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1 Last time: forms of Hecke algebras

Let (W,S) be a Coxeter system, set A = Z[x, x−1], and recall that the Iwahori-Hecke algebra H of (W,S)
is the unique A-algebra structure on the free A-module with basis {Hw : w ∈ W} in which, for w ∈ W
and s ∈ S, it holds that

(1) H1 = 1.

(2) H2
s = H1 + (x− x−1)Hs.

(3) HsHw = Hsw if sw > w and HwHs = Hws if ws > w.

Last time we saw that this algebra arises, when x =
√
q for a prime power q and W = Sn, as the more

general Hecke algebra H(G,B) = eCGe where G = GLn(Fq), B ⊂ G is the subgroup of upper triangular
matrices, and e = 1

|B|
∑
b∈B b ∈ CG.

A corollary of the results last time shows that the irreducible constituents of the induced representation
IndGB(1) ∼= eCG are in bijection with the irreducible submodules of H(G,B), with multiplicities in the
first case corresponding to dimensions in the second. This is one reason to be interested in H(G,B).

2 The bar involution

Continuing from last time:

Proposition. Each Hs ∈ H for s ∈ S is invertible, with inverse H−1
s = Hs + x−1 − x.

Proof. Note that Hs(Hs + x−1 − x) = H2
s − (x− x−1)Hs = H1.

Corollary. Hw is invertible for all w ∈W .

Proof. This holds since Hw = Hs1Hs2 · · ·Hsn if w = s1s2 · · · sn ∈W is any reduced expression.

Remark. Note that the solutions to ζ2 = (x− x−1)ζ + 1 are ζ = x and ζ = −x−1. Hence Hw 7→ x`(w)

and Hw 7→ (−x)−`(w) both define A-algebra homomorphisms H → A = Z[x, x−1].

Remark. Since Hs = x−1Ts in our earlier notation, H is the A-algebra generated by Hs (s ∈ S) subject
to the relations

1. (Hs − x)(Hs + x−1) = 0 for s ∈ S.

2. HsHtHs · · · = HtHsHt · · · , both sides with m(s, t) factors, for s, t ∈ S.

Proposition. There is a unique A-algebra automorphism of H with Hs 7→ −H−1
s for s ∈ S.

Proof. Just check that the proposed map preserves the relations in the previous remark: this implies that
the map has a unique extension to an invertible A-algebra homomorphism H → H.

For example, we still have (−H−1
s −x)(−H−1

s +x−1) = (−Hs+x−1)(−Hs+x) = (Hs−x)(Hs+x−1) = 0
for s ∈ S. Likewise, (−H−1

s )(−H−1
t )(−H−1

s ) · · · = (−H−1
t )(−H−1

s )(−H−1
t ) · · · holds since inverting both

sides and canceling signs gives the original relation HsHtHs · · · = HtHsHt · · · .

Proposition. There exists a unique ring automorphism of H with x 7→ x−1 and Hs 7→ −Hs for s ∈ S.

Note that an A-algebra automorphism is required to be A-linear, but a ring automorphism is only required
to be Z-linear.
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Proof. The ring automorphism α : H → H with these properties must satisfy α
(∑

w∈W hwHw

)
=∑

w∈W hw(x−1)(−1)`(w)Hw for hw ∈ A. To show that this map is a ring homomorphism, it suffices to

check that α(HsHw) = α(Hs)α(Hw) = −(−1)`(w)HsHw for s ∈ S and w ∈ W . This is straightforward
from the defining properties (1)-(3) of H in Section 1. For example, if sw < w then

α(HsHw) = α(Hsw + (x− x−1)Hw) = −(−1)`(w)Hsw + (x−1 − x)(−1)`(w)Hw = −(−1)`(w)HsHw.

Composing these maps gives the involution of H that we will be most interested in:

Corollary. There exists a unique ring involution H → H with Hs 7→ H−1
s for s ∈ S and x 7→ x−1.

Denote this ring involution by h 7→ h for h ∈ H.

Call this the bar involution/operator of H.

Proof. Composing the previous two maps gives a ring automorphism with

Hs 7→ −H−1
s = −Hs + x− x−1 7→ Hs + x−1 − x = H−1

s

and x 7→ x 7→ x−1, as desired.

Note that Hw = H−1
w−1 since if Hw = Hs1 · · ·Hsk (si ∈ S) then

Hw = Hs1 · · ·Hsk = H−1
s1 · · ·H

−1
sk

= (Hsk · · ·Hs1)−1.

Thus
∑
w∈W hwHw =

∑
w∈W hw(x−1)H−1

w−1 for any coefficients hw ∈ A = Z[x, x−1].

The main property of the bar involution is the following:

Proposition. If w ∈W then Hw ∈ Hw +
∑
v<w AHv, where < is the Bruhat order on W .

Proof. Since H1 = H1, the claim is trivial if `(w) = 0.

Suppose `(w) > 0 and choose s ∈ S with sw < w. By induction, we may assume that

Hw = Hs ·Hsw ∈ (Hs + x−1 − x)

(
Hsw +

∑
v<sw

AHv

)
⊂ Hw +

∑
v<sw

AHsHv +
∑
v<w

AHv.

Note that if v < sw and sv > v then sv < w: this follows either by the lifting property or the subexpression
characterization of the Bruhat order. If v < sw and sv < v then again sv < v < sw < w. Thus we have
HsHv ∈

∑
u<w AHu whenever v < sw, so the result follows.

Lemma. If h = h ∈ x−1Z[x−1]-span{Hw : w ∈W} then h = 0.

Proof. Suppose h is a nonzero element of x−1Z[x−1]-span{Hw : w ∈W}. Write h =
∑
w∈W hwHw where

hw ∈ x−1Z[x−1]. Choose w which is maximal in Bruhat order from the set {w ∈ W : hw 6= 0}. In view
of the maximality of this choice, it follows from the previous proposition that hw = hw(x−1) 6= hw is the
coefficient of Hw in h, so h 6= h.
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3 Kazhdan-Lusztig basis

Having introduced the bar involution of H, we can now characterize an important second basis of H.

Theorem (Kazhdan and Lusztig (1979)). For each w ∈W there exists a unique element Cw ∈ H with

Cw = Cw ∈ Hw +
∑
v<w

x−1Z[x−1]Hv.

The set {Cw : w ∈W} is an A-basis for H, called the Kazhdan-Lusztig (KL) basis or canonical basis.

Proof. The uniqueness property is immediate from our last lemma: if C ′w were another element with the
same properties then Cw − C ′w we be an element of x−1Z[x−1]-span{Hw : w ∈ W} invariant under the
bar involution, so Cw − C ′w = 0 and Cw = C ′w.

To prove the existence of the basis element Cw, first let C1 = H1 = 1 and Cs = Hs +x−1 for s ∈ S. Note
that C1 = C1 and Cs = Hs + x−1 − x+ x = Cs. Also observe that

CsHw =

{
Hsw + x−1Hw if sw > w

Hsw + xHw if sw < w
(*)

for s ∈ S and w ∈W .

Fix w ∈W with `(w) ≥ 2. Assume Cv is given for v < w.

Then CsCsw ∈ Hw + x−1Hsw +
∑
v<sw x

−1Z[x−1]CsHv.

Note, as earlier, that if v < sw then v < w and sv < w.

Therefore (*) implies that CsCsw = Hw +
∑
v<w hvHv for some polynomials hv ∈ Z[x].

Define Cw = CsCsw −
∑
v<w hv(0)Cv.

By construction, Cw has the desired properties. The uniqueness proved earlier implies that this construc-
tion of Cw is well-defined, independent of the choices of s.

Write Cw =
∑
y∈W hywHy where hy,w ∈ Z[x−1] and define Pyw = x`(w)−`(y)hyw for y, w ∈W .

Some notable properties (some easy, some less so) that will be shown next time:

Proposition. Let y, w ∈W .

1. Pyw ∈ Z[x2].

2. Pyw has constant term 1 if y ≤ w, and Pww = 1.

3. If y 6≤ w then Pyw = 0.

4. Pyw has (even) degree at most `(w)− `(y)− 1.

5. Pyw = Py−1w−1 .

The polynomials Pyw are called the Kazhdan-Lusztig polynomials of (W,S).

Why is the KL basis interesting? The original motivation came from representation theory, specifically
the Kazhdan-Lusztig conjectures (1979), which are paraphrased informally as follows.

Let g be a complex semisimple Lie algebra. The Verma modules of g are certain highest weight modules
Mλ. Let ρ = 1

2

∑
α∈Φ+ α be half the sum of the positive roots in the root system Φ of the Weyl group W

of g (which is a finite reflection group). Let Mw = M−wρ−ρ for each w ∈ W . Let Lw be the irreducible
quotient of Mw: this is the simple highest weight g-module of highest weight −wρ − ρ. Finally write
ch(M) for the character of a highest weight g-module M .
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The modules Mw and Lw are easy to construct, and it was expected that it would also be easy to express
how one set of modules decomposes as (formal) linear combination of the other set. This problem turns
out to be quite nontrivial from an algebraic standpoint, however. Kazhdan and Lusztig proposed the first
computable method of obtaining this decomposition. Their conjecture is notable for its simple solution
to this open problem (the definition of the KL polynomials requires little advanced theory beyond the
definition of the Bruhat order on a Coxeter group and some analysis of the definition of H), and the
difficulty of its proof.

Conjecture (Kazhdan and Lusztig (1979)). The decomposition of the Verma modules Mw into simple
modules Lw and vice versa is precisely determined by the values of the Kazhdan-Lusztig polynomials at
x = 1. Specifically, for w ∈W it holds that

ch(Lw) =
∑
y≤w

(−1)`(w)−`(y)Pyw(1)ch(My) and ch(Mw) =
∑
y≤w

Pw0w,w0y(1)ch(Ly)

where w0 is the longest element of the finite group W .

The KL conjectures were proved independently by Beilinson and Bernstein, and Brylinski and Kashiwara
in 1981. Their similar proofs brought many ideas from algebraic geometry to the fore of representation
theory, and stimulated the development of geometric representation theory over the next few decades.

4


	Last time: forms of Hecke algebras
	The bar involution
	Kazhdan-Lusztig basis

