Summary

Quick summary of today's notes. Lecture starts on next page.

- The inner product or dot product of two vectors $u, v \in \mathbb{R}^{n}$ is the scalar

$$
u \bullet v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=u^{T} v=v^{T} u \in \mathbb{R}^{1}=\mathbb{R}
$$

A unit vector is a vector $v \in \mathbb{R}^{n}$ with $v \bullet v=1$.

- Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.

If $V \subseteq \mathbb{R}^{n}$ is a subspace then its orthogonal complement is the subspace

$$
V^{\perp}=\left\{w \in \mathbb{R}^{n}: v \bullet w=0 \text { for all } v \in V\right\}
$$

- A set of nonzero vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ is orthogonal if $v_{i} \bullet v_{j}=0$ for all $i \neq j$.

Any such set is automatically linearly independent and therefore a basis for a subspace.

- An orthogonal basis is orthonormal if it consists entirely of unit vectors.

If $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{m}$ are orthonormal and $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ then $U^{T} U=I_{n}$.
A square matrix U is orthogonal if $U^{-1}=U^{T}$.
This occurs if and only if the columns of U are orthonormal.

- Any subspace $V \subseteq \mathbb{R}^{n}$ has an orthogonal basis.

Any subspace $V \subseteq \mathbb{R}^{n}$ therefore also has an orthonormal basis.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for V then the projection of $y \in \mathbb{R}^{n}$ onto V is the vector

$$
\operatorname{proj}_{V}(y)=\frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2}+\cdots+\frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p} \in V .
$$

This formula does not depend on the choice of orthogonal basis for V.
The projection of y onto V is the unique vector in V such that $y-\operatorname{proj}_{V}(y) \in V^{\perp}$.
The projection of y onto V is also characterized as the vector in V that is the shortest distance away from y. If $v \in V$ and $v \neq \operatorname{proj}_{V}(y)$ then $\left\|y-\operatorname{proj}_{V}(y)\right\|<\|y-v\|$.

- The Gram-Schmidt process is an algorithm that takes a basis $x_{1}, x_{2}, \ldots, x_{p}$ for a subspace of \mathbb{R}^{n} as input, and produces an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ of the same subspace as output.
The orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ is defined from the input basis $x_{1}, x_{2}, \ldots, x_{p}$ by these formulas:

$$
\begin{aligned}
v_{1} & =x_{1} . \\
v_{2} & =x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} . \\
v_{3} & =x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
v_{4} & =x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
v_{p} & =x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

1 Last time: orthogonal vectors and projections

The inner product or dot product of two vectors

$$
u=\left[\begin{array}{r}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

in \mathbb{R}^{n} is the scalar $u \bullet v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=u^{T} v=v^{T} u=v \bullet u$.

The length of a vector $v \in \mathbb{R}^{n}$ is $\|v\|=\sqrt{v \bullet v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$.
A vector with length 1 is a unit vector. Note that $\|v\|^{2}=v \bullet v$.

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
In \mathbb{R}^{2}, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

Pythagorean Theorem. Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

The orthogonal complement of a subspace $V \subseteq \mathbb{R}^{n}$ is the subspace V^{\perp} whose elements are the vectors $w \in \mathbb{R}^{n}$ such that $w \bullet v=0$ for all $v \in V$.

The only vector that is in both V and V^{\perp} is the zero vector.
We have $\{0\}^{\perp}=\mathbb{R}^{n}$ and $\left(\mathbb{R}^{n}\right)^{\perp}=\{0\}$. If A is an $m \times n$ matrix then $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
We also showed last time that $\operatorname{dim} V+\operatorname{dim} V^{\perp} \leq n$.

A list of vectors $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{R}^{n}$ is orthogonal if $u_{i} \bullet u_{j}=0$ whenever $1 \leq i<j \leq p$.
Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis of the subspace it spans.

Second proof. Suppose $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{R}^{n}$ are orthogonal and nonzero.
Let $A=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ and $d_{i}=u_{i} \bullet u_{i}>0$ and $D=\left[\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{p}\end{array}\right]$.
Check that $A^{T} A=D$. Our vectors are linearly dependent if and only if $A x=0$ has a nonzero solution. This is impossible since if $A x=0$ then $A^{T} A x=0$ which implies $x=0$ since $A^{T} A=D$ is invertible.

If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for a subspace $V \subseteq \mathbb{R}^{n}$ and $y \in V$, then

$$
y=c_{1} u_{2}+c_{2} u_{2}+\cdots+c_{p} u_{p} \quad \text { where } c_{i}=\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} \in \mathbb{R}
$$

This is an essential property of orthogonal bases. In general, to determine the coefficients that express a vector in a given basis, we have to solve an entire linear system. For orthogonal bases, we can just compute inner products.

Example. Let's work through this statement for the standard orthogonal basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{R}^{n}. If

$$
y=\left[\begin{array}{r}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1} e_{1}+y_{2} e_{2}+\cdots+y_{n} e_{n}
$$

then $y=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}$ where $c_{i}=\frac{y \bullet e_{i}}{e_{i} \bullet e_{i}}$. But $e_{i} \bullet e_{i}=1$ and $y \bullet e_{i}=y_{i}$, so we just have $c_{i}=y_{i}$.
Let $L \subseteq \mathbb{R}^{n}$ be a one-dimensional subspace.
Then $L=\mathbb{R}-\operatorname{span}\{u\}$ for any nonzero vector $u \in L$.
Let $y \in \mathbb{R}^{n}$. The orthogonal projection of y onto L is the vector

$$
\operatorname{proj}_{L}(y)=\frac{y \bullet u}{u \bullet u} u \quad \text { for any } 0 \neq u \in L
$$

The value of $\operatorname{proj}_{L}(y)$ does not depend on the choice of the nonzero vector u.
The component of y orthogonal to L is the vector $z=y-\operatorname{proj}_{L}(y)$.
Proposition. The only vector $\widehat{y} \in L$ with $y-\widehat{y} \in L^{\perp}$ is the orthogonal projection $\widehat{y}=\operatorname{proj}_{L}(y)$.
Proof. Let $u \in L$ be nonzero. Then $y-\operatorname{proj}_{L}(y)=y-\frac{y \bullet u}{u \bullet u} u$ and it holds that

$$
\left(y-\frac{y \bullet u}{u \bullet u} u\right) \bullet u=y \bullet u-\frac{y \bullet u}{u \bullet u} u \bullet u=y \bullet u-y \bullet u=0 .
$$

This shows that $y-\operatorname{proj}_{L}(y) \in L^{\perp}$, and clearly $\operatorname{proj}_{L}(y) \in L$.
To see that $\operatorname{proj}_{L}(y)$ is the only vector in L with this property, suppose $\widehat{y} \in L$ is such that $y-\widehat{y} \in L^{\perp}$.
Then $(y-\widehat{y}) \bullet \widehat{y}=y \bullet \widehat{y}-\widehat{y} \bullet \widehat{y}=0$ so $y \bullet \widehat{y}=\widehat{y} \bullet \widehat{y}$.
But $\widehat{y}=c u$ for some nonzero $c \in \mathbb{R}$.
So we have $c(y \bullet u)=y \bullet c u=(c u) \bullet(c u)=c^{2}(u \bullet u)$.
Thus $c=\frac{y \bullet u}{u \bullet u}$ so $\widehat{y}=\operatorname{proj}_{L}(y)$.
Example. If $y=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $L=\mathbb{R}$-span $\left\{\left[\begin{array}{l}4 \\ 2\end{array}\right]\right\}$ then

$$
\operatorname{proj}_{L}(y)=\frac{\left[\begin{array}{l}
7 \\
6
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}{\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{28+12}{16+4}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

2 Orthonormal vectors

A set of vectors $u_{1}, u_{2}, \ldots, u_{p}$ is orthonormal if the vectors are orthogonal and each vector is a unit vector. In other words, if $u_{i} \bullet u_{j}=0$ when $i \neq j$ and $u_{i} \bullet u_{i}=1$ for all i.

An orthonormal basis of a subspace is a basis that is orthonormal.
Confusing convention: a square matrix with orthonormal columns is called an orthogonal matrix.
It would make more sense to call such a matrix an "orthonormal matrix" but the term "orthogonal matrix" is standard and widely used.

Example. The standard basis $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal basis for \mathbb{R}^{n}.
Example. The vectors $\frac{1}{\sqrt{11}}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$, and $\frac{1}{\sqrt{66}}\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]$ are an orthonormal basis for \mathbb{R}^{3}.
Theorem. Let U be an $m \times n$ matrix.
The columns of U are orthonormal vectors if and only if $U^{T} U=I_{n}$.
If U is square then its columns are orthonormal if and only if $U^{T}=U^{-1}$.
(In other words, a matrix U is orthogonal if and only if U is square and $U^{T}=U^{-1}$.)
Proof. Suppose $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ where each $u_{i} \in \mathbb{R}^{m}$.
The entry in position (i, j) of $U^{T} U$ is then $u_{i}^{T} u_{j}=u_{i} \bullet u_{j}$.
Therefore $u_{i} \bullet u_{i}=1$ and $u_{i} \bullet u_{j}=0$ for all $i \neq j$ if and only if $U^{T} U$ is the $n \times n$ identity matrix.

Corollary. If U is an orthogonal matrix then $\operatorname{det}(U) \in\{-1,1\}$.
Proof. We have $\operatorname{det}(U)^{2}=\operatorname{det}\left(U^{T}\right) \operatorname{det}(U)=\operatorname{det}\left(U^{T} U\right)=\operatorname{det}(I)=1$.

Theorem. Let U be an $m \times n$ matrix with orthonormal columns. Suppose $x, y \in \mathbb{R}^{n}$. Then:

1. $\|U x\|=\|x\|$.
2. $(U x) \bullet(U y)=x \bullet y$.
3. $(U x) \bullet(U y)=0$ if and only if $x \bullet y=0$.

Proof. The first and third statements are special cases of the second since $\|U x\|=\|x\|$ if and only if $(U x) \bullet(U x)=x \bullet x$. The second statement holds since $(U x) \bullet(U y)=x^{T} U^{T} U y=x^{T} I y=x^{T} y=x \bullet y$.

3 Orthogonal projections onto subspaces

We have already seen that if $y \in \mathbb{R}^{n}$ and $L \subseteq \mathbb{R}^{n}$ is a 1 -dimensional subspace then y can be written uniquely as $y=\widehat{y}+z$ where $\widehat{y} \in L$ and $z \in L^{\perp}$. This generalizes to arbitrary subspaces as follows:

Theorem. Let $W \subseteq \mathbb{R}^{n}$ be any subspace. Let $y \in \mathbb{R}^{n}$.
Then there are unique vectors $\widehat{y} \in W$ and $z \in W^{\perp}$ such that $y=\widehat{y}+z$.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for W then

$$
\begin{equation*}
\widehat{y}=\frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2}+\cdots+\frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p} \quad \text { and } \quad z=y-\widehat{y} . \tag{}
\end{equation*}
$$

It doesn't matter which orthogonal basis is chosen for W; this formula gives the same value for \widehat{y} and z.
Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact will be proved later in this lecture. Choose one such basis $u_{1}, u_{2}, \ldots, u_{p} \in W$.
Define \widehat{y} by the given formula. Then $\widehat{y} \in W$ and $y-\widehat{y} \in W^{\perp}$ since for each $i=1,2, \ldots, p$ we have

$$
(y-\widehat{y}) \bullet u_{i}=y \bullet u_{i}-\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} u_{i} \bullet u_{i}=0 .
$$

To show uniqueness, suppose $y=\widehat{u}+v$ where $\widehat{u} \in W$ and $v \in W^{\perp}$.
Since we already have $y=\widehat{y}+z$, we must have $\widehat{u}-\widehat{y}=z-v$. But $\widehat{u}-\widehat{y}$ is in W while $z-v$ is in W^{\perp}, so both expressions must be zero as $W \cap W^{\perp}=\{0\}$. This means we must have $\widehat{u}=\widehat{y}$ and $v=z$.

Definition. The vector \widehat{y}, defined relative to y and W by the formula (*) in the preceding theorem, is the orthogonal projection of y onto W. From now on we will write $\operatorname{proj}_{W}(y)=\widehat{y}$ to refer to this vector.

Corollary. If $W \subseteq \mathbb{R}^{n}$ is any subspace then $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
Proof. The preceding theorem shows that W and W^{\perp} together span \mathbb{R}^{n}. Therefore the union of any basis for W with a basis for W^{\perp} also spans \mathbb{R}^{n}.

The size of such a union is at most $\operatorname{dim} W+\operatorname{dim} W^{\perp}$ and at least n, so $n \leq \operatorname{dim} W+\operatorname{dim} W^{\perp}$. This means that $\operatorname{dim} W^{\perp} \geq n-\operatorname{dim} W$. We showed last time that $\operatorname{dim} W^{\perp} \leq n-\operatorname{dim} W$, so $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
$\underline{\text { Properties of orthogonal projections onto a subspace } W \subseteq \mathbb{R}^{n}}$.
Fact. If $y \in W$ then $\operatorname{proj}_{W}(y)=y$. If $y \in W^{\perp}$ then $\operatorname{proj}_{W}(y)=0$.
Proposition. If $v \in W$ and $y \in \mathbb{R}^{n}$ and $v \neq \operatorname{proj}_{W}(y)$ then $\left\|y-\operatorname{proj}_{W}(y)\right\|<\|y-v\|$.
In words: the projection $\operatorname{proj}_{W}(y)$ is the vector in W that is closest to y.
Proof. Let $\widehat{y}=\operatorname{proj}_{W}(y)$. Then $y-v=(y-\widehat{y})+(\widehat{y}-v)$.
The first term in parentheses is in W^{\perp} while the second term is in W.
Therefore by the Pythagorean theorem $\|y-v\|^{2}=\|y-\widehat{y}\|^{2}+\|\widehat{y}-v\|^{2}>\|y-\widehat{y}\|^{2}$ since $\|\widehat{y}-v\|>0$.

Fact. Suppose $u_{1}, u_{2}, \ldots, u_{p}$ is an orthonormal basis of W. Then

$$
\operatorname{proj}_{W}(y)=\left(y \bullet u_{1}\right) u_{1}+\left(y \bullet u_{2}\right) u_{2}+\cdots+\left(y \bullet u_{p}\right) u_{p}
$$

Define the matrix $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$. Then $\operatorname{proj}_{W}(y)=U U^{T} y$.

4 The Gram-Schmidt process

The Gram-Schmidt process is an algorithm that takes an arbitrary basis for some subspace of \mathbb{R}^{n} as input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let $W \subseteq \mathbb{R}^{n}$ be a nonzero subspace. Then W has an orthogonal basis.
(The zero subspace $\{0\}$ has an orthogonal basis given by the empty set, but we exclude this trivial case.)
Gram-Schmidt process. Suppose $x_{1}, x_{2}, \ldots, x_{p}$ is any basis for W.
Then an orthogonal basis is given by the vectors $v_{1}, v_{2}, \ldots, v_{p}$ defined by the following formulas:

$$
\begin{aligned}
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
& v_{4}=x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
& v_{p}=x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

These formulas are inductive: to compute any v_{i} you need to have already computed $v_{1}, v_{2}, \ldots, v_{i-1}$.

More strongly, we can say the following. Let $W_{i}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ for each $i=1,2, \ldots, p$.
Then $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} and $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$.
(Our proof of the existence of orthogonal projections relies on this theorem.)
Proof. For $i=1,2, \ldots, p$ and $y \in \mathbb{R}^{n}$ define $\operatorname{proj}_{W_{i}}(y)=\frac{y \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}+\frac{y \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}+\cdots+\frac{y \bullet v_{i}}{v_{i} \bullet v_{i}} v_{i}$.
We want to show that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each i.
If we assume that this is true for any particular value of i, then the formula $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$ automatically holds, which means that $v_{i+1} \in W_{i}^{\perp}$ so $v_{1}, v_{2}, \ldots, v_{i}, v_{i+1}$ is also an orthogonal set, and therefore an orthogonal basis for W_{i+1}.
The single vector $v_{1}=x_{1}$ is necessarily an orthogonal basis for $W_{1}=\mathbb{R}-\operatorname{span}\left\{v_{1}\right\}$.
Therefore v_{1}, v_{2} is an orthogonal basis for W_{2}, which means that v_{1}, v_{2}, v_{3} is an orthogonal basis for W_{3}; continuing in this way, we deduce that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each $i=1,2, \ldots, p$. In particular $v_{1}, v_{2}, \ldots, v_{p}$ is an orthogonal basis for $W_{p}=W$.

Remark. To find an orthonormal basis for a subspace W, first find an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$. Then replace each vector v_{i} by $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$. The vectors $u_{1}, u_{2}, \ldots, u_{p}$ will then be an orthonormal basis.
Example. Suppose $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.
These vectors are linearly independent and so are a basis for the subspace $W=\mathbb{R}$-span $\left\{x_{1}, x_{2}, x_{3}\right\}$.
To compute an orthogonal basis for W, we carry out the Gram-Schmit process as follows:

- We set $v_{1}=x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. Then $v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
- Finally let $v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{2}{3}\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]=\left[\begin{array}{r}0 \\ -2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$.

The vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right], v_{3}=\left[\begin{array}{r}0 \\ -2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$ are then an orthogonal basis for W.

5 Vocabulary

Keywords from today's lecture:

1. Orthonormal vectors.

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
A set of vectors in \mathbb{R}^{n} is orthogonal if any two of the vectors are orthogonal.
A set of vectors in \mathbb{R}^{n} is orthonormal if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis $e_{1}, e_{2}, \ldots, e_{n}$ of \mathbb{R}^{n} is orthonormal.
2. Orthogonal projection of a vector $y \in \mathbb{R}^{n}$ onto a subspace $W \subseteq \mathbb{R}^{n}$.

The unique vector $\operatorname{proj}_{W}(y) \in W$ such that $y-\operatorname{proj}_{W}(y)$ is orthogonal to every element of W.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthonormal basis for W then

$$
\operatorname{proj}_{W}(y)=\left(y \bullet u_{1}\right) u_{1}+\left(y \bullet u_{2}\right) u_{2}+\cdots+\left(y \bullet u_{p}\right) u_{p} .
$$

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would be "orthonormal matrix," but this term is not commonly used.
Equivalently, a matrix U is orthogonal if and only if U is invertible and $U^{-1}=U^{T}$.
Example: every rotation matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.

4. Gram-Schmidt process.

A specific algorithm whose input is an arbitrary basis $x_{1}, x_{2}, \ldots, x_{p}$ for a subspace of \mathbb{R}^{n} and whose output is an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ for the same subspace. Explicitly:

$$
\begin{aligned}
& v_{1}=x_{1} . \\
& v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} . \\
& v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
& v_{4}=x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
& v_{p}=x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

