Summary

Quick summary of today's notes. Lecture starts on next page.

- Given real numbers $a, b \in \mathbb{R}$, define $a + bi = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. In this notation, we think of 1 as the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and *i* as the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. The set of *complex numbers* is $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\} = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$. We view \mathbb{R} as a subset of \mathbb{C} by setting $a = a + 0i = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$.
- We can add, subtract, multiply, and invert complex numbers, since they are 2 × 2 matrices. The set of C is closed under these operations.

The identity " $i^2 = -1$ " holds in the sense that $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

- Once we get used to these operations, another useful way to view the elements of C is as formal expressions a + bi where a, b ∈ R and i is a symbol that satisfies i² = -1.
 Addition, subtraction, and multiplication work just like polynomials, but substituting -1 for i².
- Suppose $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial with coefficients $a_0, a_1, \dots, a_n \in \mathbb{C}$. Assume $a_n \neq 0$ so that p(x) has *degree* n.

Then there are are n (not necessarily distinct) complex numbers $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that

$$p(x) = a_n(x - r_1)(x - r_2) \cdots (x - r_n).$$

The numbers r_1, r_2, \ldots, r_n are the *roots* of p(x).

- The characteristic equation of an $n \times n$ matrix A is a degree n polynomial with real coefficients. Counting multiplicities, det(A - xI) has exactly n roots but some roots may be complex numbers.
- Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with *n* rows and entries $v_1, v_2, \dots, v_n \in \mathbb{C}$.

We have $\mathbb{R}^n \subset \mathbb{C}^n$ since $\mathbb{R} = \{a \in \mathbb{R}\} = \{a + 0i : a \in \mathbb{R}\} \subset \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

- The sum u + v and scalar multiple cv for $u, v \in \mathbb{C}^n$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .
- If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

Let A be an $n \times n$ matrix whose entries are all real numbers.

Call $\lambda \in \mathbb{C}$ a *(complex) eigenvalue* of A if there exists a nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$. Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial det(A - xI). This is no different from our first definition of an eigenvalue, except that now we permit $\lambda \in \mathbb{C}$.

1 Last time: methods to check diagonalizability

Let n be a positive integer and let A be an $n \times n$ matrix.

Remember that A is *diagonalizable* if $A = PDP^{-1}$ where P is an invertible $n \times n$ matrix and D is an $n \times n$ diagonal matrix. In other words, A is diagonalizable if A is similar to a diagonal matrix.

Suppose $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$ are linearly independent vectors and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are numbers. Define

$$P = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}.$$

If $A = PDP^{-1}$ then $Av_i = PDP^{-1}v_i = PDe_i = \lambda_i Pe_i = \lambda_i v_i$ for each i = 1, 2, ..., n.

In other words, when $A = PDP^{-1}$, the columns of P are a basis for \mathbb{R}^n made up of eigenvectors of A.

Matrices that are not diagonalizable.

Proposition. $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not diagonalizable.

Proof. To check this directly, suppose $ad - bc \neq 0$ and compute

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} -ac & a^2 \\ -c^2 & ac \end{bmatrix}.$$

The only way the last matrix can be diagonal is if a = c = 0, but then we would have ad - bc = 0 so $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ would not be invertible. Therefore $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not similar to a diagonal matrix. \Box

Here is a second family of examples.

Proposition. Let A be an $n \times n$ upper-triangular matrix with all entries on the diagonal equal to 1:

$$A = \begin{bmatrix} 1 & * & \dots & * \\ & 1 & \ddots & \vdots \\ & & \ddots & * \\ & & & & 1 \end{bmatrix}$$

All entries in A below the diagonal are zero, and the entries above the diagonal can be any numbers. Such a matrix A is diagonalizable if and only it is equal to the identity matrix I.

Proof. Suppose $A = PDP^{-1}$ where D is diagonal.

Every diagonal entry of D is an eigenvalue for A.

But A has characteristic polynomial $(1-x)^n$ so its only eigenvalue is 1.

Therefore D = I so $A = PIP^{-1} = PP^{-1} = I$.

The following result summarizes everything we need to know about diagonalizability: how to determine if a matrix A is diagonalizable, and then how to compute the decomposition $A = PDP^{-1}$ if it exists.

Theorem. Let A be an $n \times n$ matrix.

Suppose $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct eigenvalues of A.

Let $d_i = \dim \operatorname{Nul}(A - \lambda_i I)$ for $i = 1, 2, \dots, p$.

By the definition of an eigenvalue, we have $1 \le d_i \le n$ for each *i*. Moreover, the following holds:

- 1. We always have $d_1 + d_2 + \cdots + d_p \leq n$.
- 2. The matrix A is diagonalizable if and only if $d_1 + d_2 + \cdots + d_p = n$.
- 3. Suppose A is diagonalizable. Let $D_i = \lambda_i I_{d_i}$ and define D as the $n \times n$ diagonal matrix

$$D = \begin{bmatrix} D_1 & & & \\ & D_2 & & \\ & & \ddots & \\ & & & D_p \end{bmatrix}.$$

Choose *n* vectors $v_1, v_2, \ldots, v_n \in \mathbb{R}^n$ such that the first d_1 vectors are a basis for Nul $(A - \lambda_1 I)$, the next d_2 vectors are a basis for Nul $(A - \lambda_2 I)$, the next d_3 vectors are a basis for Nul $(A - \lambda_3 I)$, and so on, so that the last d_p vectors are basis for Nul $(A - \lambda_p I)$. Then $A = PDP^{-1}$ for

$$P = \left[\begin{array}{ccc} v_1 & v_2 & \dots & v_n \end{array} \right].$$

2 Complex numbers

For the rest of this lecture, let $i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Recall that $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Suppose $a, b \in \mathbb{R}$. Both *i* and I_2 are 2×2 matrices, so we can form the sum $aI_2 + bi$.

To simplify our notation, we will write 1 instead of I_2 and a + bi instead of $aI_2 + bi$.

We consider a = a + 0i and bi = 0 + bi and 0 = 0 + 0i. With this convention, we have

$$a+bi = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} + \begin{bmatrix} 0 & -b \\ b & 0 \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

Define $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\} = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}$. This is called the set of *complex numbers*.

According to our definition, each element of \mathbb{C} is a 2 × 2 matrix, to be called a *complex number*.

Fact. We can add complex numbers together. If $a, b, c, d \in \mathbb{R}$ then

$$(a+bi) + (c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix} = (a+c) + (b+d)i \in \mathbb{C}.$$

Clearly (a+bi) + (c+di) = (c+di) + (a+bi) = (a+c) + (b+d)i.

Fact. We can subtract complex numbers. If $a, b, c, d \in \mathbb{R}$ then

$$(a+bi) - (c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} - \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} a-c & -b+d \\ b-d & a-c \end{bmatrix} = (a-c) + (b-d)i \in \mathbb{C}.$$

Fact. We can multiply complex numbers. If $a, b, c, d \in \mathbb{R}$ then

$$(a+bi)(c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \begin{bmatrix} ac-bd & -(ad+bc) \\ ad+bc & ac-bd \end{bmatrix} = (ac-bd) + (ad+bc)i \in \mathbb{C}.$$

Note that $\boxed{(a+bi)(c+di) = (c+di)(a+bi) = (ac-bd) + (ad+bc)i}.$

Fact. We can multiply complex numbers by real numbers. If $a, b, x \in \mathbb{R}$ then define

$$(a+bi)x = x(a+bi) = x \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} ax & -bx \\ bx & ax \end{bmatrix} = (ax) + (bx)i \in \mathbb{C}$$

Note that this is the same as the product (a + bi)(x + 0i).

Fact. We can divide complex numbers by nonzero real numbers. If $a, b, x \in \mathbb{R}$ and $x \neq 0$ then define

$$(a+bi)/x = (a+bi)(1/x) = (a/x) + (b/x)i.$$

We sometimes write $\frac{p}{q}$ instead of p/q. Both expressions means the same thing. A complex number a + bi is *nonzero* if $a \neq 0$ or $b \neq 0$. Since

$$\det(a+bi) = \det \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] = a^2 + b^2,$$

which is only zero if a = b = 0, every nonzero complex number is invertible as a matrix.

Fact. This fact lets us divide complex numbers. If $a, b, c, d \in \mathbb{R}$ and $c + di \neq 0$ then define

$$(a+bi)/(c+di) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}^{-1}.$$

We can write this more explicitly as

$$\begin{aligned} (a+bi)/(c+di) &= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}^{-1} \\ &= \frac{1}{c^2+d^2} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \\ &= \frac{1}{c^2+d^2} \begin{bmatrix} ac+bd & bc-ad \\ ad-bc & ac+bd \end{bmatrix} = \frac{ac+bd}{c^2+d^2} + \frac{ad-bc}{c^2+d^2}i \in \mathbb{C}. \end{aligned}$$

The last formula is not so easy to remember.

It may be easier to divide complex numbers using the following method:

Example. We have
$$\frac{3-4i}{2+i} = \frac{(3-4i)(2-i)}{(2+i)(2-i)} = \frac{6-3i-8i+4i^2}{4-i^2} = \frac{6-11i-4}{5} = \frac{2-11i}{5} = \frac{2}{5} - \frac{11}{5}i$$
.
More generally, if $c + di \neq 0$ then we always have $\boxed{\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{c^2+d^2}}$ since $\frac{a+bi}{c+di} = (a+bi)(c+di)^{-1} = \frac{1}{c^2+d^2}(a+bi)(c-di) = \frac{(a+bi)(c-di)}{c^2+d^2}$.

The *complex conjugate* of c + di is defined to be the complex number

 $\overline{c+di} = (c+di)^T = c - di \in \mathbb{C}.$

3

When c + di is nonzero, the complex conjugate is related to the inverse by the identity

$$(c+di)^{-1} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}^{-1} = \frac{1}{c^2+d^2} \begin{bmatrix} c & d \\ -d & c \end{bmatrix} = \frac{1}{c^2+d^2} \cdot \overline{c+di}.$$

Since $x, y \in \mathbb{C}$ satisfy xy = yx and $(xy)^T = y^T x^T$ (since complex numbers are matrices), it follows that

$$\overline{x\overline{y}} = \overline{y} \cdot \overline{x} = \overline{x} \cdot \overline{y}.$$

We can also add complex numbers a + bi with real numbers c when $a, b, c \in \mathbb{R}$.

To do this, we set c = c + 0i and define (a + bi) + c = c + (a + bi) = (a + bi) + (c + 0i) = (a + c) + bi. Under this convention, we have

$$i^{2} + 1 = (0+i)(0+i) + (1+0i) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 + 0i = 0.$$

Thus it makes sense to write $i^2 = -1$. In a similar way:

Theorem. Define the exponential function $\mathbb{C} \to \mathbb{C}$ by the convergent power series

$$e^x = 1 + \frac{1}{1}x + \frac{1}{1 \cdot 2}x^2 + \frac{1}{1 \cdot 2 \cdot 3}x^3 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4}x^4 + \dots$$

Then $e^1 = e = 2.71828...$ and $e^{i\pi} + 1 = 0$.

Proof. We need two facts from calculus:

$$-1 = \cos \pi = 1 - \frac{1}{1 \cdot 2} \pi^2 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^4 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^6 + \dots$$
$$0 = \sin \pi = \frac{1}{1} \pi - \frac{1}{1 \cdot 2 \cdot 3} \pi^3 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \pi^5 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \pi^7 + \dots$$

We have

$$i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad i^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad i^3 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad \text{and} \quad i^0 = i^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Thus $i^{n+4} = i^n$ for all n.

Also, we have $(i\pi)^n = \pi^n i^n$. It follows that

$$e^{i\pi} = \begin{bmatrix} 1 - \frac{1}{1 \cdot 2} \pi^2 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^4 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^6 + \dots & \frac{1}{1} \pi - \frac{1}{1 \cdot 2 \cdot 3} \pi^3 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \pi^5 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \pi^7 + \dots \\ \frac{1}{1} \pi - \frac{1}{1 \cdot 2 \cdot 3} \pi^3 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \pi^5 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} \pi^7 + \dots & 1 - \frac{1}{1 \cdot 2} \pi^2 + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \pi^4 - \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \pi^6 + \dots \end{bmatrix}$$

By our two facts, this is just $e^{i\pi} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -1 + 0i$. Thus $e^{i\pi} + 1 = (-1 + 0i) + (1 + 0i) = 0$. \Box

After a while, we tend to forget that complex numbers are 2×2 matrices and instead view the elements of \mathbb{C} as formal expressions a + bi where $a, b \in \mathbb{R}$ and i is a symbol that satisfies $i^2 = -1$.

We can add, subtract, and multiply such expressions just like polynomials, but substituting -1 for i^2 . This convention gives the same operations as we saw above.

Moreover, this makes it clearer how to view \mathbb{R} as a subset of \mathbb{C} , by setting a = a + 0i.

The *real part* of a complex number $a + bi \in \mathbb{C}$ is $\mathsf{Re}(a + bi) = a \in \mathbb{R}$.

The *imaginary part* of $a + bi \in \mathbb{C}$ is $\text{Im}(a + bi) = b \in \mathbb{R}$.

Remark. It can be helpful to draw the complex number $a + bi \in \mathbb{C}$ as the vector $\begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$.

The number $i(a + bi) = -b + ai \in \mathbb{C}$ then corresponds to the vector $\begin{bmatrix} -b \\ a \end{bmatrix} \in \mathbb{R}^2$, which is given by rotating $\begin{bmatrix} a \\ b \end{bmatrix}$ ninety degrees counterclockwise. (Try drawing this yourself.)

The main reason it is useful to work with complex numbers is the following theorem about polynomials. Suppose $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is a polynomial with coefficients $a_0, a_1, \dots, a_n \in \mathbb{C}$. Assume $a_n \neq 0$ so that p(x) has *degree* n.

Even though we think of complex numbers are 2×2 matrices, this expression for p(x) still makes sense for $x \in \mathbb{C}$: if we plug in any complex number for x then $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a complex number.

Theorem (Fundamental theorem of algebra). Define p(x) as above. There are n (not necessarily distinct) complex numbers $r_1, r_2, \ldots, r_n \in \mathbb{C}$ such that $p(x) = a_n(x - r_1)(x - r_2) \cdots (x - r_n)$.

One calls the numbers r_1, r_2, \ldots, r_n the *roots* of p(x).

A root r has *multiplicity* m if exactly m of the numbers r_1, r_2, \ldots, r_n are equal to r.

The use of complex numbers in this theorem is essential. The statement fails if we use \mathbb{R} instead of \mathbb{C} . Example: if $p(x) = x^2 + 1$ then there **do not exist** real numbers $r_1, r_2 \in \mathbb{R}$ with $p(x) = (x - r_1)(x - r_2)$. However, we do have $x^2 + 1 = (x - i)(x + i)$.

3 Complex eigenvalues

The characteristic equation of an $n \times n$ matrix A is a degree n polynomial with real coefficients. Counting multiplicities, det(A - xI) has exactly n roots but some roots may be complex numbers.

Define \mathbb{C}^n to be the set of vectors $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ with *n* rows and entries $v_1, v_2, \ldots, v_n \in \mathbb{C}$.

Note that $\mathbb{R}^n \subset \mathbb{C}^n$ since $\mathbb{R} = \{a \in \mathbb{R}\} \subset \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$

The sum u + v and scalar multiple cv for $u, v \in \mathbb{C}^n$ and $c \in \mathbb{C}$ are defined exactly as for vectors in \mathbb{R}^n , except we use the addition and multiplication operations from \mathbb{C} instead of \mathbb{R} .

If A is an $n \times n$ matrix and $v \in \mathbb{C}^n$ then we define Av in the same way as when $v \in \mathbb{R}^n$.

Definition. Let A be an $n \times n$ matrix whose entries are all real numbers. Call $\lambda \in \mathbb{C}$ a *(complex) eigenvalue* of A if there exists a nonzero vector $v \in \mathbb{C}^n$ such that $Av = \lambda v$.

Equivalently, $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ is a root of the characteristic polynomial det(A - xI).

This is no different from our first definition of an eigenvalue, except that now we permit λ to be in \mathbb{C} .

Example. Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. Then $\det(A - xI) = x^2 + 1 = (i - x)(-i - x)$.

The roots of this polynomial are the complex numbers i and -i. We have

$$A\begin{bmatrix}1\\-i\end{bmatrix} = \begin{bmatrix}i\\1\end{bmatrix} = i\begin{bmatrix}1\\-i\end{bmatrix} \quad \text{and} \quad A\begin{bmatrix}1\\i\end{bmatrix} = \begin{bmatrix}-i\\1\end{bmatrix} = -i\begin{bmatrix}1\\i\end{bmatrix}$$

so *i* and -i are eigenvalues of *A*, with corresponding eigenvectors $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$.

Example. Let
$$A = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix}$$
. Then $\det(A - xI) = \det \begin{bmatrix} .5 - x & -.6 \\ .75 & 1.1 - x \end{bmatrix} = x^2 - 1.6x + 1.$

Via the quadratic formula, we find that the roots of this characteristic polynomial are

$$x = \frac{1.6 \pm \sqrt{1.6^2 - 4}}{2} = .8 \pm .6i$$

since $i = \sqrt{-1}$. To find a basis for the (.8 - .6i)-eigenspace, we row reduce as usual

$$A - (.8 - .6i)I = \begin{bmatrix} .5 & -.6 \\ .75 & 1.1 \end{bmatrix} - \begin{bmatrix} .8 - .6i & 0 \\ 0 & .8 - .6i \end{bmatrix} = \begin{bmatrix} -.3 + .6i & -.6 \\ .75 & .3 + .6i \end{bmatrix}$$
$$\sim \begin{bmatrix} .5 - i & 1 \\ 1 & .8(.5 + i) \end{bmatrix} \sim \begin{bmatrix} 1 & .8(.5 + i) \\ .5 - i & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 1 - .8(.5 + i)(.5 - i) \end{bmatrix} = \begin{bmatrix} 1 & .8(.5 + i) \\ 0 & 0 \end{bmatrix}$$

The last equality holds since $.8(.5+i)(.5-i) = .8(.25-i^2) = .8(1.25) = 1$.

This implies that Ax = (.8 - .6i)x if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 + .8(.5 + i)x_2 = 0$, i.e., where $5x_1 = -4(.5 + i)x_2 = -(2 + 4i)x_2$. Satisfying these conditions is the vector

$$v = \left[\begin{array}{c} -2 - 4i \\ 5 \end{array} \right]$$

which is therefore an eigenvector for A with eigenvalue .8 - .6i.

Similar calculations show that the vector $w = \begin{bmatrix} -2+4i \\ 5 \end{bmatrix}$ is an eigenvector for A with eigenvalue .8+.6i.

Proposition. Suppose A is an $n \times n$ matrix with real entries. If A has a complex eigenvalue $\lambda \in \mathbb{C}$ with eigenvector $v \in \mathbb{C}^n$ then $\overline{v} \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\overline{\lambda}$.

Proof. Since A has real entries, it holds that $\overline{A} = A$. Therefore $A\overline{v} = \overline{A}\overline{v} = \overline{A}\overline{v} = \overline{\lambda}\overline{v}$.

Keywords from today's lecture:

1. Complex number.

We define a complex number to be either

- A matrix $a + bi = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ where $a, b \in \mathbb{R}$ and $i = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
- A formal expression "a + bi" where $a, b \in \mathbb{R}$ and i is a symbol that has $i^2 = -1$.

The first definition makes it clear how to add, subtract, multiply, and divide complex numbers (use matrix operations). The second definition is secretly just a way of abbreviating the first definition.

The set of complex numbers is denoted \mathbb{C} .

Example:

$$1 + 2i \text{ corresponds to } \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}.$$

$$(1 + 2i) + (2 + 3i) = 3 + 5i \text{ corresponds to } \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ 5 & 3 \end{bmatrix}.$$

$$(1 + 2i)(2 + 3i) = -4 + 7i \text{ corresponds to } \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -4 & -6 \\ 7 & -4 \end{bmatrix}.$$

$$(1 + 2i)^{-1} = \frac{1}{5} - \frac{2}{5}i \text{ corresponds to } \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}.$$

2. Complex conjugation.

If $a, b \in \mathbb{R}$ then *complex conjugate* of $a + bi \in \mathbb{C}$ is $\overline{a + bi} = a - bi \in \mathbb{C}$. If $y, z \in \mathbb{C}$ then $\overline{y + z} = \overline{y} + \overline{z}$ and $\overline{yz} = \overline{y} \cdot \overline{z}$ and $\overline{y^{-1}} = \overline{y}^{-1}$.

3. Fundamental theorem of algebra.

Any polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with coefficients $a_0, a_1, \ldots, a_n \in \mathbb{C}$ and $a_n \neq 0$ can be factored as

$$f(x) = a_n(x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n)$$

for some not necessarily distinct complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{C}$.

4. (Complex) eigenvalues and eigenvectors.

Let \mathbb{C}^n be the set of vectors with *n* rows with entries in \mathbb{C} . Since $\mathbb{R} \subset \mathbb{C}$, we have $\mathbb{R}^n \subset \mathbb{C}^n$.

If A is an $n \times n$ matrix and there exists a nonzero vector $v \in \mathbb{C}^n$ with $Av = \lambda v$ for some $\lambda \in \mathbb{C}$, then λ is an *eigenvalue* for A. The vector v is called an *eigenvector*.

Example: The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ has eigenvalues i and -i. We have $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$ and $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ -1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix}$.