1 Last time: generic Hecke algebra

Let (W, S) be a Coxeter system.
Let A be a commutative ring with unit 1 .
Let $\mathcal{H}=\mathcal{H}_{A, W}$ be the free A-module with basis $\left\{T_{w}: w \in W\right\}$.
Choose elements $a_{s}, b_{s} \in A$ for $s \in S$ such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ if $s, t \in S$ are conjugate in W.
Last time, we prove this fundamental result:
Theorem. There is a unique associative A-algebra structure on \mathcal{H} with unit T_{1} and such that

$$
T_{s} T_{w}=\left\{\begin{array}{ll}
T_{s w} & \text { if } \ell(s w)>\ell(w) \tag{*}\\
a_{s} T_{w}+b_{s} T_{s w} & \text { if } \ell(s w)<\ell(w)
\end{array} \quad \text { if } s \in S \text { and } w \in W\right.
$$

We call this algebra a generic (Hecke) algebra of (W,S).
Remark. Recall that an A-algebra M is an A-module with an associative, A-bilinear multiplication $M \times M \rightarrow M$ and a unit element 1 such that $1 x=x 1=x$ for all $x \in M$. This is a very mild generalization of a ring, which is itself just a \mathbb{Z}-algebra. The hard part of the preceding theorem was showing that the product defined by $\left({ }^{*}\right)$ is associative.
Some important facts about \mathcal{H} :

1. In the generic algebra, it also holds that

$$
T_{w} T_{s}=\left\{\begin{array}{ll}
T_{w s} & \text { if } \ell(w s)>\ell(w) \\
a_{s} T_{w}+b_{s} T_{w s} & \text { if } \ell(w s)<\ell(w)
\end{array} \quad \text { if } s \in S \text { and } w \in W\right.
$$

2. If $w=s_{1} s_{2} \cdots s_{k}$ is any reduced expression for $w \in W$, then $T_{w}=T_{s_{1}} T_{s_{2}} \cdots T_{s_{n}}$.

2 Presentation for \mathcal{H}

Today's main result will be to prove that \mathcal{H} can alternatively be defined as the algebra generated by the set $\left\{T_{s}: s \in S\right\}$ subject to relations which are similar to the Coxeter relations defining the group W. For this, we first need a few technical properties related to the Bruhat order.
Write < the Bruhat order on W. Recall:
Lifting property. If $x, y \in W$ and $s \in S$ then

$$
x \leq y \quad \Rightarrow \quad(x s \leq y \text { or } x s \leq y s) \text { and }(s x \leq y \text { or } s x \leq s y)
$$

We also note this corollary of the main theorem from last time:
Corollary. There exists a unique associative product $\circ: W \times W \rightarrow W$ with

$$
s \circ w=\left\{\begin{array}{ll}
s w & \text { if } s w<w \\
w & \text { else }
\end{array} \quad \text { and } \quad w \circ s= \begin{cases}w s & \text { if } w s<w \\
w & \text { else }\end{cases}\right.
$$

for $s \in S$ and $w \in W$.
Proof. This describes multiplication (of the basis elements T_{w}) in \mathcal{H} when $a_{s}=1$ and $b_{s}=0$.

Lemma. Let $s_{1}, \ldots, s_{n} \in S$ and set $w=s_{1} \circ \cdots \circ s_{n} \in W$. Then $T_{s_{1}} T_{s_{2}} \cdots T_{s_{n}} \in a\left(s_{1}, \ldots, s_{n}\right) T_{w}+$ $A-\operatorname{span}\left\{T_{v}: v<w\right\}$ for a constant $a\left(s_{1}, \ldots, s_{n}\right) \in A$.

Proof. This is clear if $n=0$: then the product if 1 and we can take $a()=1$. Suppose $n>0$ and let $w^{\prime}=s_{2} \circ \cdots \circ s_{n}$. Suppose $T_{s_{2}} \cdots T_{s_{n}} \in a\left(s_{2}, \ldots, a_{n}\right) T_{w^{\prime}}+A-\operatorname{span}\left\{T_{v}: v<w^{\prime}\right\}$.
Suppose $s_{1} w^{\prime}=w>w^{\prime}$ so that $T_{s_{1}} T_{w^{\prime}}=T_{w}$. Set $a\left(a_{1}, s_{2}, \ldots, a_{n}\right)=a\left(s_{2}, \ldots, a_{n}\right)$. It follows by the lifting property that $v<w$ and $s w<w$ if $v<w^{\prime}$. Therefore

$$
\begin{aligned}
T_{s_{1}} T_{s_{2}} \ldots T_{s_{n}} & \in T_{s_{1}}\left(a\left(s_{2}, \ldots, a_{n}\right) T_{w^{\prime}}+A-\operatorname{span}\left\{T_{v}: v<w^{\prime}\right\}\right) \\
& \subset a\left(s_{1}, s_{2}, \ldots, a_{n}\right) T_{w}+A-\operatorname{span}\left\{T_{v}: v<w\right\}
\end{aligned}
$$

Suppose instead that $s_{1} w^{\prime}<w^{\prime}=w$ so that $T_{s_{1}} T_{w^{\prime}}=a_{s_{1}} T_{w}+b_{s_{1}} T_{s w}$. It follows again by the lifting property that if $v<w=w^{\prime}$ then $s v \leq w$. Therefore

$$
\begin{aligned}
T_{s_{1}} T_{s_{2}} \ldots T_{s_{n}} & \in a_{s_{1}} a\left(s_{2}, \ldots, a_{n}\right) T_{w}+b_{s_{1}} a\left(s_{2}, \ldots, a_{n}\right) T_{s w}+A-\operatorname{span}\left\{T_{v}: v \leq w\right\} \\
& \subset a\left(s_{1}, s_{2}, \ldots, a_{n}\right) T_{w}+A-\operatorname{span}\left\{T_{v}: v<w\right\}
\end{aligned}
$$

for some constant $a\left(s_{1}, s_{2}, \ldots, a_{n}\right) \in A$.
Let \mathcal{F} be the free A-algebra on the set $\left\{F_{s}: s \in S\right\}$, so that \mathcal{F} is the free A-module with a basis given by the symbols $F_{s_{1}} F_{s_{2}} \cdots F_{s_{n}}$ for all finite tuples $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with $s_{i} \in S$ and $n \in \mathbb{N}$, with multiplication of basis elements given by concatenation.
Fix an arbitrary total order \prec on S. Define $F_{w} \in \mathcal{F}$ for $w \in W$ as the basis element $F_{w}=F_{s_{1}} F_{s_{2}} \cdots F_{s_{n}}$ where $w=s_{1} s_{2} \cdots s_{n}$ is the lexicographically minimal reduced expression for w relative to the order \prec on S. In this notation, we have $F_{1}=1 \in \mathcal{F}$. Note that if $s_{1} s_{2} \ldots s_{n}=t_{1} t_{2} \ldots t_{n}$ in W (with $s_{i}, t_{i} \in S$), then $F_{s_{1}} F_{s_{2}} \cdots F_{s_{n}}=F_{t_{1}} F_{t_{2}} \cdots F_{t_{n}}$ in \mathcal{F} if and only if $s_{i}=t_{i}$ for $i \in[n]$.

Now let $I \subset \mathcal{F}$ be the (two-sided) ideal generated by the relations

$$
F_{s}^{2}=a_{s} F_{s}+b_{s} F_{1} \text { for } s \in S
$$

$$
F_{s} F_{t} F_{s} \cdots=F_{t} F_{s} F_{t} \cdots \text { for } s, t \in S, \text { where both sides have } m(s, t) \text { terms. }
$$

In other words, let I be the intersection of all ideals in \mathcal{F} which contain the elements

$$
a_{s} F_{s}+b_{s} F_{1}-F_{s} \quad \text { and } \quad \underbrace{F_{s} F_{t} F_{s} \cdots}_{m(s, t) \text { terms }}-\underbrace{F_{t} F_{s} F_{t} \cdots}_{m(s, t) \text { terms }}
$$

for all $s, t \in S$.
Write $f+I$ for the coset $\{f+x: x \in I\} \subset \mathcal{F}$.
Lemma. For any reduced expression $w=s_{1} s_{2} \cdots s_{n} \in W$, it holds that $F_{s_{1}} F_{s_{2}} \cdots F_{s_{n}}+I=F_{w}+I$.
Proof. This follows from the homework exercise in which you showed that any two reduced words can be transformed to each other by a sequence of braid moves.

Lemma. For $s \in S$ and $w \in W$ it holds that $F_{s} F_{w}+I= \begin{cases}F_{s w}+I & \text { if } s w>w \\ a_{s} F_{w}+b_{s} F_{s w}+I & \text { else. }\end{cases}$
Proof. Write $F_{w}=F_{s_{1}} \cdots F_{s_{n}}$. If $s w>w$ then $s w=s s_{1} \cdots s_{n}$ is also a reduced expression so $F_{s} F_{w}+I=$ $F_{s w}+I$ by the previous lemma. If $s w<w$ then w has a reduced expression $w=s t_{1} \cdots t_{n}$ so by the previous lemma $F_{s} F_{w}+I=F_{s}^{2} F_{t_{1}} \cdots F_{t_{n}}+I=\left(a_{s} F_{s}+b_{s} F_{1}\right) F_{t_{1}} \cdots F_{t_{n}}+I=a_{s} F_{w}+b_{s} F_{s w}+I$.

Corollary. If $s_{1}, \ldots, s_{n} \in S$ then $F_{s_{1}} \cdots F_{s_{n}}+I=a\left(s_{1}, \ldots, s_{n}\right) F_{s_{1} \circ \cdots \circ s_{n}}+A$-span $\left\{F_{v}: v<s_{1} \circ \cdots \circ s_{n}\right\}$, where $a\left(s_{1}, \ldots, s_{n}\right) \in A$ is the same coefficient as in our earlier lemma.

Proof. This follows by induction from the preceding lemma.
The universal property of a free algebra asserts that there is a unique surjective A-algebra homomorphism

$$
\phi: \mathcal{F} \rightarrow \mathcal{H}
$$

with $\phi\left(F_{s}\right)=T_{s}$ for all $s \in S$. It automatically holds that $\phi\left(F_{w}\right)=T_{w}$ for $w \in W$.
Clearly $I \subset \operatorname{ker} \phi$.
Proposition. $I=\operatorname{ker} \phi$.
Proof. Suppose $x \in \operatorname{ker} \phi$. Write $x=\sum_{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in Z} b\left(s_{1}, s_{n} \ldots, s_{n}\right) F_{s_{1}} F_{s_{2}} \cdots F_{s_{n}}$ for some set of tuples Z of elements of S and some coefficients $b(-) \in A$. It follows the lemmas above that we can write

$$
x+I \in \sum_{w \in W}\left(\left(\sum_{\substack{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in Z \\ s_{1} \circ s_{2} 0 \ldots s_{n}=w}} a\left(s_{1}, s_{2}, \ldots, s_{n}\right) b\left(s_{1}, s_{2}, \ldots, s_{n}\right)\right) F_{w}+A-\operatorname{span}\left\{F_{v}: v<w\right\}\right)+I
$$

If the coefficient

$$
c=\sum_{\substack{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in Z \\ s_{1} \circ s_{2} 0 \ldots 0 s_{n}=w}} a\left(s_{1}, s_{2}, \ldots, s_{n}\right) b\left(s_{1}, s_{2}, \ldots, s_{n}\right)
$$

is nonzero for any $w \in W$, then whenever w is maximal in the Bruhat order of W such that $c \neq 0$, it holds that

$$
\phi(x+I) \in c T_{w}+A-\operatorname{span}\left\{T_{v}: v \neq w\right\}
$$

But this set does not contain 0 , contradicting our assumption that $x \in \operatorname{ker} \phi$. Hence every such coefficient c must be zero, so $x \in I$.

Putting things together, we conclude that:
Theorem. The map $\phi: \mathcal{F} \rightarrow \mathcal{H}$ has kernel I, so descends to an algebra isomorphism $\mathcal{F} / I \xrightarrow{\sim} \mathcal{H}$.
Equivalently, \mathcal{H} is isomorphic to the A-algebra generated by T_{s} for $s \in S$, subject to the relations
(i) $T_{s}^{2}=a_{s} T_{s}+b_{s} T_{1}$ for $s \in S$.
(ii) $T_{s} T_{t} T_{s} \cdots=T_{t} T_{s} T_{t} \cdots$ for $s, t \in S$, where both sides have $m(s, t)$ terms.

Note that (i) and (ii) become the relations defining the group W when $a_{s}=0$ and $b_{s}=1$.
Corollary. If \mathcal{X} is an A-algebra and $\varphi:\left\{T_{s}: s \in S\right\} \rightarrow \mathcal{X}$ is map, then φ extends to a (unique) A-algebra homomorphism $\mathcal{H} \rightarrow \mathcal{X}$ if and only if the relations (i) and (ii) still hold with T_{s} and T_{t} replaced by their images under φ.

Proof. This is essentially the definition of what it means to say that \mathcal{H} is generated by T_{s} for $s \in S$ subject to (i) and (ii).

Corollary. For each $s \in S$, let $\theta_{s} \in A$ be a root of the equation $x^{2}=a_{s} x+b_{s}$, and choose these roots such that $\theta_{s}=\theta_{t}$ if $s, t \in S$ are W-conjugate. Then there exists a unique A-algebra homomorphism $\mathcal{H} \rightarrow A$ with $T_{s} \mapsto \theta_{s}$ for $s \in S$.

Proof. For $s, t \in S$, we have $\theta_{s}^{2}+a_{s} \theta_{s}+b_{s}$ by construction, and it holds that $\theta_{s} \theta_{t} \cdots=\theta_{t} \theta_{s} \cdots$ (both sides with $m(s, t)$ terms) since either $m(s, t)$ is even (so both sides are $\left(\theta_{s} \theta_{t}\right)^{m(s, t) / 2}$) or $\theta_{s}=\theta_{s}$ since $m(s, t)$ is odd and s, t are conjugate in W. Thus relations (i) and (ii) hold for the map under consideration, so the result follows by the preceding corollary.

