
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 14

1 Last time: finiteness criteria

Recall the main theorem from last time:

Theorem. Let (W,S) be a Coxeter system. Assume S is finite. The following are equivalent:

(a) W is finite.

(b) The bilinear form (·, ·) on the geometric representation V of W is positive definite.

(c) W is a finite reflection group.

We also briefly discussed crystallographic groups.

A lattice in a finite-dimensional vector space V is a set of the form L = Z-span{b1, b2, . . . , bn} where
b1, b2, . . . , bn is a basis for V . A Coxeter group W is crystallographic (relative to its geometric represen-
tation) if there exists a lattice L ⊂ V with wL = L for all w ∈W .

Theorem. A Coxeter group W is crystallographic if and only if m(s, t) ∈ {1, 2, 3, 4, 6,∞} for all s, t ∈ S,
and in each cycle in the Coxeter graph of W the number of edges labeled 4 is even, and the number of
edges labeled 6 is even.

Sometimes in the literature, the cycle condition is ignored and W is said to be crystallographic if m(s, t) ∈
{1, 2, 3, 4, 6,∞} for all s, t ∈ S. The two definitions are equivalent if W is finite, as we will see later today.

2 Classification of finite Coxeter groups

Today, we will sketch the proof of the complete classification of the finite and affine Coxeter systems.
Some steps in this proof are presented as exercises on this week’s homework assignment.

The first theorem shows that to classify the finite Coxeter groups, it suffices to identify the connected
Coxeter graphs Γ (with a finite number of vertices) whose associated bilinear form, defined by

(αs, αt) = − cos(π/m) for vertices s, t in Γ connected by an edge with label m,

is postive definite, i.e., has (v, v) > 0 for all 0 6= v ∈ V = R-span{αs : s is a vertex of Γ}.

Say that a Coxeter graph Γ is a positive type if its associated bilinear form if positive semidefinite, meaning
that (v, v) ≥ 0 for all vectors v. Say that Γ is positive definite if the associated form is positive definite.

Suppose the vertices of Γ are S = {s1, s2, . . . , sn}. Let αi = αsi for i ∈ [n].

The matrix of the bilinear form associated to Γ is then

M =

 (α1, α1) . . . (α1, αn)
...

...
(αn, α1) . . . (αn, αn)

 .
The principal minors of M are the determinants of the submatrices given by removing a commensurate
set of k rows and columns. (If we remove row i then we must also remove column i, and so on.)

Proposition. The bilinear form associated to a Coxeter graph Γ is positive definite (respectively, semidef-
inite) if and only if all principal minors of the corresponding matrix M are positive (nonnegative).

Proof. This is a standard fact from linear algebra, which we won’t prove in detail. To get an idea of why
this holds, consider the case when M is diagonal. Then all principal minors are positive/nonnegative if
and only if all diagonal entries are positive/nonnegative. To deduce the general case, use the fact that
M can be diagonalized.
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Example. Consider the Coxeter graphs

◦ ◦5

H2

◦ ◦ ◦5

H3

◦ ◦ ◦ ◦5

H4

◦ ◦
A2

◦ ◦ ◦
A3

.

Let MΓ be the matrix of the bilinear form associated to Coxeter graph Γ of these types. We then have

2MA2
=

[
2 −1
−1 2

]

2MA3
=

 2 −1 0
−1 2 −1

0 −1 2


2MH2 =

[
2 −c
−c 2

]

2MH3
=

 2 −c 0
−c 2 −1

0 −1 2



2MH4
=


2 −c 0 0
−c 2 −1 0

0 −1 2 −1
0 0 −1 2



for c = 2 cos(π/5) =
1 +
√

5

2
.

We have multiplied these matrices by 2 to make the numbers a little nicer. Note that this just rescales the
corresponding principal minors by a power of 2, so has no effect on whether those numbers are positive
or nonnegative.

Anyways, by examining these matrices, we see that every principal minor or MH4 is the determinant of 1,
MA2

, MA3
, MH2

, MH3
, or MH4

. All such determinants are positive (try computing this!), so the Coxeter
graph of type H4 is positive definite.

The following is one half of the classification theorem:

Theorem. The following Coxeter graphs have positive type:

An ◦ ◦ · · · ◦
Bn ◦ · · · ◦ ◦

Dn ◦ · · · ◦ ◦

◦

E6 ◦ ◦ ◦ ◦ ◦

◦

E7 ◦ ◦ ◦ ◦ ◦ ◦

◦

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

F4 ◦ ◦ ◦ ◦

H3 ◦ ◦ ◦5

H4 ◦ ◦ ◦ ◦5

I2(m) ◦ ◦m

Ãn ◦ ◦ ◦ · · · ◦

◦

B̃n ◦ ◦ · · · ◦ ◦

◦

C̃n ◦ ◦ ◦ · · · ◦ ◦

D̃n ◦ ◦ · · · ◦ ◦

◦ ◦

Ẽ6 ◦ ◦ ◦ ◦ ◦

◦

◦

Ẽ7 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Ẽ8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

F̃4 ◦ ◦ ◦ ◦ ◦

G̃2 ◦ ◦ ◦6

Among, these, only the graphs in the left column are positive definite.
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(Here, recall that unlabeled edges have weight 3, and unlabeled doubled edges have weight 4.)

Proof sketch. Proceed as in the example for H4. Note that in graph Xn the subscript gives the number of
vertices; call this the rank. Observe that in each graph, removing any number of vertices gives a disjoint
union of graphs of smaller rank. Hence all principle minors of a given graph are products of determinants
of the matrices MΓ of the bilinear forms associated to graphs Γ of smaller rank. One can check directly
the requisite positivity/nonnegativity for the exceptional graphs of type E, F, G, H, I. For the infinite
families of type A, B, C, and D, use the preceding observations to find an inductive formula for detMΓ:
this exercise is part of this week’s homework.

The second half of the classification is the following theorem which we’ll spend the rest of today proving:

Theorem. The graphs in the previous theorem are the only connected Coxeter graphs of positive type.

To prove this, we will apply two lemmas as black boxes.

Lemma. If Γ is a connected Coxeter graph of positive type then every proper subgraph of Γ is positive
definite.

Proof. You will prove this in the homework!

Lemma. The Coxeter graphs

◦ ◦ ◦ ◦5 ◦ ◦ ◦ ◦ ◦5 ◦ ◦ ◦m m′

are not of positive type if m = 3 and m′ ≥ 7, or if m ≥ 4 and m′ ≥ 5.

Proof. Check this by direct calculation. In the last case, for example, the determinant of the matrix of
the associated bilinear form is 1− cos2(π/m)− cos2(π/m′), which is negative is the proscribed cases.

Proof of theorem. Let Γ be a connected Coxeter graph with n vertices, and maximum edge label m.
Assume Γ has positive type but is not given by one of the given graphs. We try to deduce a contradiction.

(1) All graphs of ranks 1 or 2 are of type A1, I2(m), or Ã1, so we must have n ≥ 3.

(2) Ã1 cannot be a subgraph of Γ since every proper subgraph of Γ is positive definite, and Γ is not
equal to Ã1 either. Therefore m <∞.

(3) By the second lemma, and since Ãn for n ≥ 2 cannot be a subgraph, it follows that Γ has no cycles.

Suppose m = 3.

(4) Γ must have a branch point since Γ 6= An.

(5) Since Γ does not have D̃n as a subgraph, there is only one branch point.

(6) Since Γ does not have D̃4 as a subgraph, the branch point can only have three branches. Suppose
these have lengths a ≤ b ≤ c so that n = 1 + a+ b+ c.

(7) Since Ẽ6 is not a subgraph, a = 1.

(8) Since Ẽ7 is not a subgraph, b ≤ 2.

(9) Since Γ 6= Dn, we cannot have b = 1 so n = 2.

(10) Since Ẽ8 is not a subgraph, c ≤ 4

But this implies that Γ is either E6, E7, or E8, contradicting our hypothesis. Thus we cannot have m = 3.
Suppose instead that m = 4:

(12) Since Γ does not have C̃n as a subgraph, there is only one edge labeled 4.
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(13) Since B̃n is not a subgraph, there are no branch points.

(14) Since Γ 6= Bn, the single edge labeled 4 cannot be an extreme edge.

(15) Since F̃4 is not a subgraph, we must have n = 4.

But this implies that Γ is F4, again a contradiction. Thus we cannot have m = 4. Finally suppose m ≥ 5.

(16) By the second lemma, there can only be one edge with label > 3, and this label must be m.

(17) Since G̃2 is not a subgraph and since Γ is not I2(m), we cannot have m = 6. Likewise, since none
of the graphs in the second lemma are subgraphs, we cannot have m ≥ 7. Therefore m = 5.

(18) Since Γ does not contain the first two graphs in the second lemma as subgraphs, the unique edge
labeled 5 must be extreme, and n must be 3 or 4.

But this implies that Γ is H3 or H4, again a contradiction. This eliminates all possibilities for Γ, and so
completes our proof of theorem.

This finishes the classification of the finite Coxeter groups, which also give all finite reflection groups!
Next time, we’ll begin the second major theme of the course, introducing the Iwahori-Hecke algebra of a
Coxeter system.
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