1 Last time: generic Hecke algebra

Let (W, S) be a Coxeter system.

Let A be a commutative ring with unit 1.

Let $\mathcal{H} = \mathcal{H}_{A,W}$ be the free A-module with basis $\{T_w : w \in W\}$.

Choose elements $a_s, b_s \in A$ for $s \in S$ such that $a_s = a_t$ and $b_s = b_t$ if $s, t \in S$ are conjugate in W.

Last time, we prove this fundamental result:

Theorem. There is a unique associative A-algebra structure on \mathcal{H} with unit T_1 and such that

$$T_s T_w = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ a_s T_w + b_s T_{sw} & \text{if } \ell(sw) < \ell(w) \end{cases} \quad \text{if } s \in S \text{ and } w \in W.$$
(*)

We call this algebra a generic (Hecke) algebra of (W, S).

Remark. Recall that an A-algebra M is an A-module with an associative, A-bilinear multiplication $M \times M \to M$ and a unit element 1 such that 1x = x1 = x for all $x \in M$. This is a very mild generalization of a ring, which is itself just a \mathbb{Z} -algebra. The hard part of the preceding theorem was showing that the product defined by (*) is associative.

Some important facts about \mathcal{H} :

1. In the generic algebra, it also holds that

$$T_w T_s = \begin{cases} T_{ws} & \text{if } \ell(ws) > \ell(w) \\ a_s T_w + b_s T_{ws} & \text{if } \ell(ws) < \ell(w) \end{cases} \quad \text{if } s \in S \text{ and } w \in W.$$

2. If $w = s_1 s_2 \cdots s_k$ is any reduced expression for $w \in W$, then $T_w = T_{s_1} T_{s_2} \cdots T_{s_n}$.

2 Presentation for \mathcal{H}

Today's main result will be to prove that \mathcal{H} can alternatively be defined as the algebra generated by the set $\{T_s : s \in S\}$ subject to relations which are similar to the Coxeter relations defining the group W. For this, we first need a few technical properties related to the Bruhat order.

Write < the Bruhat order on W. Recall:

Lifting property. If $x, y \in W$ and $s \in S$ then

$$x \le y \qquad \Rightarrow \qquad (xs \le y \text{ or } xs \le ys) \text{ and } (sx \le y \text{ or } sx \le sy).$$

We also note this corollary of the main theorem from last time:

Corollary. There exists a unique associative product $\circ: W \times W \to W$ with

$$s \circ w = \begin{cases} sw & \text{if } sw < w \\ w & \text{else} \end{cases} \quad \text{and} \quad w \circ s = \begin{cases} ws & \text{if } ws < w \\ w & \text{else} \end{cases}$$

for $s \in S$ and $w \in W$.

Proof. This describes multiplication (of the basis elements T_w) in \mathcal{H} when $a_s = 1$ and $b_s = 0$.

Lemma. Let $s_1, \ldots, s_n \in S$ and set $w = s_1 \circ \cdots \circ s_n \in W$. Then $T_{s_1}T_{s_2}\cdots T_{s_n} \in a(s_1, \ldots, s_n)T_w + A$ -span $\{T_v : v < w\}$ for a constant $a(s_1, \ldots, s_n) \in A$.

Proof. This is clear if n = 0: then the product if 1 and we can take a() = 1. Suppose n > 0 and let $w' = s_2 \circ \cdots \circ s_n$. Suppose $T_{s_2} \cdots T_{s_n} \in a(s_2, \ldots, a_n) T_{w'} + A$ -span $\{T_v : v < w'\}$.

Suppose $s_1w' = w > w'$ so that $T_{s_1}T_{w'} = T_w$. Set $a(a_1, s_2, \ldots, a_n) = a(s_2, \ldots, a_n)$. It follows by the lifting property that v < w and sw < w if v < w'. Therefore

$$T_{s_1}T_{s_2}\dots T_{s_n} \in T_{s_1} \left(a(s_2,\dots,a_n)T_{w'} + A \operatorname{-span}\{T_v : v < w'\} \right) \\ \subset a(s_1,s_2,\dots,a_n)T_w + A \operatorname{-span}\{T_v : v < w\}.$$

Suppose instead that $s_1w' < w' = w$ so that $T_{s_1}T_{w'} = a_{s_1}T_w + b_{s_1}T_{sw}$. It follows again by the lifting property that if v < w = w' then $sv \le w$. Therefore

$$T_{s_1}T_{s_2}\dots T_{s_n} \in a_{s_1}a(s_2,\dots,a_n)T_w + b_{s_1}a(s_2,\dots,a_n)T_{sw} + A\text{-span}\{T_v : v \le w\}$$

$$\subset a(s_1, s_2, \dots, a_n)T_w + A\text{-span}\{T_v : v < w\}.$$

for some constant $a(s_1, s_2, \ldots, a_n) \in A$.

Let \mathcal{F} be the free A-algebra on the set $\{F_s : s \in S\}$, so that \mathcal{F} is the free A-module with a basis given by the symbols $F_{s_1}F_{s_2}\cdots F_{s_n}$ for all finite tuples (s_1, s_2, \ldots, s_n) with $s_i \in S$ and $n \in \mathbb{N}$, with multiplication of basis elements given by concatenation.

Fix an arbitrary total order \prec on S. Define $F_w \in \mathcal{F}$ for $w \in W$ as the basis element $F_w = F_{s_1}F_{s_2}\cdots F_{s_n}$ where $w = s_1s_2\cdots s_n$ is the lexicographically minimal reduced expression for w relative to the order \prec on S. In this notation, we have $F_1 = 1 \in \mathcal{F}$. Note that if $s_1s_2 \ldots s_n = t_1t_2 \ldots t_n$ in W (with $s_i, t_i \in S$), then $F_{s_1}F_{s_2}\cdots F_{s_n} = F_{t_1}F_{t_2}\cdots F_{t_n}$ in \mathcal{F} if and only if $s_i = t_i$ for $i \in [n]$.

Now let $I \subset \mathcal{F}$ be the (two-sided) ideal generated by the relations

 $F_s^2 = a_s F_s + b_s F_1$ for $s \in S$.

 $F_sF_tF_s\cdots = F_tF_sF_t\cdots$ for $s,t\in S$, where both sides have m(s,t) terms.

In other words, let I be the intersection of all ideals in \mathcal{F} which contain the elements

$$a_s F_s + b_s F_1 - F_s$$
 and $\underbrace{F_s F_t F_s \cdots}_{m(s,t) \text{ terms}} - \underbrace{F_t F_s F_t \cdots}_{m(s,t) \text{ terms}}$

for all $s, t \in S$.

Write f + I for the coset $\{f + x : x \in I\} \subset \mathcal{F}$.

Lemma. For any reduced expression $w = s_1 s_2 \cdots s_n \in W$, it holds that $F_{s_1} F_{s_2} \cdots F_{s_n} + I = F_w + I$.

Proof. This follows from the homework exercise in which you showed that any two reduced words can be transformed to each other by a sequence of braid moves. \Box

Lemma. For $s \in S$ and $w \in W$ it holds that $F_s F_w + I = \begin{cases} F_{sw} + I & \text{if } sw > w \\ a_s F_w + b_s F_{sw} + I & \text{else.} \end{cases}$

Proof. Write $F_w = F_{s_1} \cdots F_{s_n}$. If sw > w then $sw = ss_1 \cdots s_n$ is also a reduced expression so $F_sF_w + I = F_{sw} + I$ by the previous lemma. If sw < w then w has a reduced expression $w = st_1 \cdots t_n$ so by the previous lemma $F_sF_w + I = F_s^2F_{t_1} \cdots F_{t_n} + I = (a_sF_s + b_sF_1)F_{t_1} \cdots F_{t_n} + I = a_sF_w + b_sF_{sw} + I$. \Box

Corollary. If $s_1, \ldots, s_n \in S$ then $F_{s_1} \cdots F_{s_n} + I = a(s_1, \ldots, s_n)F_{s_1 \circ \cdots \circ s_n} + A$ -span $\{F_v : v < s_1 \circ \cdots \circ s_n\}$, where $a(s_1, \ldots, s_n) \in A$ is the same coefficient as in our earlier lemma.

Proof. This follows by induction from the preceding lemma.

The universal property of a free algebra asserts that there is a unique surjective A-algebra homomorphism

$$\phi: \mathcal{F} \to \mathcal{H}$$

with $\phi(F_s) = T_s$ for all $s \in S$. It automatically holds that $\phi(F_w) = T_w$ for $w \in W$. Clearly $I \subset \ker \phi$.

Proposition. $I = \ker \phi$.

Proof. Suppose $x \in \ker \phi$. Write $x = \sum_{(s_1, s_2, \dots, s_n) \in Z} b(s_1, s_n, \dots, s_n) F_{s_1} F_{s_2} \cdots F_{s_n}$ for some set of tuples Z of elements of S and some coefficients $b(-) \in A$. It follows the lemmas above that we can write

$$x + I \in \sum_{w \in W} \left(\left(\sum_{\substack{(s_1, s_2, \dots, s_n) \in Z \\ s_1 \circ s_2 \circ \dots \circ s_n = w}} a(s_1, s_2, \dots, s_n) b(s_1, s_2, \dots, s_n) \right) F_w + A \operatorname{-span}\{F_v : v < w\} \right) + I.$$

If the coefficient

$$c = \sum_{\substack{(s_1, s_2, \dots, s_n) \in Z \\ s_1 \circ s_2 \circ \dots \circ s_n = w}} a(s_1, s_2, \dots, s_n) b(s_1, s_2, \dots, s_n)$$

is nonzero for any $w \in W$, then whenever w is maximal in the Bruhat order of W such that $c \neq 0$, it holds that

$$\phi(x+I) \in cT_w + A\operatorname{-span}\{T_v : v \neq w\}.$$

But this set does not contain 0, contradicting our assumption that $x \in \ker \phi$. Hence every such coefficient c must be zero, so $x \in I$.

Putting things together, we conclude that:

Theorem. The map $\phi : \mathcal{F} \to \mathcal{H}$ has kernel I, so descends to an algebra isomorphism $\mathcal{F}/I \xrightarrow{\sim} \mathcal{H}$.

Equivalently, \mathcal{H} is isomorphic to the A-algebra generated by T_s for $s \in S$, subject to the relations

- (i) $T_s^2 = a_s T_s + b_s T_1$ for $s \in S$.
- (ii) $T_sT_tT_s\cdots = T_tT_sT_t\cdots$ for $s,t\in S$, where both sides have m(s,t) terms.

Note that (i) and (ii) become the relations defining the group W when $a_s = 0$ and $b_s = 1$.

Corollary. If \mathcal{X} is an A-algebra and $\varphi : \{T_s : s \in S\} \to \mathcal{X}$ is map, then φ extends to a (unique) A-algebra homomorphism $\mathcal{H} \to \mathcal{X}$ if and only if the relations (i) and (ii) still hold with T_s and T_t replaced by their images under φ .

Proof. This is essentially the definition of what it means to say that \mathcal{H} is generated by T_s for $s \in S$ subject to (i) and (ii).

Corollary. For each $s \in S$, let $\theta_s \in A$ be a root of the equation $x^2 = a_s x + b_s$, and choose these roots such that $\theta_s = \theta_t$ if $s, t \in S$ are *W*-conjugate. Then there exists a unique *A*-algebra homomorphism $\mathcal{H} \to A$ with $T_s \mapsto \theta_s$ for $s \in S$.

Proof. For $s, t \in S$, we have $\theta_s^2 + a_s \theta_s + b_s$ by construction, and it holds that $\theta_s \theta_t \cdots = \theta_t \theta_s \cdots$ (both sides with m(s,t) terms) since either m(s,t) is even (so both sides are $(\theta_s \theta_t)^{m(s,t)/2}$) or $\theta_s = \theta_s$ since m(s,t) is odd and s, t are conjugate in W. Thus relations (i) and (ii) hold for the map under consideration, so the result follows by the preceding corollary.