
MATH 6150F — Coxeter systems and Iwahori-Hecke algebras (Spring 2017) Lecture 24

1 Outline

Let (W,S) be a Coxeter system with Iwahori-Hecke algebra H = Z[x, x−1]-span{Hw : w ∈ W} and
Kazhdan-Lusztig basis {Cw : w ∈ W}. Our goal in today’s final lecture is to provide an explanation for
the following positivity properties:

Theorem (Elias and Williamson (2012)). For all u, v, w ∈W :

1. Cw ∈ N[x−1]-span{Hy : y ∈W}.

2. CuCv ∈ N[x, x−1]-span{Cy : y ∈W}.

Let C be a category. If C is additive (informally, closed under finite direct sums and containing a 0-
object), then the split Grothendieck group [C ] is the abelian group generated by [M ] for all objects M in
C , subject to the relations [M ] = [A] + [B] if M ∼= A⊕B.

We saw last time that if C is monoidal (informally, closed under finite tensor products and having a unit
object 1), then [C ] is naturally a ring, with unit [1] and multiplication [A][B] = [A⊗B].

If furthermore the objects and morphisms in C are Z-graded, then [C ] is a Z[x, x−1]-algebra: we define
scalar multiplication by xn as xn[M ] = [M(n)] where M(n) is the object given by shifting the grading of
M down by n.

Soergel’s key innovation in trying to prove the positivity properties of the KL basis was to introduce an
additive, monoidal, and graded category SBim whose split Grothendieck group is H and whose indecom-
posable objects correspond to {Cw : w ∈W}.

We will locate SBim as a full subcategory of the category of graded R-bimodules where R is a fixed
commutative ring: recall from last time that there is a natural notion of direct sum, tensor product, and
grading for R-bimodules and the homomorphisms between them.

2 Soergel bimodules

To define SBim for an arbitrary Coxeter system (W,S), we first need to define the ring R.

Let V = R-span{αs : s ∈ S} be the familiar geometric representation of W .

Define R as the graded ring of polynomial functions on V , but grade the elements of R so that constant
functions have degree 0, linear functions have degree 2 (rather than 1), quadratic functions have degree
4 (rather than 2), and so on.

We can think of R as a polynomial ring R = R[xs : s ∈ S] in a commuting set of indeterminates xs
indexed by s ∈ S; here xs acts as the linear function V → R given by xs(αt) = δst.

In other words, R is the symmetric algebra on the dual space V ∗.

Each f ∈ R is a map f : V → R and w ∈W acts on f by (wf)(v) = f(w−1v) for v ∈ V .

Let Rs = {f ∈ R : sf = f} for s ∈ S.

Note that R is itself a graded R-bimodule (with all elements in degree 0).

Definition. For a finite sequence α = (s1, s2, . . . , sk) with si ∈ S, define the graded R-bimodule Bα by

Bα = R⊗Rs1 R⊗Rs2 · · · ⊗Rsk R︸ ︷︷ ︸
k + 1 factors

(k).

Thus, we form a modified tensor product of k + 1 copies of R, then shift the grading down by k so that
1⊗Rs1 1⊗Rs2 · · · ⊗Rsk 1 has degree −k.
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Remark. Recall the definition of ⊗Rs from last time; we have

gk ⊗Rs h = g ⊗Rs kh for all g, h ∈ R, k ∈ Rs.

We view elements of Bα as sums of sequences

(f0 |s1 f1 |s2 f2 |s3 · · · |sk fk)

where each fi ∈ R and you can slide a scalar in R across the barrier |si if and only if the scalar is
si-invariant.

Define Bs = R⊗Rs R(1). For any α = (s1, s2, . . . , sk), we then have

Bα ∼= Bs1 ⊗Bs2 ⊗ · · · ⊗Bsk .

The tensor product ⊗ here is the usual one for R-bimodules, not the modified tensor product ⊗Rs .

An object M is an additive category C is a direct summand of an object B if there exists an object N
in C such that B ∼= M ⊕N .

Definition. The category SBim of Soergel bimodules for a Coxeter system (W,S) is the smallest full
subcategory of the category of graded R-bimodules which contains all direct summands of Bα for arbitrary
sequences of simpler generators α = (s1, s2, . . . , sk), and which is closed under finite direct sums and
grading shifts.

Concretely, we form SBim by first taking all direct summands of the R-bimodules Bα, then including all
finite direct sums of grading shifts of these bimodules.

Remark. The definition we saw last time for SBim when W = S2 was slightly simpler than this one,
since when W = S2 every direct summand of Bα is a direct sum of grading shifts of the R-bimodules Bs.

3 Categorification theorems and Soergel’s conjecture

An object in an additive category is indecomposable if it is not isomorphism to the direct sum of any two
nonzero objects. By construction, the indecomposable objects of SBim are necessarily grading shifts of
direct summands of the bimodules Bα.

Theorem (Soergel’s Categorification Theorem I). There is a unique isomorphism of Z[x, x−1]-algebras

ε : H → [SBim]

with ε(Cs) = [Bs] for s ∈ S.

The uniqueness of such an isomorphism follows since the elements {Cs : s ∈ S} generate H. Checking
that the map Cs 7→ [Bs] extends to a homomorphisms corresponds to checking certain isomorphisms in
SBim associated to each braid relation in H. Showing that ε is an isomorphism will follow from the next
theorem which classifies the indecomposable objects in SBim.

Example (Soergel bimodules for W = S3). Suppose W = S3 = {1, s, t, st, ts, sts = tst}.

We then have S = {s = (1, 2), t = (2, 3)}.

We may identify R = R[x, y, z], graded so that xiyjzk has degree 2(i+ j + k).

W acts on R by (s · f)(x, y, z) = f(y, x, z) and (t · f)(x, y, z) = f(x, z, y).

The following are indecomposable Soergel bimodules:
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B1 = R = 〈1〉.

Bs = 〈1⊗Rs 1〉.

Bt = 〈1⊗Rt 1〉.

Bst
def
= Bs ⊗Bt = 〈1⊗Rs 1⊗Rt 1〉.

Bts
def
= Bt ⊗Bs = 〈1⊗Rt 1⊗Rs 1〉.

If δ = y − z and ∆ = δ ⊗Rt 1 + 1⊗Rt δ then

Bs ⊗Bt ⊗Bs = 〈1⊗Rs 1⊗Rt 1⊗Rs 1〉︸ ︷︷ ︸
call this Bsts

⊕〉1⊗Rs ∆⊗Rt 1〉︸ ︷︷ ︸
∼=Bs

.

Likewise, if δ′ = x− y and ∆′ = δ′ ⊗Rs 1 + 1⊗Rs δ′ then

Bt ⊗Bs ⊗Bt = 〈1⊗Rt 1⊗Rs 1⊗Rt 1〉︸ ︷︷ ︸
call this Btst

⊕〉1⊗Rt ∆′ ⊗Rt 1〉︸ ︷︷ ︸
∼=Bt

.

Finally, one can show that Bsts ∼= Btst and this bimodule is indecomposable.

Proposition. Each indecomposable object of SBim for W = S3 is isomorphic to a grading shift of exactly
one of the bimodules B1, Bs, Bt, Bst, Bts, or Bsts. Moreover, in this case ε(Cw) = Bw for w ∈ S3.

This example generalizes as follows:

Theorem (Soergel’s Categorification Theorem II). For each w ∈ W there exists up to isomorphism a
unique indecomposable bimodule Bw which occurs as a direct summand of Bα for any sequence α =
(s1, s2, . . . , sk) such that w = s1s2 · · · sk is a reduced expression, and which does not occur as a direct
summand of Bα′ for any shorter sequence α′. The resulting set of bimodules {Bw : w ∈ W} represents
all indecomposable objects in SBim up to ∼= and grading shift.

Our example shows that the following holds for W = S3, but the statement is far from obvious in general.

Soergel’s Conjecture. For all w ∈W it holds that ε(Cw) = Bw.

Elias and Williamson proved this conjecture, which immediately implies CuCv ∈ N[x, x−1]-span{Cw :
w ∈ W} for u, v ∈ W since CuCv = ε−1(ε(CuCv)) = ε−1([Bu ⊗ Bv]). To derive the other highlighted
positivity property the KL basis, we need to recall an explicit formula which Soergel gave for ε−1.

IfM is a graded bimodule and f =
∑
n∈Z anx

n ∈ N[x, x−1] then letM⊕f =
⊕

n∈ZM(n)⊕M(n)⊕ · · · ⊕M(n)︸ ︷︷ ︸
an factors

.

Theorem (Soergel’s Categorification Theorem III). Every object M in SBim has a standard filtration,
defined as the unique filtration of the form

0 = M (0) ⊂M (1) ⊂ · · · ⊂M (m) = M

where M (i)/M (i−1) ∼= (Ryi)
⊕hyi for some yi ∈W and hyi ∈ N[x, x−1] (where Ry is a “standard bimodule”

whose definition we omit), such that yi < yj in Bruhat order whenever i < j. Moreover, the map

ch : [SBim]→ H

with [M ] 7→
∑m
i=1 hyix

`(yi)Hyi ∈ N[x, x−1]-span{Hy : y ∈W} is the inverse of ε : H → [SBim].

Since Soergel’s conjecture implies that ch([Bw]) = Cw, it follows that Cw ∈ N[x, x−1]-span{Hy}.

This concludes our course!

For further reading see: Libedinsky’s Gentle introduction to Soergel bimodules and its references.
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