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1 Last time: cells

Let (W,S) be a Coxeter system with Iwahori-Hecke algebra H = Z[x, x−1]-span{Hw : w ∈W}. Let

Cw = Cw =
∑
y∈W

hywHy

be the KL basis element of w ∈ W . Here hyw ∈ x−1Z[x−1] if y < w, hww = 1, and hyw = 0 if y 6≤ w
where ≤ is the Bruhat order on W .

Let µ(y, w) be the coefficient of x−1 of hyw for y, w ∈W . Note that µ(y, w) 6= 0 only if y < w.

The left cell graph of (W,S) is the directed graph with vertex set W in which an edge connects u → v
if and only if Cv appears with nonzero coefficient in the expansion of the product CsCu in the KL basis
for some s ∈ S. (Recall that Cs = Hs + x−1.)

The left cells of (W,S) are the sets of vertices in the strongly connected components of the left cell graph.

The right cell graph and right cells of (W,S) are defined similarly.

For w ∈W let DesR(w) = {s ∈ S : ws < w} and DesL(w) = {s ∈ sw < w}.

Example. If S = {s, t} so that W = 〈s, t〉 is a dihedral group of order 2m for m = m(s, t) < ∞, then
there are 4 left cells, given by the subsets of elements in W with the same right descent set: {1}, {w0},
{s, ts, sts, . . . }, and {t, st, tst, . . . }.

One motivation for considering left cells is as a means of constructing representations of H:

Proposition. If C ⊂W is a left cell, then the free Z[x, x−1]-module MC = Z[x, x−1]-span{mw : w ∈ C }
has a unique left H-module structure in which

Csmw =


(x+ x−1)mw if sw < w

msw +
∑
y∈C

sy<y<w

µ(y, w)my if sw > w

for s ∈ S and w ∈ C . Call this the left cell module of C .

Special properties of the KL basis imply a simpler characterization of the left cells.

Definition. Let y, w ∈W .

1. Write y ∼ w if µ(y, w) 6= 0 or µ(w, y) 6= 0.

2. Write y ≤L w if there are y = y0 ∼ y1 ∼ · · · ∼ yr = w with DesL(yi) 6⊂ DesL(yi+1) for each i.

3. Write y ∼L w if y ≤L w and w ≤L y.

Proposition. The left cells in W are the equivalence classes under the relation ∼L.

We will need this lemma from a few lectures ago:

Lemma. Let s ∈ S and u, v ∈W with u < v.

1. If sv < v and u < su then huv = x−1hsu,v

2. If vs < v and u < us then huv = x−1hus,v.

In these cases, it follows that µ(u, v) 6= 0 if and only if su = v in (1) or us = v in (2).

The phenomenon observed in our Example for a finite dihedral group has this generalization:

Proposition. Let u, v ∈W . If u ≤L v then DesR(u) ⊃ DesR(v), so if u ∼L v then DesR(u) = DesR(v).
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Proof. Suppose u ≤L v. It suffices to assume that u ∼ v, so that DesL(u) 6⊂ DesL(v).

If u < v then µ(v, u) = 0 so we must have µ(u, v) 6= 0. It follows by the lemma that every right descent
of v must also be a right descent of u.

If v < u then µ(u, v) = 0 so we must have µ(v, u) 6= 0. Since there exists s ∈ S with su < u and v < sv
it follows by the lemma that v < sv = u, from which it is clear that DesR(v) ⊂ DesR(u).

2 Left cells in type A

We specialize to the case when W = Sn and S = {si = (i, i+ 1) : i = 1, 2, . . . , n− 1}.

Definition. Say that two elements u, v ∈ Sn are dual Knuth equivalent, and write u
i
≈
dK

v, if su < u <

s′u = v < sv where {s, s′} = {si−1, si} for some 1 < i < n.

Proposition. If u, v ∈ Sn then u
i
≈
dK

v if and only if there are numbers 1 ≤ a < b < c ≤ n such that

(u−1(i − 1)u−1(i)u−1(i + 1), v−1(i − 1)v−1(i)v−1(i + 1)) is (bac, bca) or (acb, cab). Here we write “xyz”
not to denote the product of three numbers, but as a shorthand for the triple (x, y, z).

The preceding property is straightforward to check from the definition of
i
≈
dK

. The details are left to the

reader.

Lemma. If u, v ∈ Sn then u
i
≈
dK

v for some i if and only if there are antiparallel edges u→ v and u← v

in the left cell graph of Sn. Therefore if u
i
≈
dK

v then u ∼L v.

Proof. Suppose su < u < s′u = v < sv for {s, s′} = {si−1, si}. Then Cs′Cu = Cv + ( other terms )
so there exists an edge u → v. We also have µ(u, v) = 1 since huv = x−1hs′u,v = x−1hvv = x−1 so
CsCv = Csv + Cu + ( other terms ).

Conversely, assume `(u) < `(v) and there are edges u→ v and u← v in the left cell graph of Sn. We can
only have an edge u → v if u < s′u = v for some s′ ∈ S. In this case, there can only be an edge u ← v
if for some s ∈ S we have su < u < s′u = v < sv; note that in this case µ(u, v) = 1 holds automatically.
This, finally, can only occur if s and s′ do not commute, so {s, s′} = {si−1, si} for some i.

The RSK correspondence is (for our purposes) as bijection from Sn to the set of pairs (P,Q) of standard
tableaux of the same shape λ, where λ is an integer partition of n.

Here, a tableau T of shape λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) is a map Dλ → {1, 2, 3, . . . }, where

Dλ = {(i, j) : 1 ≤ j ≤ λi, 1 ≤ i ≤ k}.

We identify Dλ with a subset of positions in a matrix; then T corresponds to a way of filling these
positions with numbers.

For example, if λ = (3, 2, 1) then every T of shape λ has the form T = a b

c

As tableau is standard if its entries are increasing from left to right in each row and from top to bottom
in each column, and the entries which occur form a consecutive sets of integers {1, 2, 3, . . . , n}.

Standard:
1 3

2
and

1 2

3
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Not standard: 2 1

3
and 1 2

2
and 1 3

4

Bumping Algorithm. Given a row i1 i2 · · · ik and a number j, define

i1 i2 · · · ik ← j

as the new row given by locating the first entry from the left with j < ir and replacing ir by j, or by
adding j to the end of the row if no such ir exists. In the first case, we say that ir is bumped.

For example,

1 2 3 4 ← 5 = 1 2 3 4 5

(no entry is bumped) and

1 2 3 4 ← 2 = 1 2 2 4

(3 is bumped).

RSK algorithm. Given a permutation w = w1w2 · · ·wn ∈ Sn where wi = w(i), start with the pair of
empty tableaux (P0, Q0) = (∅,∅), and for i = 1, 2, . . . , n define the tableau Pi by inserting wi into the
first row of Pi−1, then inserting the bumped entry (if any exists) into the second row, then inserting the
next bumped entry (if any exists) into the third row, and so on until some number is placed at the end
of a row. Form Qi by adding a box with i to Qi−1 in the location of the new entry in Pi. Each pair
(Pi, Qi) consists of two standard tableaux of the same shape, and we set (P,Q) = (Pn, Qn).

For example, if w = 4213 ∈ S4 then we have

Pi Qi i
∅ ∅ 0

4 1 1

2

4

1

2
2

1

2

4

1

2

3

3

1 3

2

4

1 4

2

3

4

The following is well-known, so we won’t prove it.

Theorem. The map w
RSK7−→ (P,Q) is a bijection from Sn to pairs of standard tableaux of the same shape

with entries in 1, 2, . . . , n.

Call P = P (w) the insertion tableau and Q = Q(w) the recording tableau.

Fact. Two permutations have the same recording tableau Q if and only if they are dual Knuth equivalent,

that is, connected by a sequence of dual Knuth equivalences
i
≈
dK

(where i can vary).
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We also won’t prove this well-known property.

We sketch a proof of the following, however:

Theorem (Kazhdan and Lusztig (1979)). The dual Knuth equivalence classes in Sn are the left cells;
i.e., each left cell in Sn has the form {w ∈ Sn : Q(w) = T} for some standard tableau T .

Proof sketch. Consider the Knuth equivalences
i
≈
K

defined as the right-handed version of
i
≈
dK

, i.e., by setting

u
i
≈
K
v if us < u < us′ = v < vs for some {s, s′} = {si−1, si}. Note that this relation does not imply ∼L.

(Rather, by symmetric arguments it follows that u
i
≈
K
v implies the right cell relation u ∼R v, though this

property is of no consequence to our proof.)

If u ∈ Sn and exactly one of si−1 or si is a right descent of u, then one can show that there exists a

unique permutation u∗
i
≈
K
u, and in this case if u ∼L v then it also holds that exactly one of si−1 or si is

a right descent of v, and we have u∗ ∼L v∗. Thus, one can “transport” a left cell equivalence u ∼L v to
another equivalence u∗ ∼L v∗ in a different left cell.

One can also show that Q(u) is uniquely determined by i and Q(u∗), where i is such that u
i
≈
K
u∗.

Now suppose u ∼L v. Write y ≈
K
z if y and z are connected by a sequence of equivalences

i
≈
K

.

We claim that
{

DesR(z) : z ≈
K
u
}

=
{

DesR(z′) : z′ ≈
K
v
}
. This holds since whenever there is a path

u = u0
i1≈
K
u1

i2≈
K
u2

i3≈
K
· · ·

il≈
K
ul = z

then ui = u∗i−1 for all i, so there is also a path

v = v0
i1≈
K
v1

i2≈
K
v2

i3≈
K
· · ·

il≈
K
vl = z′

where vi = v∗i−1, and it holds that ui ∼L vi for all i, so DesR(ui) = DesR(vi) and DesR(z) = DesR(z′).

Now, suppose z is such that DesR(z) is the lexicographically last set in
{

DesR(z) : z ≈
K
u
}

. One can show

that Q(z) is row superstandard (i.e., each of its rows consists of consecutive numbers i, i + 1, i + 2, . . . )
and uniquely determined by DesR(z). It follows in this case that z′, which has the same descent set as
z, must also have row superstandard recording tableau Q(z′) = Q(z)

Since each Q(uj) is uniquely determined by ij and Q(uj+1), it follows that Q(uj) = Q(vj) for all j, so
Q(u) = Q(v). This suffices to prove the theorem.
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