
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 16

1 Last time: generic Hecke algebra

Let (W,S) be a Coxeter system.

Let A be a commutative ring with unit 1.

Let H = HA,W be the free A-module with basis {Tw : w ∈W}.

Choose elements as, bs ∈ A for s ∈ S such that as = at and bs = bt if s, t ∈ S are conjugate in W .

Last time, we prove this fundamental result:

Theorem. There is a unique associative A-algebra structure on H with unit T1 and such that

TsTw =

{
Tsw if `(sw) > `(w)

asTw + bsTsw if `(sw) < `(w)
if s ∈ S and w ∈W. (*)

We call this algebra a generic (Hecke) algebra of (W,S).

Remark. Recall that an A-algebra M is an A-module with an associative, A-bilinear multiplication
M × M → M and a unit element 1 such that 1x = x1 = x for all x ∈ M . This is a very mild
generalization of a ring, which is itself just a Z-algebra. The hard part of the preceding theorem was
showing that the product defined by (*) is associative.

Some important facts about H:

1. In the generic algebra, it also holds that

TwTs =

{
Tws if `(ws) > `(w)

asTw + bsTws if `(ws) < `(w)
if s ∈ S and w ∈W.

2. If w = s1s2 · · · sk is any reduced expression for w ∈W , then Tw = Ts1Ts2 · · ·Tsn .

2 Presentation for H

Today’s main result will be to prove that H can alternatively be defined as the algebra generated by the
set {Ts : s ∈ S} subject to relations which are similar to the Coxeter relations defining the group W . For
this, we first need a few technical properties related to the Bruhat order.

Write < the Bruhat order on W . Recall:

Lifting property. If x, y ∈W and s ∈ S then

x ≤ y ⇒ (xs ≤ y or xs ≤ ys) and (sx ≤ y or sx ≤ sy) .

We also note this corollary of the main theorem from last time:

Corollary. There exists a unique associative product ◦ : W ×W →W with

s ◦ w =

{
sw if sw < w

w else
and w ◦ s =

{
ws if ws < w

w else

for s ∈ S and w ∈W .

Proof. This describes multiplication (of the basis elements Tw) in H when as = 1 and bs = 0.
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Lemma. Let s1, . . . , sn ∈ S and set w = s1 ◦ · · · ◦ sn ∈ W . Then Ts1Ts2 · · ·Tsn ∈ a(s1, . . . , sn)Tw +
A-span{Tv : v < w} for a constant a(s1, . . . , sn) ∈ A.

Proof. This is clear if n = 0: then the product if 1 and we can take a() = 1. Suppose n > 0 and let
w′ = s2 ◦ · · · ◦ sn. Suppose Ts2 · · ·Tsn ∈ a(s2, . . . , an)Tw′ +A-span{Tv : v < w′}.

Suppose s1w
′ = w > w′ so that Ts1Tw′ = Tw. Set a(a1, s2, . . . , an) = a(s2, . . . , an). It follows by the

lifting property that v < w and sw < w if v < w′. Therefore

Ts1Ts2 . . . Tsn ∈ Ts1 (a(s2, . . . , an)Tw′ +A-span{Tv : v < w′})
⊂ a(s1, s2, . . . , an)Tw +A-span{Tv : v < w}.

Suppose instead that s1w
′ < w′ = w so that Ts1Tw′ = as1Tw + bs1Tsw. It follows again by the lifting

property that if v < w = w′ then sv ≤ w. Therefore

Ts1Ts2 . . . Tsn ∈ as1a(s2, . . . , an)Tw + bs1a(s2, . . . , an)Tsw +A-span{Tv : v ≤ w}
⊂ a(s1, s2, . . . , an)Tw +A-span{Tv : v < w}.

for some constant a(s1, s2, . . . , an) ∈ A.

Let F be the free A-algebra on the set {Fs : s ∈ S}, so that F is the free A-module with a basis given by
the symbols Fs1Fs2 · · ·Fsn for all finite tuples (s1, s2, . . . , sn) with si ∈ S and n ∈ N, with multiplication
of basis elements given by concatenation.

Fix an arbitrary total order ≺ on S. Define Fw ∈ F for w ∈W as the basis element Fw = Fs1Fs2 · · ·Fsn

where w = s1s2 · · · sn is the lexicographically minimal reduced expression for w relative to the order ≺
on S. In this notation, we have F1 = 1 ∈ F . Note that if s1s2 . . . sn = t1t2 . . . tn in W (with si, ti ∈ S),
then Fs1Fs2 · · ·Fsn = Ft1Ft2 · · ·Ftn in F if and only if si = ti for i ∈ [n].

Now let I ⊂ F be the (two-sided) ideal generated by the relations

F 2
s = asFs + bsF1 for s ∈ S.

FsFtFs · · · = FtFsFt · · · for s, t ∈ S, where both sides have m(s, t) terms.

In other words, let I be the intersection of all ideals in F which contain the elements

asFs + bsF1 − Fs and FsFtFs · · ·︸ ︷︷ ︸
m(s,t) terms

− FtFsFt · · ·︸ ︷︷ ︸
m(s,t) terms

for all s, t ∈ S.

Write f + I for the coset {f + x : x ∈ I} ⊂ F .

Lemma. For any reduced expression w = s1s2 · · · sn ∈W , it holds that Fs1Fs2 · · ·Fsn + I = Fw + I.

Proof. This follows from the homework exercise in which you showed that any two reduced words can be
transformed to each other by a sequence of braid moves.

Lemma. For s ∈ S and w ∈W it holds that FsFw + I =

{
Fsw + I if sw > w

asFw + bsFsw + I else.

Proof. Write Fw = Fs1 · · ·Fsn . If sw > w then sw = ss1 · · · sn is also a reduced expression so FsFw +I =
Fsw + I by the previous lemma. If sw < w then w has a reduced expression w = st1 · · · tn so by the
previous lemma FsFw + I = F 2

s Ft1 · · ·Ftn + I = (asFs + bsF1)Ft1 · · ·Ftn + I = asFw + bsFsw + I.
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Corollary. If s1, . . . , sn ∈ S then Fs1 · · ·Fsn + I = a(s1, . . . , sn)Fs1◦···◦sn +A-span{Fv : v < s1 ◦ · · · ◦sn},
where a(s1, . . . , sn) ∈ A is the same coefficient as in our earlier lemma.

Proof. This follows by induction from the preceding lemma.

The universal property of a free algebra asserts that there is a unique surjective A-algebra homomorphism

φ : F → H

with φ(Fs) = Ts for all s ∈ S. It automatically holds that φ(Fw) = Tw for w ∈W .

Clearly I ⊂ kerφ.

Proposition. I = kerφ.

Proof. Suppose x ∈ kerφ. Write x =
∑

(s1,s2,...,sn)∈Z b(s1, sn . . . , sn)Fs1Fs2 · · ·Fsn for some set of tuples

Z of elements of S and some coefficients b(—) ∈ A. It follows the lemmas above that we can write

x+ I ∈
∑
w∈W


 ∑

(s1,s2,...,sn)∈Z
s1◦s2◦···◦sn=w

a(s1, s2, . . . , sn)b(s1, s2, . . . , sn)

Fw +A-span{Fv : v < w}

 + I.

If the coefficient
c =

∑
(s1,s2,...,sn)∈Z
s1◦s2◦···◦sn=w

a(s1, s2, . . . , sn)b(s1, s2, . . . , sn)

is nonzero for any w ∈ W , then whenever w is maximal in the Bruhat order of W such that c 6= 0, it
holds that

φ(x+ I) ∈ cTw +A-span{Tv : v 6= w}.

But this set does not contain 0, contradicting our assumption that x ∈ kerφ. Hence every such coefficient
c must be zero, so x ∈ I.

Putting things together, we conclude that:

Theorem. The map φ : F → H has kernel I, so descends to an algebra isomorphism F/I ∼−→ H.

Equivalently, H is isomorphic to the A-algebra generated by Ts for s ∈ S, subject to the relations

(i) T 2
s = asTs + bsT1 for s ∈ S.

(ii) TsTtTs · · · = TtTsTt · · · for s, t ∈ S, where both sides have m(s, t) terms.

Note that (i) and (ii) become the relations defining the group W when as = 0 and bs = 1.

Corollary. If X is an A-algebra and ϕ : {Ts : s ∈ S} → X is map, then ϕ extends to a (unique) A-algebra
homomorphism H → X if and only if the relations (i) and (ii) still hold with Ts and Tt replaced by their
images under ϕ.

Proof. This is essentially the definition of what it means to say that H is generated by Ts for s ∈ S
subject to (i) and (ii).

Corollary. For each s ∈ S, let θs ∈ A be a root of the equation x2 = asx + bs, and choose these roots
such that θs = θt if s, t ∈ S are W -conjugate. Then there exists a unique A-algebra homomorphism
H → A with Ts 7→ θs for s ∈ S.
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Proof. For s, t ∈ S, we have θ2s +asθs+bs by construction, and it holds that θsθt · · · = θtθs · · · (both sides
with m(s, t) terms) since either m(s, t) is even (so both sides are (θsθt)

m(s,t)/2) or θs = θs since m(s, t)
is odd and s, t are conjugate in W . Thus relations (i) and (ii) hold for the map under consideration, so
the result follows by the preceding corollary.
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