1 Review from the beginning

Given the long break since our last lecture, now seems like a good time to give a quick overview of the main things we've covered in the whole course so far.

1.1 Finite reflection groups

A reflection in a finite-dimensional real vector space V with a positive definite bilinear form (\cdot, \cdot) is a linear transformation of the form $s_{\alpha}: v \mapsto v-2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha$ where $\alpha \in V \backslash 0$. Note that $s_{\alpha} \in O(V) \subset \mathrm{GL}(V)$. A finite reflection group is a finite group generated by some set of reflections $s_{\alpha} \in O(V)$.
Let W be a finite reflection group. Then $\Phi=\left\{\alpha \in V \backslash 0:(\alpha, \alpha)=1\right.$ and $\left.s_{\alpha} \in W\right\}$ is a root system preserved by W. Conversely, if Φ is a root system in V then the set of reflections $\left\{s_{\alpha}: \alpha \in \Phi\right\}$ generates a finite reflection group.
Let Φ be a root system with associated reflection group W. If $<$ is a total order on V and $\Phi^{+}=\{\alpha \in$ $\Phi: \alpha>0\}$ is the corresponding positive system, then Φ^{+}contains a unique simple system Π, and it holds that $W=\langle S\rangle$ where $S=\left\{s_{\alpha}: \alpha \in \Pi\right\}$. Moreover, in this case (W, S) is a Coxeter system, meaning that

1. Each $s \in S$ has order two, so $s^{2}=1$.
2. $W=\left\langle s \in S:(s t)^{m(s, t)}=1\right.$ for $s, t \in S$ with $\left.m(s, t)<\infty\right\rangle$, where $m(s, t)$ is the order of $s t \in W$.

The Coxeter graph or diagram of (W, S) is the weighted, undirected graph on the vertex set S with an edge from s to t labeled by m whenever $s, t \in S$ satisfy $m=m(s, t)>2$.
The group W is irreducible if its graph is connected.
The are four countably infinite "classical" families of irreducible finite reflection groups:

1. Type A_{n} : if W has Coxeter diagram \circ _-_ \cdots —— where all unlabeled edges have weight 3 then $W \cong S_{n+1}$.
2. Type B_{n} : if W has Coxeter diagram 0 —— \cdots ——_-o where the last edge has weight 4 then W is isomorphic to the centralizer of the reverse permutation in $S_{2 n}$.
3. Type D_{n} : if W has Coxeter diagram ○_——————o then W is isomorphic to a subgroup of index two in the group of type B_{n}.
4. Type $I_{2}(m)$: if W has Coxeter diagram $\circ \stackrel{m}{=}$ then W is a dihedral group of order $2 m$.

There are six "exceptional" irreducible finite reflection groups which remain: these are referred to as the Coxeter groups of type $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}$, and H_{4}.

1.2 Coxeter groups

The fact that all finite refection groups are Coxeter groups motivates us to study Coxeter systems abstractly, rather than always working with groups acting on a fixed vector space.
Let (W, S) be a Coxeter system. Assume S is finite.
Define V as the real vector space with a basis given by the symbols α_{s} for $s \in S$.
Define $\left(\alpha_{s}, \alpha_{t}\right)=-\cos (\pi / m(s, t))$ for $s, t \in S$ and extend (\cdot, \cdot) to a bilinear form $V \times V \rightarrow \mathbb{R}$.
Define $\rho: S \rightarrow \mathrm{GL}(V)$ by $\rho(s) v=v-2\left(\alpha_{s}, v\right) \alpha_{s}$ for $v \in V$. The map ρ has a unique extension to an injective homomorphism $W \rightarrow \mathrm{GL}(V)$ which preserves (\cdot, \cdot). Call this the geometric representation of W.

Write $w v$ instead of $\rho(w) v$ for $w \in W$ and $v \in V$, in order to view V as a W-module.
Let $\Phi=\left\{w \alpha_{s}: w \in W\right.$ and $\left.s \in S\right\}$. This is the root system of (W, S). Unlike the root system of a finite reflection group, this set may be infinite. Define $\Phi^{+}\left(\Phi^{-}\right)$as the subsets of Φ consisting of the linear combinations of α_{s} for $s \in S$ with all nonnegative (nonpositive) coefficients. Then $\Phi=\Phi^{+} \sqcup \Phi^{-}$and for any $w \in W$, the number of $\alpha \in \Phi^{+}$with $w \alpha \in \Phi^{-}$is the same as the minimum number of factors $s_{i} \in S$ needed to express $w=s_{1} s_{2} \cdots s_{k}$. We denote this length by $\ell(w)$.
Let $T=\left\{w s w^{-1}: s \in S, w \in W\right\}$.
Strong exchange condition. if $w=s_{1} s_{2} \cdots s_{k}\left(s_{i} \in S\right)$ and $t \in T$ and $\ell(w t)<\ell(w)$ then $w t=$ $s_{1} \cdots \widehat{s}_{i} \cdots s_{k}$ for some index i, which is unique if $\ell(w)=k$. It follows that if $w=s_{1} \cdots s_{k}\left(s_{i} \in S\right)$ and $\ell(w)<k$ then $w=s_{1} \cdots \widehat{s_{i}} \cdots \widehat{s_{j}} \cdots s_{k}$ for some $1 \leq i<j \leq k$.

If $J \subset S$ and $W_{J}=\langle J\rangle \subset W$ then $\left(W_{J}, J\right)$ is a Coxeter system with length function $\left.\ell\right|_{W_{J}}$.
Matsumoto's theorem. The set of reduced expressions $w=s_{1} s_{2} \cdots s_{k}\left(s_{i} \in S\right)$ for $w \in W$ is spanned and preserved by the braid transformations

$$
s_{1} \cdots s_{i} \underbrace{s t s t s t s t s t \cdots}_{m(s, t) \text { factors }} s_{j} \cdots s_{k} \leftrightarrow s_{1} \cdots s_{i} \underbrace{t s t s t s t s t s}_{m(s, t) \text { factors }} \cdots s_{j} \cdots s_{k}
$$

Classification of finite Coxeter groups. Let (W, S) be a Coxeter group. The following are equivalent:

1. W is finite.
2. W is a finite reflection group.
3. The bilinear form (\cdot, \cdot) on V is positive definite.

Bruhat order. The Bruhat order on W is the partial order $<$ generated by the relations $w<w t$ for $w \in W$ and $t \in T$ with $\ell(w)<\ell(w t)$. It holds that $u \leq v$ if and only if in each reduced expression for v there exists a subexpression equal to u. If $s \in S$ and $w \in W$ then $s w<w$ if and only if $\ell(s w)=\ell(w)-1$, and $w s<w$ if and only if $\ell(w s)=\ell(w)-1$.

1.3 Hecke algebras

Let (W, S) be a Coxeter system.
Generic algebra. Let A be a commutative ring. Choose elements $a_{s}, b_{s} \in A$ for each $s \in S$ such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ if $s, t \in S$ are conjugate in W. Let \mathcal{H} be the free A-module with a basis given by $\left\{T_{w}: w \in W\right\}$. There exists a unique A-algebra structure on \mathcal{H} with unit element $T_{1}=1$ and for all $s \in S$ and $w \in W$

$$
\begin{cases}T_{s}^{2}=a_{s} T_{s}+b_{s} & \\ T_{s} T_{w}=a_{s} T_{w}+b_{s} T_{s w} & \text { if } s w<w \\ T_{w} T_{s}=a_{s} T_{w}+b_{s} T_{w s} & \text { if } w s<w \\ T_{u} T_{v}=T_{u v} & \text { if } \ell(u v)=\ell(u)+\ell(v)\end{cases}
$$

This is the generic (Hecke) algebra of (W, S).
If A is a field K and $a_{s}=q-1$ and $b_{s}=q$ where \mathbb{F}_{q} is a finite field, then \mathcal{H} is isomorphic to the algebra $e K G e \cong \operatorname{End}_{K G}(e K G)$ where $e=\frac{1}{|B|} \sum_{b \in B} b \in K G$ and G is a finite group of Lie type over \mathbb{F}_{q} and $B \subset G$ is a Borel subgroup. Under some mild conditions, there is a natural correspondence between irreducible submodules of $e K G$ and irreducible \mathcal{H}-modules, which transforms multiplicities to degrees.
Iwahori-Hecke algebra. This situation motivates us to pay especial attention to the following specialization of the generic algebra. From now on, let $A=\mathbb{Z}\left[x, x^{-1}\right]$ and $a_{s}=x^{2}-1$ and $b_{s}=x^{2}$ where x is an indeterminate. The corresponding algebra \mathcal{H} is the Iwahori-Hecke algebra of (W, S).

Let $H_{w}=x^{-\ell(w)} T_{w}$ so that $\mathcal{H}=\mathbb{Z}\left[x, x^{-1}\right]-\operatorname{span}\left\{H_{w}: w \in W\right\}$. If $s \in S$ and $w \in W$ then

$$
\begin{cases}H_{s}^{2}=1+\left(x-x^{-1}\right) H_{s} & \\ H_{s} H_{w}=H_{s w}+\left(x-x^{-1}\right) H w & \text { if } s w<w \\ H_{w} H_{s}=H_{w s}+\left(x-x^{-1}\right) H w & \text { if } w s<w \\ H_{u} H_{v}=H_{u v} & \text { if } \ell(u v)=\ell(u)+\ell(v)\end{cases}
$$

It follows that $H_{w}=H_{s_{1}} H_{s_{2}} \cdots H_{s_{k}}$ if $w=s_{1} s_{2} \cdots s_{k}$ is any reduced expression for $w \in W$.
Bar involution. The bar involution of \mathcal{H} is the unique ring automorphism $h \mapsto \bar{h}$ of \mathcal{H} with $\bar{x}=x^{-1}$ and $\overline{H_{s}}=H_{s}^{-1}$ for $s \in S$ and $\overline{H_{w}}=\left(H_{w^{-1}}\right)^{-1}$ for $w \in W$. By definition $\overline{g h}=\bar{g} \cdot \bar{h}$ and $\overline{g+h}+\bar{g}+\bar{h}$ for all $g, h \in \mathcal{H}$. It follows that $\overline{\bar{h}}=h$ for $h \in \mathcal{H}$, and $\overline{H_{s}}=H_{s}+x^{-1}-x$ for $s \in S$.

Kazhdan-Lusztig basis. If $w \in W$ then

$$
\overline{H_{w}} \in H_{w}+\sum_{v<w} \mathbb{Z}\left[x, x^{-1}\right] H_{v}
$$

where $<$ is the Bruhat order on W. For each $w \in W$ there exists a unique element $C_{w} \in \mathcal{H}$ with

$$
\overline{C_{w}}=C_{w} \in H_{w}+\sum_{v<w} x^{-1} \mathbb{Z}\left[x^{-1}\right] H_{v}
$$

The set $\left\{C_{w}: w \in W\right\}$ is a $\mathbb{Z}\left[x, x^{-1}\right]$-basis for \mathcal{H}, called the Kazhdan-Lusztig (KL) basis.
We have $C_{1}=1$ and $C_{s}=H_{s}+x^{-1}$ for $s \in S$. Define $h_{y w} \in \mathbb{Z}\left[x^{-1}\right]$ such that $C_{w}=\sum_{y \in W} h_{y w} H_{y}$. Let $\mu(y, w)$ be the coefficient of x^{-1} is $h_{y w}$ and set $P_{y w}=x^{\ell(w)-\ell(y)} h_{y w}$.
The importance of the KL basis has to do with the positivity properties of these polynomials, and the fact that their values $P_{y w}(1)$ at $x=1$ encode the multiplicities of the irreducible submodules of Verma modules of a complex semisimple Lie algebra with Weyl group given by W.
If $w \in W$ and $s \in S$ then

$$
C_{s} C_{w}= \begin{cases}\left(x+x^{-1}\right) C_{s} & \text { if } s w<w \\ C_{s w}+\sum_{\substack{y \in W \\ s y<y<w}} \mu(y, w) C_{y} & \text { if } s w>w\end{cases}
$$

There is an almost identical right-handed formula for $C_{w} C_{s}$. From this formula, it is elementary to prove by induction that each $P_{y w}$ is an element of $\mathbb{Z}\left[x^{2}\right]$ with degree at most $\ell(w-\ell(y)-1$ if $y<w$. It actually holds that $P_{y w} \in \mathbb{N}\left[x^{2}\right]$ but this is much more difficult to prove.

2 Left cells

Let R be a commutative ring.
Let A be an R-algebra which is free as an R-module with basis $\left\{b_{w}\right\}_{w \in W}$ indexed by some set W.
Suppose A is generated by some elements $\left\{g_{s}\right\}_{s \in S}$ indexed by a set S.
We have in mind the case when (W, S) is a Coxeter system and $A=\mathcal{H}$, but for the following constructions we do not need any of this extra structure.
For each $s \in S$ and $u, v \in W$ define $m_{s}(u \rightarrow v) \in A$ such that $g_{s} b_{u}=\sum_{v \in W} m_{s}(u \rightarrow v) b_{v}$.

Definition. The left cell graph of $\left(A,\left\{b_{w}\right\}_{w \in W},\left\{g_{s}\right\}_{s \in S}\right)$ is the direct graph with verte set W and an edge $u \rightarrow v$ if and only if $m_{s}(u \rightarrow v)$ is nonzero for some $s \in S$.
A subset $\mathscr{C} \subset W$ is a left cell if it is a strongly connected component of the left cell graph, i.e., if there exists a direct path from u to v and from v to u for any $u, v \in \mathscr{C}$.

If $\mathscr{C} \subset W$ is a left cell, define \mathscr{C}^{+}as the set of $w \in W \backslash \mathscr{C}$ such that there exists a directed path from some (equivalently, every) $u \in \mathscr{C}$ to w in the left cell graph.

Proposition. If $I=R$-span $\left\{b_{w}: w \in \mathscr{C} \cup \mathscr{C}^{+}\right\}$and $J=R$-span $\left\{b_{w}: w \in \mathscr{C}^{+}\right\}$then both I and J are left ideals in A. The quotient I / J is a free R-module with basis $b_{w}=b_{w}+J$ for $w \in s C$, and is a left A-module satisfying

$$
g_{s} \tilde{b}_{u}=\sum_{v \in \mathscr{C}} m_{s}(u \rightarrow v) \tilde{b}_{v}
$$

for $s \in S$ and $u \in \mathscr{C}$. We refer to I / J as the left cell module of \mathscr{C}.
Proof. By construction, if $s \in S$ and $w \in \mathscr{C} \cup \mathscr{C}^{+}$then $g_{s} b_{w} \in I$. If $w \in \mathscr{C}^{+}$then $g_{s} b_{w} \in J$ since if $g_{s} b_{w} \in I \backslash J$ then there would exist a directed path in the left cell graph from w to some $u \in \mathscr{C}$, implying $w \in \mathscr{C}$.

The formula for $g_{s} \tilde{b}_{u}$ holds by the definition of $m_{s}(u \rightarrow v)$.

Example. If we take $R=\mathbb{Z}\left[x, x^{-1}\right]$ and $A=\mathcal{H}$ and $\left\{b_{w}\right\}=\left\{H_{w}\right\}$ and $\left\{g_{s}\right\}=\left\{H_{s}\right\}$, then the left cells are not very interesting: in this case $m_{s}(w \rightarrow s w)=1$ for all $s \in S$ and $w \in W$ so the left cell graph is essentially just the Cayley graph of W, so there is only one left cell, consisting of all of W.
The left cells become more interesting if we replace the standard basis $\left\{H_{w}\right\}_{w \in W}$ with the KL basis.
Definition. The left cells of a Coxeter system (W, S) with Iwahori-Hecke algebra \mathcal{H} are the left cells defined with respect to the left cell graph of $\left(\mathcal{H},\left\{C_{w}\right\}_{w \in W},\left\{C_{s}\right\}_{s \in S}\right)$.
Note that $\left\{C_{s}\right\}_{s \in S}$ does generate \mathcal{H}. Replacing this generating set by $\left\{H_{s}\right\}_{s \in S}$ or even $\left\{T_{s}\right\}_{s \in S}$ makes no difference on the resulting set of left cells.

We can describe the left cell graph for (W, S) more explicitly in terms of the leading coefficients $\mu(y, w)$.
Proposition. If $s \in S$ and $u, v \in W$ then

$$
m_{s}(u \rightarrow v)= \begin{cases}x+x^{-1} & \text { if } u=v \text { and } s u<u \\ 1=\mu(u, v) & \text { if } v=s u>u \\ \mu(v, u) & \text { if } s v<v<u \text { and } s u<u\end{cases}
$$

Consequently, if $u \neq v$ then there exists an edge $u \rightarrow v$ in the left cell graph of (W, S) if and only if $\mu(v, u)$ or $\mu(u, v)$ is nonzero and there exists $s \in S$ with $s v<v$ but $u<s u$.

Proof. This mostly follows from the formula for $C_{s} C_{w}$ stated earlier.
We proved last time that if $u<v$ and $s v<v$ and $u<s u$ then $P_{u v}=P_{s u, v}$, and this implies that $\mu(u, v)=1$ if $v=s u>u$.

If $u<v$ and $s v>v, u<s u$ then it follows similarly that $h_{u v}=x^{-1} h_{s u, v}$ so if $s u \neq v$ then $h_{u v} \in x^{-2} \mathbb{Z}\left[x^{-1}\right]$ and $\mu(u, v)=0$.

Thus if $u \neq v$ then $m_{s}(u \rightarrow v)$ is nonzero if and only if $\mu(v, u)$ or $\mu(u, v)$ is nonzero and s is a left descent of v but not u.

This lets us recover the description of the left cells from last time.
Let $y, w \in W$. Define $L(w)=\{s \in S: s w<w\}$ and $R(w)=\{s \in S: w s<w\}$.
Write $y \sim w$ if $\mu(y, w) \neq 0$ or $\mu(w, y) \neq 0$.

Write $y \leq_{L} w$ if there exists a chain $y=y_{0} \sim y_{1} \sim \cdots \sim y_{r}=w$ such that $L\left(y_{i}\right) \not \subset L\left(y_{i+1}\right)$ for each i.
Corollary. We have $u \leq_{L} v$ if and only if there exists a directed path from v to u in the left cell graph.
Write $y \sim_{L} w$ if $y \leq_{L} w$ and $w \leq_{L} y$.
Corollary. Each left cell in W is an equivalence class under the transitive relation generated by \sim_{L}.
Example. Suppose $W=\langle s, t\rangle$ is a dihedral group of size $2 m$. Then $P_{u v}=x^{\ell(u)-\ell(v)} h_{u v}=1$ for all $u, v \in W$ with $\ell(u)<\ell(v)$ so $\mu(u, v)=1$ if $\ell(u)=\ell(v)-1$ and otherwise $\mu(u, v)=0$. After drawing the left cell graph, one sees that there are four lefts cells, given by $\{1\},\left\{w_{0}\right\},\{a, b a, a b a, \ldots\}$ and $\{b, a b, b a b, \ldots\}$.

