
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 15

1 Last time: classification of finite Coxeter groups

Last time, we proved the following theorem, in two parts:

Theorem. The following Coxeter graphs correspond to the irreducible Coxeter groups whose geometric
representations come with a positive definite or positive semidefinite bilinear form:

An ◦ ◦ · · · ◦
Bn ◦ · · · ◦ ◦

Dn ◦ · · · ◦ ◦

◦

E6 ◦ ◦ ◦ ◦ ◦

◦

E7 ◦ ◦ ◦ ◦ ◦ ◦

◦

E8 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

F4 ◦ ◦ ◦ ◦

H3 ◦ ◦ ◦5

H4 ◦ ◦ ◦ ◦5

I2(m) ◦ ◦m

Ãn ◦ ◦ ◦ · · · ◦

◦

B̃n ◦ ◦ · · · ◦ ◦

◦

C̃n ◦ ◦ ◦ · · · ◦ ◦

D̃n ◦ ◦ · · · ◦ ◦

◦ ◦

Ẽ6 ◦ ◦ ◦ ◦ ◦

◦

◦

Ẽ7 ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

Ẽ8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

F̃4 ◦ ◦ ◦ ◦ ◦

G̃2 ◦ ◦ ◦6

Among these, only the graphs in the left column correspond to finite Coxeter groups. The Coxeter graph
of any irreducible finite Coxeter group is given by one of these.

Today, we introduce the Iwahori-Hecke algebra of a Coxeter system.

2 Iwahori-Hecke algebras

An Iwahori-Hecke algebra of a Coxeter system (W,S) will be a group ring RW for some commutative
(usually, polynomial) ring R, but with a different multiplication than the usual one. We start with the
most general construction, since the proofs are not much more difficult than in any particular case of
interest.

Let A be a commutative ring with unit 1.

Let H = HA,W be the free A-module with basis {Tw : w ∈ W}. Here, each Tw is just a formal symbol
used to distinguish basis elements of H from elements of W . Every element of H is a linear combination
h =

∑
w∈W hwTw with hw ∈ A and hw = 0 for all but finitely many w. Alternatively, one can think of

h ∈ H as a map W → A which sends all but finitely many elements to zero.

Choose elements as, bs ∈ A for s ∈ S such that as = at and bs = bt if s, t ∈ S are conjugate in W .

We’ll spend the rest of today proving the following result:

Theorem. There is a unique associative A-algebra structure on H with unit T1 and such that

TsTw =

{
Tsw if `(sw) > `(w)

asTw + bsTsw if `(sw) < `(w)
if s ∈ S and w ∈W. (*)

We call this algebra a generic (Hecke) algebra of (W,S).
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Example. If as = 0 and bs = 1 for all s ∈ S then H = AW is the usual group ring.

Example. Let P = Z[x1, x2, . . . , xn]. For si = (i, i + 1) ∈ Sn and f ∈ P , let sif = f(· · · , xi+1, xi, · · · )
be the polynomial given by interchanging xi and xi+1. Define

∂if = f−sif
xi−xi+1

for i ∈ [n− 1].

The keyword for ∂i is divided difference operator.

Claim. ∂if ∈ P for f ∈ P

Proof. It suffice to check this when f = xai x
b
i+1 for a, b ∈ N. Then we have ∂if =

xa
i x

b
i+1−x

a
i+1x

b
i

xi−xi+1
. This is

a polynomial since
xc
i−x

c
i+1

xi−xi+1
∈ P for all c ∈ N.

So we can view ∂i as a map P → P . These operators satisfy the braid relations for Sn:

Claim. ∂2i = 0

Proof. If f ∈ P then (xi − xi+1)∂i(∂if) = f−sif
xi−xi+1

− sfi−f
xi+1−xi

= 0.

Claim. ∂i∂j = ∂j∂i if |i− j| > 1, and ∂i∂i+1∂i = ∂i+1∂i∂i+1 for i ∈ [n− 1].

Proof. The first identity is easy to deduce from the fact that sisjf = sjsif . The second identity follows
from a very doable, but slightly tedious calculation (do this yourself!).

We conclude that if w = si1si2 · · · sik is a reduced expression for w ∈ Sn then the operator on polynomials
∂w = ∂i1∂i2 · · · ∂ik is independent of the choice of reduced expression. This follows since, from the
homework, we know that if w = si1 · · · sik = sj1 · · · sjk are both reduced expressions, then one expression
can be obtained from the other by a sequence of braid transformations, which also transform ∂i1 · · · ∂ik
to ∂j1 · · · ∂jk without changing the value of the corresponding map P → P .

Let D = Z-span{∂w : w ∈ Sn} where ∂1 is the identity map P → P .

Claim. D is a free Z-module, that is, the operators ∂w for w ∈ Sn are linearly independent.

Proof. We won’t prove this fact here: the idea is to locate a family of homogeneous polynomials fw
of degree `(w) for w ∈ Sn, such that ∂ufv = δuv if `(u) ≥ `(v). You can check that ∂ufv is always
homogeneous of degree `(v) − `(u) or zero, and deduce the desired linear independence from this. We
will return to this family of operators in more detail in a few lectures!

Claim. D is a Z-algebra, i.e., a ring.

Proof. Let u, v ∈ Sn. If `(uv) = `(u) + `(v) then ∂u∂v = ∂uv ∈ D. If `(uv) < `(u) + `(v) then use
the exchange condition to deduce that ∂u∂v = 0 ∈ D. It follows that D is closed under composition of
operators, which is always an associative product.

Observe that if s ∈ S and w ∈W then

∂s∂w =

{
∂sw if `(sw) > `(w)

0 if `(sw) < `(w).

Thus D = H is the generic algebra with A = Z, W = Sn, and as = bs = 0 for all s ∈ S.
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We now return to the task of proving the main theorem.

Lemma. If an associative A-algebra structure on H exists in which T1 is the unit and (*) holds, then

TwTs =

{
Tws if `(ws) > `(w)

asTw + bsTws if `(ws) < `(w)
if s ∈ S and w ∈W. (**)

Proof. Let t ∈ S. Suppose `(wt) > `(w). We proceed by induction on `(w). The result is clear if
w = 1. Assume w 6= 1 and let s ∈ S be such that `(sw) < `(w). Then `(swt) ib bounded above
by `(sw) + 1 = `(w) and below by `(wt) − 1 = `(w), so `(swt) = `(w). It holds by induction that
TswTt = Tswt. Since TsTsw = Tw, we get

TwTt = TsTswTt = TsTswt = Twt.

Conclude that TwTt = Twt if `(wt) > `(w). If `(wt) < `(w), then the identity TwTt = atTw + btTwt

follows since TwTt = TwtTtTt = Twt(atTt + btT1).

Lemma. Assume there is an associative A-algebra structure on H with T1 = 1 and TsTw = Tsw for
s ∈ S and w ∈W with `(sw) > `(w). The the following are then equivalent:

1. TsTw = asTw + bsTsw for s ∈ S and w ∈W with `(sw) < `(w).

2. T 2
s = asTs + bsT1 for s ∈ S.

Moreover, if these conditions hold then Tw = Ts1Ts2 · · ·Tsn for any reduced expression w = s1s2 · · · sn.

Proof. Clearly (1) implies (2). If (2) holds then (1) follows since if w ∈W and s ∈ S have `(sw) < `(w),
then TsTw = TsTsTsw = (asTs + bsT1)Tsw = asTw + bsTsw. The last claim holds since if w = s1s2 · · · sn
is a reduced expression then 0 < `(sn) < `(sn−1sn) < `(sn−2sn−1sn) < · · · < `(s1s2 · · · sn).

Corollary. If a given generic algebra structure on H exists (for a fixed choice of parameters as and bs),
then it is unique.

Proof. Multiplication of any two elements of H is completely determined by the products TuTv for
u, v ∈ W , and we have TuTv = Ts1 · · ·TsnTt1 · · ·Ttm for any reduced expressions u = s1 · · · sn and
v = t1 · · · tm. The value of this product in turn is completely determined by the axiom (*).

With this observation in hand, we just need to prove the existence of our generic algebra structure on H.
For this, we take a slightly clever approach which one also encounters when working with the universal
enveloping algebra of a Lie algebra.

Define EndH as the set of A-linear maps H → H. EndH is already an A-algebra with respect to pointwise
addition and composition of functions. It’s hard to show that the product on H is associative directly.
The idea is to instead locate a subalgebra of EndH isomorphic to H as an A-module, and then check
that in this subalgebra (*) holds.

Define λs ∈ EndH as the linear map with Tw 7→

{
Tsw if `(sw) > `(w)

asTw + bsTsw if `(sw) < `(w)
.

Define ρs ∈ EndH as the linear map with Tw 7→

{
Tws if `(ws) > `(w)

asTw + bsTws if `(ws) < `(w)
.

The key property of these endomorphisms is that they commute. To show this, we need a technical
lemma about Coxeter groups:

Lemma. Let w ∈W and s, t ∈ S. If `(swt) = `(w) and `(sw) = `(wt), then sw = ws.
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Proof. Let w = s1 · · · sr be a reduced expression. There are two cases:

(a) Suppose `(sw) > `(w).

Then `(w) = `((sw)t) < `(sw) so the exchange condition implies that sw = w′t where w′ is either
w or ss1 · · · ŝi · · · sr for some i. The second case would imply that w = s(sw) = s1 · · · ŝi · · · srt so
wt = s1 · · · ŝi · · · srt < w, contradicting the fact that `(wt) = `(sw) > `(w). Therefore sw = wt.

(b) Suppose `(sw) < `(w) = `(s(sw)).

Applying (a) with sw in place of w gives s(sw) = (sw)t so again sw = wt.

Proposition. For all s, t ∈ S, it holds that λsρt = ρtλs ∈ EndH.

Proof. This is the most difficult part of the proof of the main theorem, and reduces mostly to a rather
long, technical calculation.

Fix w ∈ W . We will compute λs(ρt(Tw)) and ρt(λs(Tw)) and show that in either case we get the same
thing. There are six (!) cases according to the relative lengths of w, sw, wt, and swt. This looks a little
intimidating at first, but (*) and (**) will let us compute each case explicitly, and then lemma will let
us handle any ambiguities.

1. If `(w) > `(wt) = `(sw) < `(swt) then λsρt(Tw) = λs(Twt) = Tswt = ρtλs(Tw).

2. If `(swt) < `(wt) = `(sw) < `(w) then

λsρtTw = λs(atTw + btTwt) = atλs(Tw) + btλs(Twt)

= at(asTw + bsTsw) + bt(asTwt + bsTswt)

= asatTw + atbsTsw + asbtTwt + bsbtTswt.

It follows by symmetric that this is equal to ρtλs(Tw).

3. If `(wt) = `(sw) < `(swt) = `(w) then it follows by the lemma that sw = wt so s and t are
conjugate in W , hence as = at and bs = bt, and so we compute that the expressions

λsρt(Tw) = asatTw + atbsTsw + btTswt,

ρtλs(Tw) = asatTw + asbtTwt + bsTswt

are equal.

4. If `(wt) < `(w) = `(swt) < `(sw) then λsρt(Tw) = asTsw + btTswt = ρtλs(Tw).

5. If `(sw) < `(w) = `(swt) < `(wt) then λsρt(Tw) = asTwt + bsTswt = ρtλs(Tw).

6. Finally, if `(w) = `(swt) < `(sw) = `(wt) then, using the lemma, we similarly compute

λsρt(Tw) = asTwt + bsTswt = atTsw + btTswt = ρtλs(Tw).

We can now prove the existence of part of the main theorem.

Proof of main theorem. Let L = 〈λs : s ∈ S〉 ⊂ EndH be the subalgebra generated by the left-translation
operators λs. Define φ : L → H as the clearly linear map with φ(λ) = λ(T1).

This map is surjective since φ(λs1 · · ·λsn) = Ts1 · · ·Tsn = Tw for any reduced expression w = s1 · · · sn.

To show that φ is injective, suppose φ(λ) = 0 for some λ ∈ L. We want to show that λ = 0. For this it
suffices to show that λ(Tw) = 0 for all w ∈W . This holds by definition for w = 1.
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If w 6= 1, let t ∈ S be such that `(wt) < `(w). Then

λ(Tw) = λ(T(wt)t) = λ(ρt(Twt)) = ρt(λ(Twt)) = 0

by induction, using the preceding proposition in the third equality.

Thus φ : L → H is an isomorphism of A-modules. It follows that L is free with an A-basis given by
λw = φ−1(Tw) = λs1 · · ·λsn for any reduced expression w = s1 · · · sn ∈W .

Let s ∈W and w ∈W . If `(sw) > `(w) then λsλw = λsw by definition. Likewise, we have

λ2s(Tw) =

{
λ(Tsw) = asλs(Tw) + bsTw if sw > w

λs(asTw + bsTsw) = asλs(Tw) + bsTw if sw < w.

Thus λ2s = asλs + bsλ1. Setting TT ′ = φ
(
φ−1(T )φ−1(T ′)

)
for T, T ′ ∈ H defines an associative product

on H since composition of functions is always associative, and what we have just shown proves that this
product satisfies (*), which completes our proof.
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