Summary

Quick summary of today's notes. Lecture starts on next page.

Linear independence:

- Vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly independent if the only way to express

$$
0=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

for $c_{1}, c_{2}, \ldots, c_{p} \in \mathbb{R}$ is by taking $c_{1}=c_{2}=\cdots=c_{p}=0$. This happens if and only if

$$
\{0\} \neq \mathbb{R}-\operatorname{span}\left\{v_{1}\right\} \neq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}\right\} \neq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \neq \cdots \neq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}
$$

- If the vectors are not linearly independent, then they are linearly dependent. This happens when

$$
\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}
$$

for at least one $i \in\{1,2, \ldots, p\}$. Here we interpret " \mathbb{R}-span $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$ " to be $\{0\}$ if $i=1$.

- Two or more vectors are linearly dependent if one of the vectors is in the span of all of the others.
- If $p>n$ then any vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly dependent.
- A list of vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ is linearly dependent if the $n \times p$ matrix

$$
A=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{p}
\end{array}\right]
$$

has at least one column that is not a pivot column.

Functions and linearity:

- Writing $f: X \rightarrow Y$ means that f is a function that transforms inputs $x \in X$ to outputs $f(x) \in Y$. The set X is called the domain while Y is called the codomain of f.

The range of f is the subset range $(f)=\{f(x): x \in X\}$ of Y.

- Let m, n be positive integers. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function then the following mean the same thing:
- For any $u, v \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ it holds that $f(u+v)=f(u)+f(v)$ and $f(c \cdot v)=c \cdot f(v)$.
- There exists an $m \times n$ matrix A such that $f(v)=A v$ for all $v \in \mathbb{R}^{n}$.

Such functions f are said to be linear. The matrix A is called the standard matrix of f.

- Every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has exactly one standard matrix.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear then its standard matrix is $A=\left[\begin{array}{llll}f\left(e_{1}\right) & f\left(e_{2}\right) & \ldots & f\left(e_{n}\right)\end{array}\right]$ where

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right] \in \mathbb{R}^{n}, \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right] \in \mathbb{R}^{n}, \quad e_{3}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right] \in \mathbb{R}^{n}, \quad \ldots \quad e_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \in \mathbb{R}^{n} .
$$

1 Last time: multiplying vectors and matrices

Given a matrix $A=\left[\begin{array}{rrrr}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$ and a vector $v=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n}$ we define

$$
A v=v_{1}\left[\begin{array}{r}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+v_{2}\left[\begin{array}{r}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+v_{n}\left[\begin{array}{r}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right] \in \mathbb{R}^{m} .
$$

We refer to $A v$ as the product of A and v, or the vector given by multiplying v by A.
Example. We have $\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 6 & 7\end{array}\right]\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]=-\left[\begin{array}{l}1 \\ 5\end{array}\right]+0\left[\begin{array}{l}2 \\ 6\end{array}\right]+\left[\begin{array}{l}3 \\ 7\end{array}\right]=\left[\begin{array}{l}-1+0+3 \\ -5+0+7\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
If A is an $m \times n$ matrix and $x=\left[\begin{array}{r}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $b \in \mathbb{R}^{m}$, then we call $A x=b$ a matrix equation.
A matrix equation $A x=b$ has the same solutions as the linear system with augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$.
Theorem. Let A be an $m \times n$ matrix. The following are equivalent:

1. $A x=b$ has a solution for any $b \in \mathbb{R}^{m}$.
2. The span of the columns of A is all of \mathbb{R}^{m}.
3. A has a pivot position in every row.

Example. The matrix equation

$$
\left[\begin{array}{rrr}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

may fail to have a solution since

$$
\operatorname{RREF}\left(\left[\begin{array}{rrr}
1 & 3 & 4 \\
-4 & 2 & -6 \\
-3 & -2 & -7
\end{array}\right]\right)=\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & 0
\end{array}\right]
$$

has pivot positions only in rows 1 and 2 .

2 Linear independence

We briefly introduced the notion of linear independence last time.
Suppose we have some vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$. Recall that the span of a set of vectors is the set of all possible linear combinations that can be formed using the vectors. If you have a smaller set of vectors inside a bigger set, then the span of the smaller set is always contained in the span of the bigger set.

Moreover, if $y=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$ for $c_{i} \in \mathbb{R}$ is any linear combination of our vectors then $\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}, y\right\}$, since if $a_{1}, \ldots, a_{p}, b \in \mathbb{R}$ then

$$
a_{1} v_{1}+\cdots+a_{p} v_{p}+b y=\left(a_{1}+b c_{1}\right) v_{1}+\left(a_{2}+b c_{2}\right) v_{2}+\cdots+\left(a_{p}+b c_{p}\right) v_{p} \in \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}
$$

If S and T are sets then we write $S \subseteq T$ to mean that every element of S is also an element of T.
Definition. Consider the p sets given by

$$
\{0\} \subseteq \mathbb{R}-\operatorname{span}\left\{v_{1}\right\} \subseteq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}\right\} \subseteq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq \cdots \subseteq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}
$$

The vectors $v_{1}, v_{2}, \ldots, v_{p}$ are linearly independent if these sets are all distinct. That is, if \mathbb{R}-span $\left\{v_{1}\right\}$ is strictly bigger than the set $\{0\}$ consisting of just the zero vector, and \mathbb{R}-span $\left\{v_{1}, v_{2}\right\}$ is strictly bigger than \mathbb{R}-span $\left\{v_{1}\right\}$, and \mathbb{R}-span $\left\{v_{1}, v_{2}, v_{3}\right\}$ is strictly bigger than \mathbb{R}-span $\left\{v_{1}, v_{2}\right\}$, and so on.

Example. If $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ then v_{1}, v_{2}, v_{3} are linearly independent, since $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\} \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{1}\right\}=\left\{\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right]: a \in \mathbb{R}\right\} \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}\right\}=\left\{\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]: a, b \in \mathbb{R}\right\} \subsetneq \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a, b, c \in \mathbb{R}\right\}$.
Here we write $S \subsetneq T$ to mean that both $S \subseteq T$ and $S \neq T$.

Example. If $v_{1}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right], v_{3}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ then v_{1}, v_{2}, v_{3} are not linearly independent as

$$
\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2},-v_{1}-v_{2}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}
$$

When vectors are not linearly independent, we say they are linearly dependent.

A linear dependence among $v_{1}, v_{2}, \ldots, v_{p}$ is a way of writing the zero vector as a linear combination $0=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$ for some scalar coefficients $c_{1}, c_{2}, \ldots, c_{p} \in \mathbb{R}$ that are not all zero.
If $0=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}$ is a linear dependence then the matrix equation

$$
\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{p}
\end{array}\right]\left[\begin{array}{r}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]=0
$$

has two solutions given by $(0,0, \ldots, 0)$ and $\left(c_{1}, c_{2}, \ldots, c_{p}\right)$.
Proposition (Another characterization of linear independence). The vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly independent if and only if no linear dependence exists among them.

Proof. If i is minimal such that there exists a linear dependence $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{i} v_{i}=0$ then we must have $c_{i} \neq 0$ (since if $c_{i}=0$ then $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{i-1} v_{i-1}=0$ would be a shorter dependence). In this case $v_{i}=-\frac{c_{1}}{c_{i}} v_{1}-\frac{c_{2}}{c_{i}} v_{2}-\cdots-\frac{c_{i-1}}{c_{i}} v_{i-1}$ so $\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$.
Conversely, if $\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ then $v_{i} \in \mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$, which means $v_{i}=a_{1} v_{1}+a_{2} v_{2}+\ldots a_{i-1} v_{i-1}$ some coefficients $a_{1}, a_{2}, \ldots, a_{i-1} \in \mathbb{R}$. But then we get a linear dependence $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{i} v_{i}=0$ by taking $c_{1}=a_{1}, c_{2}=a_{2}, \ldots, c_{i-1}=a_{i-1}$ and $c_{i}=-1$.

How to determine if $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly independent.

- Form the $n \times p$ matrix $A=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{p}\end{array}\right]$.
- Reduce A to echelon form to find its pivot columns.
- If every column of A is a pivot column, then the vectors are linearly independent.

If some column of A is not a pivot column, then the vectors are linearly dependent.

Example. The vectors $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$, and $\left[\begin{array}{r}5 \\ 9 \\ 16\end{array}\right]$ are linearly dependent since

$$
A=\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
-1 & 5 & 16
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
0 & 7 & 21
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 5 \\
0 & 1 & 3 \\
0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]=\operatorname{RREF}(A)
$$

where \sim denotes row equivalence. The last matrix has no pivot position in column 3. In fact, we have

$$
-\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]+3\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{r}
5 \\
9 \\
16
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=0
$$

The vectors $\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]$, and $\left[\begin{array}{r}5 \\ 9 \\ 15\end{array}\right]$ are linearly independent, since

$$
A=\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
-1 & 5 & 15
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 3 & 9 \\
0 & 7 & 20
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & 2 & 5 \\
0 & 1 & 3 \\
0 & 0 & -1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\operatorname{RREF}(A)
$$

Every column of A contains a pivot position, so the linear system with coefficient matrix A has no free variables, so $A x=0$ have no nontrivial solutions, meaning the columns of A are linearly independent.
Facts about linear independence.

1. A single vector v is linearly independent if and only if $v \neq 0$.
2. A list of vectors in \mathbb{R}^{n} is linearly dependent if it includes the zero vector.
3. Vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly dependent if and only if some vector v_{i} is a linear combination of the other vectors $v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{p}$.

We saw this in the previous example: $\left[\begin{array}{r}5 \\ 9 \\ 16\end{array}\right]=3\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right]-\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$.
The following non-obvious fact is often useful for showing that vectors are linearly dependent:
Theorem. Assume $p>n$ and $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$. Then these vectors are linearly dependent.
Proof. Let $A=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{p}\end{array}\right]$.
This matrix has more columns than rows.
Each row contains at most one pivot position, so there are fewer pivot positions than columns.
Therefore some column is not a pivot column.
This means the linear system $A x=0$ has a free variable, so has more than one solution.
This implies that $v_{1}, v_{2}, \ldots, v_{p}$, the columns of A, are linearly dependent.

Example. The vectors $v_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, and $v_{3}=\left[\begin{array}{r}5 \\ 60\end{array}\right]$ are linearly dependent since $3>2$.

3 Linear transformations

A function f takes an input x from some set X and produces an output $f(x)$ in another set Y.
We write $f: X \rightarrow Y$ to mean that f is a function that takes inputs from X and gives outputs in Y.
The set X is called the domain of the function f. The set Y is called the codomain of f.

For example, the formula $f(x)=\sqrt{x}$ defines a function $X \rightarrow Y$ with $X=\{x \in \mathbb{R}: x \geq 0\}$ and $Y=\mathbb{R}$.
The formula $f(x)=\sqrt{x}$ also defines a function $X \rightarrow X$ with $X=\{x \in \mathbb{R}: x \geq 0\}$. We consider this to be a different function from the previous example, because it has a different codomain.
The formula $f(x)=|x|$ defines a function $\mathbb{R} \rightarrow \mathbb{R}$.

For every x in the domain X of f, we get an output $f(x)$.
It is possible that some values y in the codomain Y may never occur as outputs of f.

The image of an input x in X under f is the output $f(x)$.
The range of the function f (sometimes called the image of f) is the set range $(f)=\{f(x): x \in X\}$. This is the subset of the codomain Y which gives all actual outputs of f.

Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function whose domain and codomain are sets of vectors. The function f is a linear transformation (also called a linear function) if both of these properties hold:
(1) $f(u+v)=f(u)+f(v)$ for all vectors $u, v \in \mathbb{R}^{n}$.
(2) $f(c v)=c f(v)$ for all vectors $v \in \mathbb{R}^{n}$ and scalars $c \in \mathbb{R}$.

Example. If A is an $m \times n$ matrix and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the function with the formula $T(v)=A v$ for $v \in \mathbb{R}^{n}$ then T is a linear function.

Linear transformations have some additional properties worth noting:
Proposition. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation then
(3) $f(0)=0$.
(4) $f(u-v)=f(u)-f(v)$ for $u, v \in \mathbb{R}^{n}$.
(5) $f(a u+b v)=a f(u)+b f(v)$ for all $a, b \in \mathbb{R}$ and $u, v \in \mathbb{R}^{n}$.

Proof. We have $2 f(0)=f(0+0)=f(0)$ so $f(0)=0$.
We have $f(u-v)=f(u)+f(-v)=f(u)+(-1) f(v)=f(u)-f(v)$.
Finally, we have $f(a u+b v)=f(a u)+f(b v)=a f(u)+b f(v)$.
Example. Suppose $A=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is the function defined by $T(v)=A v$.
(a) The image of a vector $v \in \mathbb{R}^{2}$ under T is by definition $T(v)=A v$. The image of $v=\left[\begin{array}{r}2 \\ -1\end{array}\right]$ under T is $T\left(\left[\begin{array}{r}2 \\ -1\end{array}\right]\right)=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]\left[\begin{array}{r}2 \\ -1\end{array}\right]=\left[\begin{array}{r}5 \\ 1 \\ -9\end{array}\right]$.
(b) Is the range of T all of \mathbb{R}^{3} ? If it was, then (from results last time) A would have a pivot position in every row. This is impossible since each column can only contain one pivot position, but A has three rows and only two columns. Therefore range $(T) \neq \mathbb{R}^{3}$.

The fundamental theorem relating matrices and linear transformations:
Theorem. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation. Then there is a unique $m \times n$ matrix A such that $T(v)=A v$ for all $v \in \mathbb{R}^{n}$.
Moral: matrices uniquely represent linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
Proof. Define $e_{1}, e_{2}, \ldots, e_{n} \in \mathbb{R}^{n}$ as the vectors

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \quad \ldots, \quad e_{n-1}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad e_{n}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
0 \\
1
\end{array}\right]
$$

so that e_{i} has a 1 in the i th row and 0 in all other rows.
Define $a_{i}=T\left(e_{i}\right) \in \mathbb{R}^{m}$ and $A=\left[\begin{array}{lllll}a_{1} & a_{2} & a_{3} & \ldots & a_{n}\end{array}\right]$. If w is any vector $w=\left[\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n}\end{array}\right] \in \mathbb{R}^{n}$ then

$$
T(w)=T\left(w_{1} e_{1}+\cdots+w_{n} e_{n}\right)=w_{1} T\left(e_{1}\right)+\cdots+w_{n} T\left(e_{n}\right)=w_{1} a_{1}+\cdots+w_{n} a_{n}=A w
$$

Thus A is one matrix such that $T(v)=A v$ for all vectors $v \in \mathbb{R}^{n}$.
To show that A is the only such matrix, suppose B is a $m \times n$ matrix with $T(v)=B v$ for all $v \in \mathbb{R}^{n}$.
Then $T\left(e_{i}\right)=A e_{i}=B e_{i}$ for all $i=1,2, \ldots, n$.
But $A e_{i}$ and $B e_{i}$ are the i th columns of A and B. For example,

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right] e_{3}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Therefore A and B have the same columns, so they are the same matrix: $A=B$.
We call the matrix A in this theorem the standard matrix of the linear transformation T.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function $T(v)=3 v$.
This is a linear transformation. What is the standard matrix A of T ?
As we saw in the proof of the theorem, the standard matrix of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is

$$
A=\left[\begin{array}{llll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n}\right)
\end{array}\right]=\left[\begin{array}{llll}
3 e_{1} & 3 e_{2} & \ldots & 3 e_{n}
\end{array}\right]=\left[\begin{array}{cccc}
3 & 0 & \ldots & 0 \\
0 & 3 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 3
\end{array}\right]
$$

In words, A is the matrix with 3 in each position $(1,1),(2,2), \ldots,(n, n)$ and 0 in all other positions.
One calls such a matrix diagonal.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function

$$
T\left(\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]\right)=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2} .
$$

This function is not linear: we have $T(2 v)=4 T(v) \neq 2 T(v)$ for any nonzero vector $v \in \mathbb{R}^{n}$.
Example. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the function

$$
T\left(\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]\right)=\left[\begin{array}{r}
v_{n} \\
\vdots \\
v_{2} \\
v_{1}
\end{array}\right]
$$

This function is a linear transformation. (Why?) Its standard matrix is

$$
A=\left[\begin{array}{llllll}
T\left(e_{1}\right) & T\left(e_{2}\right) & \ldots & T\left(e_{n-1}\right) & T\left(e_{n}\right)
\end{array}\right]=\left[\begin{array}{lllll}
e_{n} & e_{n-1} & \ldots & e_{2} & e_{1}
\end{array}\right]=\left[\begin{array}{llll}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right]
$$

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in the matrix which are blank contain zero entries.

4 Vocabulary

Keywords from today's lecture:

1. Linearly independent vectors.

Vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ are linearly independent if $x_{1} v_{1}+\cdots+x_{p} v_{p}=0$ holds only if $x_{1}=x_{2}=\cdots=x_{p}=0$; or when $\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{p}\end{array}\right]$ has a pivot position in every column.
Vectors that are not linearly independent are linearly dependent.
Example: The three vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$ are linearly independent.
The four vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$ are linearly dependent.
2. Domain and codomain of a function $f: X \rightarrow Y$.

The domain X is the set of inputs for the function.
The codomain Y is a set that contains the output of the function. This set can also contain elements that are not outputs of the function.

Example: If A is an $m \times n$ matrix then the function $T(v)=A v$ has domain \mathbb{R}^{n} and codomain \mathbb{R}^{m}.
3. Range of a function $f: X \rightarrow Y$.

The set range $(f)=\{f(x): x \in X\} \subset Y$ of all possible outputs of the function f.
Example: If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ has $T(v)=A v$ then $\operatorname{range}(T)=\left\{\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]: x, y \in \mathbb{R}\right\}$.
4. Linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

A function with $f(c v)=c f(v)$ and $f(u+v)=f(u)+f(v)$ for $c \in \mathbb{R}$ and $u, v \in \mathbb{R}^{n}$.
Example: Every such function has the form $f(v)=A v$ for a unique $m \times n$ matrix A.
The matrix A is called the standard matrix of f if $f(v)=A v$ for all $v \in \mathbb{R}^{n}$.
5. Diagonal matrix

A matrix which has 0 in position (i, j) if $i \neq j$.
Example: $\left[\begin{array}{rrrr}4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 9\end{array}\right]$.

