation corresponding to the W -module structure we defined earlier
on V ∗, so that σ∗(s) ∈ GL(V ∗) is the linear transformation with (σ∗(s)λ)(v) = λ(sv) for λ ∈ V ∗, v ∈ V ,
and s ∈ S.

Proposition. It holds that σ∗(W ) ∩ C0 = {1} ⊂ GL(V ∗).

Proof. Let w ∈ W . If σ∗(w) ∈ C0 then σ∗(w)(f) ∈ C. But recall that D ⊃ C is a fundamental domain
for W , and contains only one element from each W -orbit. Hence, as σ∗(1)(f) = f ∈ C, every σ∗(w) ∈ C0

must have σ∗(w)(f) = f , so σ∗(W ) ∩ C0 must be contained in the image under σ∗ of the pointwise
stabilizer in W of f ∈ C. But we have see that this stabilizer is W∅ = {1} since C = C∅.
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Let w0 ∈W and set g = σ∗(w0) ∈ σ∗(W ) ⊂ GL(V ∗). The set gC0 is then an open neighborhood of g.

Proposition. It holds that gC0 ∩ σ∗(W ) = {g}.

Proof. If σ∗(w) ∈ gC0 then σ∗(w−10 w) ∈ C0 so σ∗(w−10 w) = 1 and hence σ∗(w) = g.

A set A in a topological space X is discrete if for each x ∈ X there exists an open set U ⊂ X with x ∈ U
and |A ∩ U | ≤ 1. (Be aware that “discrete” is sometimes used to describe a slightly weaker condition:
namely, that every x ∈ A has an open neighborhood U ⊂ X with A ∩ U = {x}.)

For example, the set { 1n : n = 2, 3, 4, . . . } is a discrete subset of (0, 1) but not [0, 1]. (However, this set
would be considered a discrete subset of [0, 1] under the alternate definition mentioned.)

Lemma. It holds that σ∗(W ) is a discrete subset of GL(V ∗).

Proof. For each point g ∈ GL(V ∗), we need to produce an open neighborhood U of g with |σ∗(W )∩U | ≤ 1.
If g ∈ σ∗(W ) then we can take U = gC0. If g /∈ σ∗(W ), then either g ∈ hC0 for some h ∈ σ∗(W ) in
which case we can take U = hC0, or g must have an open neighborhood U disjoint from σ∗(W ): take U
to be the intersection of GL(V ∗) with an open ball centered at g of radius ε > 0, where ε is such that
Bε ∩GL(V ∗) ⊂ C0 where Bε is the open ball of radius ε centered at the origin.

Let σ : W → GL(V ) be the representation corresponding to the W -module structure on V . Putting
things together gives us the first main result of today:

Theorem. It holds that σ(W ) is a discrete subset of GL(V ).

Proof. This follows from the lemma since when we identify GL(V ) and GL(V ∗) with Rn×n as topological
spaces, the transpose map affords a homeomorphism GL(V ∗)→ GL(V ) mapping σ∗(W )→ σ(W ).

Our second main theorem now goes as follows.

Theorem. If the bilinear form (·, ·) : V × V → R is positive definite then W is finite.

Proof. Assume that the form on V is positive definite. Then V is just a Euclidean space and we can
identify σ(W ) ⊂ GL(V ) with a subgroup of the orthogonal group O(n,R), whose element are the n× n
invertible real matrices X with X−1 = XT .

Lemma. The group O(n,R) is a compact subset of Rn×n.

Proof. It suffices to show that O(n,R) is closed and bounded. The set is closed since X ∈ O(n,R) if and
only if (XXT )ij =

∑n
k=1XijXjk = δij for all i, j ∈ [n], so the group is the zero locus of a finite number

of polynomial equations. This also shows that O(n,R) is bounded, since we have
∑n
k=1X

2
ik = 1 for all

elements X is the group.

By the previous theorem, σ(W ) is thus a discrete subgroup of a compact (Hausdorff) group.

Lemma. A discrete subset of a compact Hausdorff space is finite.

Proof. Let D be a discrete subset of a compact Hausdorff space K. For each x ∈ K, let Ux be an open
neighborhood of x with |Ux ∩D| ≤ 1. Since K is Hausdorff, if x /∈ D and there exists y ∈ Ux ∩D, then
there are disjoint open sets Vx and V ′x with x ∈ Vx and y ∈ V ′x. In this case, replace Ux by Vx. We then
have an open cover {Ux}x∈K of K with the property that Ux ∩D = ∅ if x /∈ D. By compactness, there
exists a finite subcover Ux1 , Ux2 , . . . , Uxn of K. Since every element of D belongs to exactly one of these
sets, it follows that |D| ≤ n.
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Combining these lemmas, we deduce that σ(W ) is finite. Since σ is injective, W is also finite.

It turns out that the converse of the preceding theorem is also true: the bilinear form associated to any
finite Coxeter group is positive definite. To prove this, we will need to analyze the radical of the form
(·, ·) : V × V → R, which is defined as the subspace

V ⊥ = {v ∈ V : (v, u) = 0 for all u ∈ V }.

Proposition. It holds that V ⊥ is a proper W -invariant subspace.

Proof. If v ∈ V ⊥ and w ∈ W then (wv, u) = (v, w−1u) = 0 for all u ∈ V . The set V ⊥ is clearly a
subspace, and is not all of V since αs /∈ V ⊥ for all s ∈ S.

Define Hs = {v ∈ V : (v, αs) = 0} for s ∈ S.

Proposition. It holds that V ⊥ =
⋂
s∈S Hs.

Proof. Clearly we have V ⊥ ⊂
⋂
s∈S Hs. If (v, αs) = 0 for all s ∈ S, then (v, u) = 0 for all u ∈ V since

{αs : s ∈ S} is a basis of V .

Next time: more properties of V ⊥ and a proof that (·, ·) is positive definite if W is finite.
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