1 Three forms Hecke algebras

We've now seen Hecke algebras in three different guises:

1. (Deformation of group algebra of a Coxeter group.) If (W, S) is a Coxeter system, and A is a commutative ring, and $a_{s}, b_{s} \in A$ for $s \in S$ are such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ when s is conjugate to t in W, then the generic Hecke algebra \mathcal{H} is the unique A-algebra structure on the free A module A-span $\left\{T_{w}: w \in W\right\}$ in which T_{1} serves as the unit element and we have $T_{w} T_{s}=T_{w s}$ if $\ell(w s)>\ell(w)$ and $T_{s}^{2}=a_{s} T_{w}+b_{s}$ for $s \in S$ and $w \in W$.
This, equivalently, is the A-algebra generated by T_{s} for $s \in S$ subject to the relations

$$
\begin{aligned}
& T_{s} T_{t} T_{s} \cdots=T_{t} T_{s} T_{t} \cdots(\text { both sides with } m(s, t) \text { factors) for } s, t \in S \text { such that } m(s, t)<\infty \\
& T_{s}^{2}=a_{s} T_{s}+b_{s} \text { for } s \in S
\end{aligned}
$$

Since setting $a_{s}=0$ and $b_{s}=1$ turns this into a presentation for the group algebra $A W$, we say that \mathcal{H} is a deformation of $A W$.

Note in either case that $T_{w}=T_{s_{1}} T_{s_{2}} \cdots T_{s_{n}}$ if $w=s_{1} s_{2} \cdots s_{n} \in W$ is a reduced expression.
2. (Endomorphism algebra of module generated by an idempotent.) If A is a finite-dimensional algebra over a field K and $e=e^{2} \in A$ is an idempotent, then the Hecke algebra of (A, e) is $\mathcal{H}(A, e)=e A e=$ $\{e a e: a \in A\}$. This is an associative A-algebra with unit e.

Proposition. $\mathcal{H}(A, e) \cong \operatorname{End}_{A}(e A)$, the algebra of right A-module endomorphisms of $e A$.
The algebra A is semisimple if no nonzero element annihilates every simple right A-module.
Theorem (Wedderburn). If A is semisimple then $A \cong \bigoplus_{i=1}^{n} K^{d_{i} \times d_{i}}$ is isomorphic as an algebra to a direct sum of matrix algebras.
3. (Bi-invariant functions on a group.) Let G be a finite group and let $B \subset G$ be a subgroup. The Hecke algebra of (G, B) is $\mathcal{H}(G, B)=\mathcal{H}(\mathbb{C} G, e)$ where $e=\frac{1}{|B|} \sum_{b \in B} b$. Elements of this algebra can be identified with functions $f: G \rightarrow \mathbb{C}$ with $f\left(b_{1} g b_{2}\right)=f(g)$ for all $g \in G$ and $b_{1}, b_{2} \in B$: every element of $\mathcal{H}(G, B)$ has the form $\sum_{g \in G} f(g) g$ for a function with this property.
Last time we proved:

Proposition. Both $\mathbb{C} G$ and $\mathcal{H}(G, B)$ are semisimple \mathbb{C}-algebras.
Proposition. $N \mapsto N e$ defines a bijection between isomorphism classes of simple right G-submodules of $e \mathbb{C} G$ and simple right \mathcal{H}-modules. The multiplicity of N in $e \mathbb{C} G$ is the dimension of $N e$.
Hecke algebras of type (3) are a special case of those of type (2). Today we will show that a special case of (3) coincides with a special case of (1), thus explaining why the algebra \mathcal{H} attached to (W, S) is called a Hecke algebra.

2 Hecke algebras for (G, B)

Let \mathbb{F}_{q} be a finite field with q elements. Let n be a positive integer.
Set $G=\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ and define $B \subset G$ as the subgroup of upper-triangular matrices.
Let $e=\frac{1}{|B|} \sum_{b \in B} b \in \mathbb{C} G$ as usual, and let $\mathcal{H}=\mathcal{H}(G, B)=e \mathbb{C} G e$.
We identify S_{n} as a subgroup of G by letting a permutation $w \in S_{n}$ correspond to the linear transformation with $w e_{i}=e_{w(i)}$ where $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis elements of \mathbb{C}^{n}.

Proposition. The matrix of $w \in S_{n}$ under the identification is $\sum_{i=1}^{n} E_{w(i), i}$ where $E_{i j}$ is the $n \times n$ matrix with 1 in position (i, j) and 0 in all other positions.

Proof. Follows by an easy calculation, noting that $E_{i j} e_{k}$ is e_{i} if $j=k$ and otherwise zero.

Corollary. It holds that $w^{-1}=w^{T}$ for $w \in S_{n} \subset G$.
Proof. We compute $w^{T} w=\left(\sum_{i=1}^{n} E_{i, w(i)}\right)\left(\sum_{j=1}^{n} E_{w(j), j}\right)=\sum_{i j} E_{i, w(i)} E_{w(j), j}=\sum_{i=1}^{n} E_{i i}=1$.
Proposition (Bruhat decomposition in type A). The subgroup $S_{n} \subset G$ is a complete set of representatives of the double cosets $B g B$ for $g \in G$. I.e., if $g \in G$ then $B g B=B w G$ for a unique $w \in S_{n}$.
To see how this generalizes, check out https://en.wikipedia.org/wiki/Bruhat_decomposition.
Proof. The main idea is to recall Gaussian elimination and use induction. The key thing to understand is what happens to a matrix when we multiply on the left and right by an element of B : rows get rescaled and/or added to rows above, while columns get rescaled and/or added to columns to the right.

For example, if $n=2$ then the cases for $B g B$ are:

1. $B g B=\left(\begin{array}{ll}* & * \\ * & *\end{array}\right)=B\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) B$.
2. $B g B=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)=B\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) B$.

The details for general n are left as an exercise.
The set $\{$ ege $: g \in G\}$ clearly forms a basis for \mathcal{H}, though it frequently happens that ege $=e h e$ for distinct $g, h \in G$. Since $b e=e b=e$ if and only if $b \in B$, it follows that $\{e g e: g \in G\}=\left\{e w e: w \in S_{n}\right\}$ and that the elements of the latter set are all distinct. The next few results will tell us how to multiply these basis elements.

Lemma. If $b \in B$ and $w \in S_{n}$ then $w b w^{-1} \in B$ if and only if $b_{i j}=0$ for all $(i, j) \in \operatorname{Inv}(w)$.
Proof. Let $b \in B$ and $w \in S_{n}$. We have

$$
\left(w b w^{-1}\right)_{j i}=e_{j}^{T} w b w^{-1} e_{i}=\left(w^{-1} e_{j}\right)^{T} b\left(w^{-1} e_{i}\right)=e_{w^{-1}(j)}^{T} b e_{w^{-1}(i)}=b_{w^{-1}(j), w^{-1}(i)}
$$

On the other hand, $w b w^{-1} \in B$ if and only if $\left(w b w^{-1}\right)_{j i}=0$ whenever $i<j$.
If $i<j$ and $w^{-1}(i)<w^{-1}(j)$ then the calculation above shows that $\left(w b w^{-1}\right)_{j i}=b_{w^{-1}(j), w^{-1}(i)}=0$.
If $i<j$ and $w^{-1}(i)>w^{-1}(j)$ then $\left(w^{-1}(j), w^{-1}(i)\right) \in \operatorname{Inv}(w)$, and every inversion of w arises in this way.
We conclude that $\left(w b w^{-1}\right)_{j i}=0$ for all $i<j$ if and only if $b_{j i}=0$ for all $(i, j) \in \operatorname{Inv}(w)$.

Lemma. Suppose $w \in S_{n}$ and $s=s_{i}=(i, i+1)$ are such that $\ell(w s)>\ell(w)$. Then

$$
(B w B)(B s B)=\{a w b \cdot c s d: a, b, c, d \in B\}=B w s B
$$

Proof. Note that $(i, i+1) \notin \operatorname{Inv}(w)$ since $\ell(w s)>\ell(w)$. It suffices to check that if $b \in B$ then $w b s \in B w s B$. We confirm this with some slightly imprecise, but hopefully intuitively clear matrix calculations:

$$
\begin{aligned}
& w b s=w\left(\begin{array}{cccc}
* & * & * & * \\
& a & x & * \\
& 0 & b & * \\
& & & *
\end{array}\right) s \\
& =w\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& a & x & 0 \\
& 0 & b & 0 \\
& & & 1
\end{array}\right)\left(\begin{array}{llll}
* & * & * & * \\
& 1 & 0 & * \\
& 0 & 1 & * \\
& & & *
\end{array}\right) s \\
& =\underbrace{w\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& a & x & 0 \\
& & b & 0 \\
& & & 1
\end{array}\right) w^{-1} \text { ws } s \underbrace{\left(\begin{array}{cccc}
* & * & * & * \\
& 1 & 0 & * \\
0 & 1 & * \\
& & & *
\end{array}\right)}_{\in B \text { by lemma }} s \in B w s B ~}_{\in B \text { by lemma }}
\end{aligned}
$$

Here, the rows/columns containing a, b, x are i and $i+1$.

Lemma. Let $s=s_{i} \in(i, i+1) \in S_{n}$. Then $(B s B)(B s B)=B \sqcup B s B$.
Moreover, the number of elements $b \in B$ with $s b s \in B$ is $|B| / q$.
Proof. Let $b \in B$. It suffices to show that $s b s \in B \sqcup B s B$.
By the lemma above, we have $s b s \in B$ if and only if $b_{i, i+1}=0$. Directly, note that if $b_{i, i+1}=0$ then

$$
s b s=s\left(\begin{array}{cccc}
* & * & * & * \\
& a & 0 & * \\
& 0 & b & * \\
& & & *
\end{array}\right) s=\left(\begin{array}{cccc}
* & * & * & * \\
& b & 0 & * \\
& 0 & a & * \\
& & & *
\end{array}\right) \in B .
$$

On the other hand if $b_{i, i+1} \neq 0$ then

$$
s b s=s\left(\begin{array}{cccc}
* & * & * & * \\
& a & x & * \\
& 0 & b & * \\
& & & *
\end{array}\right) s=\left(\begin{array}{cccc}
* & * & * & * \\
& b & 0 & * \\
& x & a & * \\
& & & *
\end{array}\right) \in B\left(\begin{array}{cccc}
* & * & * & * \\
& 0 & 1 & * \\
& 1 & 0 & * \\
& & & *
\end{array}\right) B=B s B .
$$

Thus $s b s \in B$ if and only if $b_{i, i+1}=0$, and otherwise $s b s \in B s B$, so the lemma follows.
Define $T_{w}=q^{\ell(w)}$ ewe for $w \in S_{n} \subset G$. These elements are a basis for \mathcal{H}.

Theorem. If $w \in S_{n}$ and $s \in S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ then
(a) $T_{w} T_{s}=T_{w s}$ if $\ell(w s)>\ell(w)$.
(b) $T_{s}^{2}=(q-1) T_{s}+q T_{1}$.

Thus $\mathcal{H}=\mathcal{H}(G, B)$ is the generic Hecke algebra of the Coxeter system $(W, S)=\left(S_{n},\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}\right)$ with $A=\mathbb{C}, a_{s}=q-1$, and $b_{s}=q$.

Proof. If $\ell(w s)>\ell(w)$ then, using the above lemmas, we compute

$$
T_{w} T_{s}=q^{\ell(w)} e w e \cdot q e s e=q^{\ell(w)+1} \frac{1}{|B|} \sum_{b \in B} e w b s e=q^{\ell(w s)} e w s e=T_{w s}
$$

as desired. Likewise, we have

$$
T_{s}^{2}=q^{2} \frac{1}{|B|} \sum_{b \in B} \text { esbse }=\frac{q^{2}}{|B|}\left(\frac{|B|}{q} e+\left(|B|-\frac{|B|}{q}\right) \text { ese }\right)=q e+\left(q^{2}-q\right) e s e=(q-1) T_{s}+q T_{1}
$$

The results in this section generalize significantly. The generic Hecke algebra of any finite Weyl group with $A=\mathbb{C}$, $a_{s}=q-1$, and $b_{s}=q$ for a prime power q may be realized as a Hecke algebra $\mathcal{H}(G, B)$ where G is a finite group with a so-called $B N$-pair.

These results motivate us to specifically consider generic Hecke algebras with parameters $a_{s}=q-1$ and $b_{s}=q$. We start this in the next section, and continue next time.

3 Iwahori-Hecke algebras

Let (W, S) be a Coxeter system.
Let $A=\mathbb{Z}\left[x, x^{-1}\right]$ be the ring of Laurent polynomials in one variable x.
Set $a_{s}=x^{2}-1$ and $b_{s}=x^{2}$ for $s \in S$.
The Iwahori-Hecke algebra of (W, S) is the generic Hecke algebra \mathcal{H} defined with respect to these choices of A and parameters a_{s} and b_{s}. This algebra is the free A-module with basis $\left\{T_{w}: w \in W\right\}$, with

$$
T_{1}=1 \quad \text { and } \quad T_{w} T_{s}=T_{w s} \text { if } w s>w \quad \text { and } \quad T_{s}^{2}=\left(x^{2}-1\right) T_{s}+x^{2} T_{1}
$$

for $s \in S$ and $w \in W$.
We imagine that $x^{2}=q$ in the previous section. For technical reasons which are hard to motivate right now, we need A is contain square root of q; hence our choice of parameters. Many subsequent formulas become nicer if we work not with the basis elements $T_{w} \in \mathcal{H}$, but rather the rescaled elements

$$
H_{w}=x^{-\ell(w)} T_{w} \quad \text { for } w \in W
$$

Since x is invertible in \mathcal{H}, the elements $\left\{H_{w}: w \in W\right\}$ are also an A-basis for the algebra. We observe some key properties of this new basis:

Proposition. Let $s \in S$ and $w \in W$.
(1) $H_{1}=T_{1}=1 \in \mathcal{H}$.
(2) $H_{s}^{2}=1+\left(x-x^{-1}\right) H_{s}$ and so $\left(H_{s}-x\right)\left(H_{s}+x^{-1}\right)=0$.
(3) $H_{s} H_{w}=\left\{\begin{array}{ll}H_{s w} & \text { if } s w>w \\ H_{s w}+\left(x-x^{-1}\right) H_{w} & \text { if } s w<w\end{array}\right.$ and $\quad H_{w} H_{s}= \begin{cases}H_{w s} & \text { if } w s>w \\ H_{w s}+\left(x-x^{-1}\right) H_{w} & \text { if } s w<w .\end{cases}$

Proof. Part (1) is trivial, part (2) holds since

$$
H_{s}^{2}=x^{-2} T_{s}^{2}=x^{-2}\left(x^{2}-1\right) T_{s}+x^{-2} x^{2} T_{1}=\left(x-x^{-1}\right) x T_{s}+T_{1}=(x-x)^{-1} H_{s}+1
$$

and part (3) follows by similar calculations: for example, if $s w>w$ then

$$
H_{s} H_{w}=x^{-\ell(w)-1} T_{s} T_{w}=x^{-\ell(s w)} T_{s w}=H_{s w}
$$

Of course, we could achieve the same effect by using the usual basis elements T_{w} with different parameters (namely, $a_{s}=x-x^{-1}$ and $b_{s}=1$) in place of H_{w}. This would conflict with the common usage of T_{w} in the literature and in Humphreys's book, however.

Corollary. Each $H_{s} \in \mathcal{H}$ for $s \in S$ is invertible, with inverse $H_{s}^{-1}=H_{s}+x^{-1}-x$.
Proof. Note that $H_{s}\left(H_{s}+x^{-1}-x\right)=H_{s}^{2}-\left(x-x^{-1}\right) H_{s}=H_{1}$.
Next time: the bar involution of \mathcal{H} and its Kazhdan-Lusztig basis.

