
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 20

1 Last time: the Kazhdan-Lusztig basis of H

Let (W,S) be a Coxeter system

Let H be the Iwahori-Hecke algebra of (W,S).

Recall that this is the free Z[x, x−1]-module with basis Hw for w ∈ W and the unique Z[x, x−1]-algebra
structure in which H1 = 1, HuHv = Huv if `(uv) = `(u) + `(v), and H2

s = 1 + (x− x−1)Hs for s ∈ S.

Recall that H−1s = Hs + x−1 − x for s ∈ S. Last time we proved:

Proposition. There exists a unique ring automorphism h 7→ h of H with

x = x−1 and Hs = H−1s for s ∈ S.

We call this the bar involution of H.

Since the bar involution is a ring automorphism, it holds that gh = g ·h and g + h+g+h for all g, h ∈ H.

It follows that h = h for h ∈ H, and Hw = (Hw−1)−1 for w ∈W .

Write < for the Bruhat order on W . There two main results last time:

Proposition. If w ∈W then Hw ∈ Hw +
∑

v<w Z[x, x−1]Hv, where < is the Bruhat order on W .

Theorem (Kazhdan and Lusztig (1979)). For each w ∈W there exists a unique element Cw ∈ H with

Cw = Cw ∈ Hw +
∑
v<w

x−1Z[x−1]Hv.

The set {Cw : w ∈ W} is a Z[x, x−1]-basis for H, called the Kazhdan-Lusztig (KL) basis or canonical
basis.

2 Kazhdan-Lusztig polynomials

Today, we discuss how to actually compute the KL basis and its structure constants. It is not difficult
to see that C1 = H1 = 1 and Cs = Hs + x−1 for s ∈ S. Therefore

CsHw =

{
Hsw + x−1Hw if sw > w

Hsw + xHw if sw < w

for s ∈ S and w ∈W .

Define hyw ∈ Z[x−1] for y, w ∈W such that Cw =
∑

y∈W hywHy.

Define µ(y, w) as the coefficient of x−1 in hyw. Note that µ(y, w) 6= 0 only if y < w.

Theorem. Let w ∈W and s ∈ S. Then

CsCw =


(x+ x−1)Cw if sw < w

Csw +
∑
y∈W

sy<y<w

µ(y, w)Cy if sw > w.

In particular, Csw = CsCw −
∑

sy<y<w µ(y, w)Cy if sw > w.
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Proof. Assume sw > w. You can check that the element defined by

C ′sw = CsCw −
∑

sy<y<w

µ(y, w)Cy ∈ H

satisfies C ′sw = C ′sw ∈ Hsw +
∑

y<sw x
−1Z[x−1]Hy, so by uniqueness of the KL basis, Csw = C ′sw.

Alternatively suppose sw < w. If w = s then we have

CsCw = C2
s = H2

s + 2x−1Hs + x−2 = (x− x−1 + 2x−1)Hs + x−2 + 1 = (x+ x−1)Cs.

Assume CsCv = (x+ x−1)Cv if sv < v < w. Then, using the first part of the proof, we have

CsCw = Cs

(
CsCsw −

∑
sy<y<sw

µ(y, sw)Cy

)
= C2

sCsw −
∑

sy<y<sw

µ(y, sw)CsCy

= (x+ x−1)

(
CsCsw −

∑
sy<y<sw

µ(y, sw)Cy

)
= (x+ x−1)Cw.

Corollary. Let s ∈ S and y, w ∈W with sw > w. Set c = `(y)− `(sy). Then

hy,sw = xchyw + hsy,w −
∑
z∈W

y≤z<w
sz<z

µ(z, w)hyz.

Proof. The identity Csw = CsCw −
∑

sz<z<w µ(z, w)Cz implies that∑
y∈W

hy,swHy =
∑
y∈W

hywCsHy −
∑

sz<z<w

∑
y≤z

µ(z, w)hyzHy (*)

and we have ∑
y∈W

hywCsHy =
∑

sy<y∈W
(xhywHy + hywHsy) +

∑
sy>y∈W

(x−1hywHy + hywHsy)

=
∑
y∈W

(xchyw + hsy,w)Hy.

The result follows by comparing coefficients of Hy on both sides of (*).

Recall that Pyw = x`(w)−`(y)hyw ∈ Z[x, x−1] for y, w ∈W .

Corollary. Let s ∈ S and y, w ∈W with sw > w. Set c = `(y)− `(sy). Then

Py,sw = x1+cPyw + x1−cPsy,w −
∑
z∈W

y≤z<w
sz<z

µ(z, w)x`(w)−`(z)+1Pyz

Proof. Multiply both sides of the previous corollary by x`(sw)−`(y) = x`(w)−`(y)+1.

Example. Suppose W is a dihedral group, so that S = {a, b} has two elements. In this case, we have
y < w if and only if `(y) < `(w). Given this fact, one can show by induction (using the boxed formula
above) that Pyw = 1 if y ≤ w and otherwise Pyw = 0.
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The following properties hold by the definition of Cw.

Fact. Pww = 1 and Pyw = 0 if y 6≤ w.

Proposition. Pyw ∈ Z[x2] for all y, w ∈W .

Proof. If Pzw ∈ Z[x2] then µ(z, w) = 0 whenever `(w) − `(z) is even, since otherwise Pzw would have
have odd degree `(w)− `(z)− 1. Given this, the result follows by induction from the boxed formula.

Corollary. If y < w then the degree of Pyw is even and at most `(w)− `(y)− 1.

Proof. This holds since hyw ∈ x−1Z[x−1] if y < w.

Proposition. Pyw has constant term 1 if y ≤ w.

Proof. This follows by induction on setting x = 0 in the boxed formula.

This following fact may be useful on the homework assignment:

Corollary. Let y, w ∈W and s ∈ S. If y < w, sw < w, and y < sy then Pyw = Psy,w.

Proof. Compare coefficients of Hy on either side of the identity CsCw = (x+ x−1)Cw.

We saw last time that the values of the Kazhdan-Lusztig (KL) polynomials Pyw at x = 1 give the
multiplicities of the characters of simple highest weight modules in Verma modules and vice versa.

These polynomials are also noteworthy for satisfying much stronger properties which, unlike the ones
we’ve shown so far, do not seem to have any simple algebraic proof.

Theorem (Elias and Williamson (2013)). Each Pyw ∈ N[x2] has nonnegative coefficients.

This was shown earlier in the case when W is a Weyl group, by identifying the coefficients of Pyw with
the (necessarily positive) dimensions of certain intersection cohomology groups attached to an associated
reductive group. The result for the much larger class of arbitrary Coxeter groups is harder.

Theorem (Elias and Williamson (2013)). If y, z ∈W then CyCz ∈ N[x, x−1]span{Cw : w ∈W}.

I.e., the structure constants for multiplication in the KL basis also have nonnegative coefficients.

Note that this theorem is a consequence of the previous theorem when y ∈ S, by the formula for CsCw.

The proofs of these theorems involve identifying H with the split Grothendieck group of a certain abelian
category of graded (bi)modules, such that multiplication in H corresponds to tensor products of modules,
and KL basis elements correspond to indecomposable objects. The positivity of the structure constants
decomposing CyCz then follows (roughly) from the fact that the tensor product of any two modules is
isomorphic to a direct sum of indecomposable objects by definition. A full investigation of this approach
is beyond the scope of this course, but we may sketch some of the details in later lectures.

There are some combinatorial formulas for Pyw in special cases but it seems unlikely that any general
formula can exist. KL polynomials can be arbitrarily complex, even in type A:

Theorem (Polo). Any polynomial in x2 with positive integer coefficients and constant term 1 occurs as
a KL polynomial Pyw for y, w in some symmetric group Sn.

We mention a still open conjecture related to the KL polynomials.

Given y, w ∈W , write [y, w] for the poset {v ∈W : y ≤ v ≤ w}, ordered by <.
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Conjecture (Combinatorial invariance). If (W,S) and (W ′, S′) are Coxeter systems and y, w ∈ W and
y′, w′ ∈W ′ then Pyw = Py′w′ whenever the intervals [y, w] and [y′, w′] are isomorphic posets.

This is known to hold at least when `(w) − `(y) ≤ 4, if [y, w] is a lattice, or if y = y′ = 1. There is
disagreement about whether this conjecture should be true. A proof would be more surprising than a
counterexample, though that would be noteworthy too.

3 Left, right, and two-sided cells

Let y, w ∈W . Define L(w) = {s ∈ S : sw < w} and R(w) = {s ∈ S : ws < w}.

Write y ∼ w if µ(y, w) 6= 0 or µ(w, y) 6= 0.

Write y ≤L w if there exists a chain y = y0 ∼ y1 ∼ · · · ∼ yr = w such that L(yi) 6⊂ L(yi+1) for each i.

Write y ∼L w if y ≤L w and w ≤L y.

Then ∼L is an equivalence relation on W , and its equivalence classes are the left cells of W .

Similarly, write y ≤R w if there exists y = y0 ∼ y1 ∼ · · · ∼ yr = w such that R(yi) 6⊂ R(yi+1) for each i.

Write y ∼R w if y ≤R w and w ≤R y.

The equivalence classes in W under ∼R are the right cells of W .

Finally, write y ≤LR w if there are y = y0, y1, . . . , yr = w with yi ≤L yi+1 or yi ≤R yi+1 for each i.

Write y ∼LR w if y ≤LR w and w ≤LR y.

The equivalence classes in W under ∼LR are the two-sided cells in W .

These definitions are a little technical, but note that all you need to compute these relations are the
values of the KL polynomials Pyw. The homework will give you some instructive practice with these
types of calculations.

The formula we’ve given for the product CsCw shows that the left cells in W correspond to certain left
ideals in H. A similar property holds for the right/two-sided cells.

In detail, let C be a left cell in W .

Define I = Z[x, x−1]-span{Cw : w ≤L w
′ for some w′ ∈ C } and J = Z[x, x−1]-span{Cw ∈ I : w /∈ C }.

Proposition. Both I and J are left ideals in H.

The quotient I/J is the left cell representation of C . This left H-module is free as a Z[x, x−1], with a
basis given by the images of Cw for w ∈ C . We define right and two-sided cell representations similarly.

More about cells and other topics next time.
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