
MATH 2121 — Linear algebra (Fall 2021) Lecture 8

Summary

Quick summary of today’s notes. Lecture starts on next page.

• A function f : X → Y is invertible if it is both one-to-one and onto.

• The identity function on a set X is the function idX : X → X with idX(x) = x for all x ∈ X.

If f : X → Y is a function then f ◦ idX = idY ◦f = f .

• A function f : X → Y is invertible if and only if there is a function g : Y → X such that f ◦g = idY

and g ◦ f = idX . If such a function g exists, then it is unique and we call it the inverse of f .

If we know that f : X → Y is invertible, then we write f−1 : Y → X to denote its inverse.

• Let m and n be positive integers.

The identity function on the set Rn is linear. Its standard matrix is the n× n identity matrix

In =


1

1
. . .

1

 .

• Suppose T : Rn → Rm is linear. Then T is invertible only if m = n.

Suppose T : Rn → Rn is invertible. Then its inverse T−1 : Rn → Rn is also linear.

• A matrix is invertible if it is the standard matrix of an invertible linear transformation.

A matrix can be invertible only if it is square, i.e., has the same number of rows and columns.

• Suppose A is invertible. Then A is the standard matrix of an invertible linear transformation T .

We define the inverse A−1 of A to be the standard matrix of the linear transformation T−1.

If A is n× n then A−1 is also n× n, and AA−1 = A−1A = In.

• A square matrix A is invertible if and only if RREF(A) = In for some n.

• We can check if an n× n matrix A is invertible and try to compute A−1 at the same time.

We do this as follows. First form the n× 2n matrix
[
A In

]
.

Then compute the reduced echelon form of this matrix.

If RREF
([

A In
])

=
[
In B

]
for some n× n matrix B, then A−1 = B.

Otherwise, A is not invertible.

• A 2× 2 matrix A =

[
a b
c d

]
is invertible if and only if ad− bc 6= 0, in which case

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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1 Last time: adding and multiplying matrices

Suppose T : Rr → Rs and U : Rn → Rm are linear transformations with standard matrices A and B.

Let c ∈ R be a scalar.

1. The scalar multiple cT : Rr → Rs of T is the linear transformation with (cT )(x) = cT (x).

The standard matrix of cT is cA where cA is given by multiplying every entry in A by c, i.e.:

Definition. cA is the matrix
[
ca1 ca2 . . . car

]
where A =

[
a1 a2 . . . ar

]
.

2. If T and U have the same domain and codomain, meaning that r = n and s = m and that A and
B have the same size, then we can form the sum T + U : Rn → Rm as the linear transformation
with (T + U)(x) = T (x) + U(x).

The standard matrix of T + U is A + B where:

Definition. A + B is the matrix whose ith column is the sum of the ith columns of A and B.

3. If the domain of T is the codomain of U , meaning that r = m, then we can form the composition
T ◦ U : Rn → Rs as the linear transformation with (T ◦ U)(x) = T (U(x)).

The standard matrix of T ◦ U is the product AB where:

Definition. The product AB of matrices A and B, where the number of columns of A is the number
of rows of B, is the matrix AB =

[
Ab1 Ab2 . . . Abn

]
where B =

[
b1 b2 . . . bn

]
.

Some remarks.

A + B is only defined if A and B are matrices of the same size.

We have A + B = B + A when either side is defined.

AB is only defined if the number of columns of A is equal to the number of rows of B.

When defined, AB has the same number of rows as A, and the same number of columns as B.

Even if AB and BA are both defined, we may still have AB 6= BA.

Example. Let A =

 a b c d
e f g h
i j k l

 be a 3× 4 matrix.

Consider what happens when we multiply A on the left by various 3× 3 matrices.

1.

 1 0 0
0 0 1
0 1 0

A =

 a b c d
i j k l
e f g h

. Multiplication swaps rows 2 and 3 of A.

2.

 1 0 0
0 3 0
0 0 1

A =

 a b c d
3e 3f 3g 3h
i j k l

. Multiplication rescales row 2 by factor 3.

3.

 1 0 2
0 1 0
0 0 1

A =

 a + 2i b + 2j c + 2k d + 2l
e f g h
i j k l

. This adds 2 times row 3 to row 1.

Moral: row operations on A correspond to multiplying A on the left by certain square matrices.
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2 Matrix transpose

The transpose of an m× n matrix A is the n×m matrix AT whose columns are the rows of A.

If aij is the entry in row i and column j of A, then this is the entry in row j and column i of AT .

If A =

[
a b c
d e f

]
and AT =

 a d
b e
c f

. If C =

 1 1 1 1
−3 5 −2 7

0 0 1 0

 then CT =


1 −3 0
1 5 0
1 −2 1
1 7 0

.

The transpose of A is given by flipping A across the main diagonal, in order to interchange rows/columns.

Basic properties of the transpose operation:

• (AT )T = A since flipping twice does nothing.

• If c ∈ R, and A and B have the same size, then (A + B)T = AT + BT and (cA)T = c(AT ).

• If A is an k ×m matrix and B is and m× n matrix then (AB)T = BTAT .

Since matrices represent linear transformation, operations on matrices correspond to operations on linear
transformations. For example, matrix multiplication corresponds to composition of linear functions.

It is reasonable to ask what operation the transpose corresponds to on linear transformations.

Given vectors u =


u1

u2

...
un

 and v =


v1
v2
...

vn

 in Rn, define (u, v) = uT v = u1v1 + u2v2 + · · ·+ unvn ∈ R.

This is often called the dot product of u and v. Note that (u, v ± w) = (u, v)± (u,w).

Important fact in the case when u = v: If v 6= 0 then (v, v) > 0. If (v, v) = 0 then v = 0.

Proof. If any entry vi 6= 0 then (v, v) = v21 + v22 + · · ·+ v2n ≥ v2i > 0.

Here is the answer to the question of what the transpose means in terms of linear transformations:

Proposition. Suppose L : Rn → Rm is a linear transformation. There exists a unique linear transfor-
mation LT : Rm → Rn, called the transpose of L, such that (L(u), v) = (u, LT (v)) for all u ∈ Rn and
v ∈ Rm. The standard matrix of LT is the transpose of the standard matrix of L.

Proof. Let A be the standard matrix of L. If define LT : Rm → Rn by LT (x) = ATx, then

(L(u), v) = (Au, v) = (Au)T v = uTAT v = (u,AT v) = (u, LT (v))

for u ∈ Rn and v ∈ Rm.

We must now show that LT is the unique linear transformation with this property.

Suppose T : Rm → Rn is a linear transformation such that (L(u), v) = (u, T (v)) for u ∈ Rn and v ∈ Rm.

To show the uniqueness of LT , we must prove that LT = T .

Let B be the standard matrix of T . Then for all u ∈ Rn and v ∈ Rm we have

0 = (L(u), v)− (L(u), v) = (u,AT v)− (u,Bv) = (u, (AT −B)v).

Note that we can choose u and v independently to be any vectors we want (in Rn and Rm).

Therefore if we set X = AT −B and u = Xv, then it follows that (Xv,Xv) = 0 for all v ∈ Rm.
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This forces us to have Xv = 0 for all v ∈ Rm. Therefore X must be the zero matrix. (Why?)

Therefore AT = B and LT = T .

3 Inverses

Let f : X → Y be a function with domain X and codomain Y .

Definition. The function f is invertible or bijective if f is both onto and one-to-one.

Here is a more direct definition of an invertible function:

Proposition. The function f is invertible iff for each b ∈ Y there is exactly one a ∈ X with f(a) = b.

Proof. f is onto iff for each b ∈ Y there is at least one input a ∈ X with f(a) = b.

f is one-to-one iff for each b ∈ Y there is at most one input a ∈ X with f(a) = b.

Therefore f is both onto and one-to-one iff the given condition holds.

The identity function on a set X is the function idX : X → X with idX(a) = a for all a ∈ X.

If f : X → Y and g : Y → X are any functions then f ◦ idX = f and idX ◦g = g.

Example. The identity function on Rn is the linear transformation idRn : Rn → Rn whose standard
matrix is the n× n identity matrix

In =


1

1
. . .

1

 .

If AIn is defined then AIn = A. If InA is defined then InA = A.

Even more concretely, a function is invertible if and only if it has an inverse in the following sense.

Proposition. The function f : X → Y is invertible if and only if there is a function f−1 : Y → X such
that f ◦ f−1 = idY and f−1 ◦ f = idX .

If there exists a function f−1 with these properties, then it is unique, and we call it the inverse of f .

Proof. We first prove that the inverse is unique, and then prove the first statement. This takes 3 steps.

1. Suppose g : Y → X and h : Y → X both have f ◦ g = f ◦ h = idY and g ◦ f = h ◦ f = idX .

Then g ◦ (f ◦ h) = g ◦ idY = g and (g ◦ f) ◦ h = idX ◦h = h.

But g ◦ (f ◦ h) and (g ◦ f) ◦ h are the same: given any b ∈ Y , they both have output g(f(h(b))).

Therefore g = h, so if f has an inverse, then it is unique.

2. If f has an inverse f−1 : Y → X, then for each b ∈ Y we have f(a) = b for a = f−1(b).

This value of a ∈ X is unique since if f(a) = f(a′) = b then

a = idX(a) = (f−1 ◦ f)(a) = f−1(f(a)) = f−1(f(a′)) = (f−1 ◦ f)(a′) = idX(a′) = a′.

Therefore, by the previous proposition, if f has an inverse then f is invertible.
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3. Suppose f is invertible. Define f−1(b) for b ∈ Y to be the unique a ∈ X such f(a) = b.

This defines a function f−1 : Y → X with f(f−1(b)) = f(a) = b and f−1(f(a)) = a.

This is the same as saying f ◦ f−1 = idY and f−1 ◦ f = idX .

Example. Suppose T : R2 → R2 is the linear function T (v) = Av for A =

[
1 2
3 4

]
.

We have A =

[
1 2
3 4

]
∼
[

1 2
0 −2

]
∼
[

1 0
0 1

]
= RREF(A).

This means A has a pivot position in every row and every column.

By results in previous lectures, we know that this implies that T is onto and one-to-one, i.e., bijective.

What is the inverse T−1 of T?

Note that T−1
([

1
0

])
is the unique vector x =

[
x1

x2

]
such that Ax =

[
1
0

]
.

We can solve for x by row reducing the augmented matrix of this matrix equation:[
1 2 1
3 4 0

]
∼
[

1 2 1
0 −2 −3

]
∼
[

1 0 −2
0 −2 −3

]
∼
[

1 0 −2
0 1 3/2

]
,

which means that the equation’s unique solution is x = T−1
([

1
0

])
=

[
−2
3/2

]
.

Similarly, T−1
([

0
1

])
is the unique vector y =

[
y1
y2

]
such that Ay =

[
0
1

]
.

We again solve by row reduction to reduced echelon form:[
1 2 0
3 4 1

]
∼
[

1 2 0
0 −2 1

]
∼
[

1 0 1
0 −2 1

]
∼
[

1 0 1
0 1 −1/2

]

which means that y = T−1
([

0
1

])
=

[
1

−1/2

]
.

If we knew that T−1 were linear, then we could conclude that

T−1(v) = Bv for B =

[
−2 1
3/2 −1/2

]
.

This turns out to be the right formula for T−1. To see why, just check that

AB =

[
1 2
3 4

] [
−2 1
3/2 −1/2

]
=

[
1 0
0 1

]
and BA =

[
−2 1
3/2 −1/2

] [
1 2
3 4

]
=

[
1 0
0 1

]
so T ◦ T−1 = T−1 ◦ T = idR2 .

It turns out that the inverse of an invertible linear transformation is always linear. Moreover, a linear
transformation is invertible only if its standard matrix is square:

Proposition. If T : Rn → Rm is linear and invertible, then n = m and T−1 is linear.
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Proof. From results last time, we know that T is onto only if n ≥ m and one-to-one only if n ≤ m. If T
is both, then necessarily n = m.

Recall how T−1 is defined. For u, v ∈ Rn and c ∈ R, we have

• T−1(u + v) = the unique vector x with T (x) = u + v.

Since T (T−1(u) +T−1(v)) = T (T−1(u)) +T (T−1(v)) = u+ v, it follows that x = T−1(u) +T−1(v).

• T−1(cv) = the unique vector y with T (y) = cv.

Since T (cT−1(v)) = cT (T−1(v)) = cv, it follows that y = cT−1(v).

These two items confirm that T−1 is linear.

As usual, let’s now translate the notion of invertibility for linear functions to matrices.

Definition. Let A be an n×n matrix and define T : Rn → Rn by T (x) = Ax. The matrix A is invertible
if the function T is invertible. Its inverse is the unique matrix A−1 such that T−1(x) = A−1x.

This definition is natural enough, but a little abstract. Here is a more concrete formulation:

Proposition. Let A be an n× n matrix. The following mean the same thing:

(1) A is invertible.

(2) There is an n× n matrix A−1 such that AA−1 = A−1A = In.

(3) For each b ∈ Rn the equation Ax = b has a unique solution.

(4) RREF(A) = In.

Proof. To show that (1)-(4) are equivalent, we show that (1) implies (2), (2) implies (3), (3) implies (4),
and (4) implies (1). This chain of implications shows that any of the properties implies any of the others.

Let T : Rn → Rn be the linear transformation T (X) = Ax.

If A is invertible, then T is invertible with linear inverse T−1 : Rn → Rn.

In this case if A−1 is the standard matrix of T−1 then

(T ◦ T−1)(x) = A(A−1x) = (AA−1)x = x

(T−1 ◦ T )(x) = A−1(Ax) = (A−1A)x = x

for all x ∈ Rn, which means that AA−1 = A−1A = In. (Why?) Thus (1) ⇒ (2).

If there is an n× n matrix A−1 such that A−1A = AA−1 = In then for each b ∈ Rn, the unique solution
to Ax = b is x = A−1Ax = A−1b. (Check this!) Thus (2) ⇒ (3).

If Ax = b has a solution for every b ∈ Rn then A has a pivot position in every row. The solution to
Ax = b is unique if and only if Ax = 0 has only trivial solutions, which happens if and only if A has a
pivot position in every column.

Thus if Ax = b has a unique solution for every b then we must have RREF(A) = In, so (3) ⇒ (4).

Finally, if RREF(A) = In then A has a pivot position in every row and every column, so the columns
of A are linearly independent (meaning T is one-to-one) and also span Rn (meaning T is onto), so T is
invertible, which means A is invertible. So (4) ⇒ (1).

A synonym for an invertible matrix is a non-singular matrix .

A matrix which is not invertible is sometimes called singular .
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Example (Warning).

Suppose A =

 0 0 1 0
0 1 0 0
1 0 0 0

 and B =


0 0 1
0 1 0
1 0 0
0 0 0

. We have AB =

 1 0 0
0 1 0
0 0 1

 = I3.

Neither A nor B is invertible, however.

The problem is there is no matrix A′ such that A′A = I4 and no matrix B′ such that BB′ = I3.

A is the standard matrix of a linear transformation which is not one-to-one. (Why?)

B is the standard matrix of a linear transformation which is not onto. (Why?)

The following is a useful formula for small calculations.

Theorem. Let A =

[
a b
c d

]
be an arbitrary 2× 2 matrix.

(1) A is invertible if and only if ad− bc 6= 0.

(2) If ad− bc 6= 0 then A−1 = 1
ad−bc

[
d −b
−c a

]
.

Proof. If ad − bc = 0 and either b = 0 or d = 0, then A has a row or column of all zeros (why?), so
RREF(A) is not the identity matrix and A is not invertible.

If ad− bc = 0 and b 6= 0 and d 6= 0, then A is row equivalent to

A =

[
a b
c d

]
∼
[

ad bd
c d

]
∼
[

ad bd
−bc −bd

]
∼
[

ad bd
0 0

]
so RREF(A) cannot be the identity matrix, so A is not invertible.

If ad− bc 6= 0, then you can just check that A−1A = AA−1 =

[
1 0
0 1

]
. Try this yourself:

1

ad− bc

[
d −b
−c a

] [
a b
c d

]
=

[ ]
[

a b
c d

]
1

ad− bc

[
d −b
−c a

]
=

1

ad− bc

[
a b
c d

] [
d −b
−c a

]
=

[ ]
.

Example. Recall in our earlier example we showed that

[
1 2
3 4

]−1
=

[
−2 1
3/2 −1/2

]
= 1
−2

[
4 −2
−3 1

]
.
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Some properties of the inverse of a matrix:

Theorem. Let A and B be n× n matrices.

1. If A is invertible then (A−1)−1 = A.

2. If A and B are both invertible then AB is invertible with (AB)−1 = B−1A−1.

3. If A is invertible then AT is invertible with (AT )−1 = (A−1)T .

Proof.

1. To get a matrix C with CA−1 = A−1C = In, take C = A.

2. Remember from last time that matrix multiplication is associative: this means that no matter how
we parenthesize the product of a bunch of matrices, we get the same thing.

Use this as follows: if A and B are invertible then (AB)(B−1A−1) = A(BB−1)A−1 = AA−1 = In.

Likewise, (B−1A−1)(AB) = B−1(A−1A)B = B−1B = In. Therefore (AB)−1 = B−1A−1.

3. Observe that AT (A−1)T = (A−1A)T = ITn = In and (A−1)TAT = (AA−1)T = ITn = In.

A corollary of this theorem is that the product of a list of n×n invertible matrices is itself invertible, with
inverse the product of the inverses in reverse order. In symbols: (ABC · · ·Z)−1 = Z−1 · · ·C−1B−1A−1.

Checking whether an n× n matrix is invertible is nearly the same process as computing its inverse.

Process to compute A−1

Let A be an n× n matrix. Consider the n× 2n matrix
[
A In

]
.

If A is invertible then RREF
([

A In
])

=
[
In A−1

]
.

So to compute A−1, row reduce
[
A In

]
to reduced echelon form, and then take the last n columns.

Example. To find the inverse of A =

 0 1 2
1 0 3
4 −3 8

 we row reduce

 0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1

 ∼
 1 0 3 0 1 0

0 1 2 1 0 0
4 −3 8 0 0 1


∼

 1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1


∼

 1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1


∼

 1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 2 3 −4 1


∼

 1 0 0 −9/2 7 −3/2
0 1 0 −2 4 −1
0 0 2 3 −4 1

 ∼
 1 0 0 −9/2 7 −3/2

0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2

 .

Now check directly that A−1 =

 −9/2 7 −3/2
−2 4 −1
3/2 −2 1/2

!
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4 Vocabulary

Keywords from today’s lecture:

1. Identity function idX : X → X.

The function with idX(x) = x for all x ∈ X.

If X = R4 then idX is the linear transformation with standard matrix


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


2. Invertible function.

A function f : X → Y such that for each y ∈ Y there is exactly one element x ∈ X with f(x) = y.

This occurs precisely when there is an inverse function g : Y → X such that g(f(x)) = x and
f(g(y)) = y for all x ∈ X and y ∈ Y , that is, with g ◦ f = idX and f ◦ g = idY .

3. Invertible matrix and the inverse of a matrix.

A matrix is invertible if it is square and is the standard matrix of an invertible linear transformation
Rn → Rn for some n.

An n× n matrix A is invertible precisely when RREF(A) = In is the n× n identity matrix.

If A is invertible, then there exists a unique matrix A−1 such that AA−1 = A−1A = In.

The matrix A−1 is called the inverse of A.

If A is n× n and invertible then RREF(
[
A In

]
) =

[
In A−1

]
.

Row reducing gives the most efficient way of calculating A−1.

Example: If A =

[
a b
c d

]
then A is invertible if and only if ad− bc 6= 0.

When this happens, A−1 = 1
ad−bc

[
d −b
−c a

]
.
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