Summary

Quick summary of today's notes. Lecture starts on next page.

• The *inner product* or *dot product* of two vectors $u, v \in \mathbb{R}^n$ is the scalar

$$u \bullet v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = u^T v = v^T u \in \mathbb{R}^1 = \mathbb{R}.$$

A *unit vector* is a vector $v \in \mathbb{R}^n$ with $v \bullet v = 1$.

• Two vectors $u, v \in \mathbb{R}^n$ are *orthogonal* if $u \bullet v = 0$.

If $V \subseteq \mathbb{R}^n$ is a subspace then its *orthogonal complement* is the subspace

$$V^{\perp} = \{ w \in \mathbb{R}^n : v \bullet w = 0 \text{ for all } v \in V \}.$$

- A set of nonzero vectors $v_1, v_2, \ldots, v_p \in \mathbb{R}^n$ is *orthogonal* if $v_i \bullet v_j = 0$ for all $i \neq j$. Any such set is automatically linearly independent and therefore a basis for a subspace.
- An orthogonal basis is *orthonormal* if it consists entirely of unit vectors.

If $u_1, u_2, \ldots, u_n \in \mathbb{R}^m$ are orthonormal and $U = [u_1 \ u_2 \ \ldots \ u_n]$ then $U^T U = I_n$.

A square matrix U is *orthogonal* if $U^{-1} = U^T$.

This occurs if and only if the columns of U are orthonormal.

• Any subspace $V \subseteq \mathbb{R}^n$ has an orthogonal basis.

Any subspace $V \subseteq \mathbb{R}^n$ therefore also has an orthonormal basis.

If u_1, u_2, \ldots, u_p is an orthogonal basis for V then the **projection** of $y \in \mathbb{R}^n$ onto V is the vector

$$\operatorname{proj}_V(y) = \frac{y \bullet u_1}{u_1 \bullet u_1} u_1 + \frac{y \bullet u_2}{u_2 \bullet u_2} u_2 + \dots + \frac{y \bullet u_p}{u_p \bullet u_p} u_p \in V.$$

This formula does not depend on the choice of orthogonal basis for V.

The projection of y onto V is the unique vector in V such that $y - \operatorname{proj}_V(y) \in V^{\perp}$.

The projection of y onto V is also characterized as the vector in V that is the shortest distance away from y. If $v \in V$ and $v \neq \operatorname{proj}_V(y)$ then $||y - \operatorname{proj}_V(y)|| < ||y - v||$.

• The *Gram-Schmidt process* is an algorithm that takes a basis x_1, x_2, \ldots, x_p for a subspace of \mathbb{R}^n as input, and produces an orthogonal basis v_1, v_2, \ldots, v_p of the same subspace as output.

The orthogonal basis v_1, v_2, \ldots, v_p is defined from the input basis x_1, x_2, \ldots, x_p by these formulas:

$$\begin{split} v_1 &= x_1. \\ v_2 &= x_2 - \frac{x_2 \bullet v_1}{v_1 \bullet v_1} v_1. \\ v_3 &= x_3 - \frac{x_3 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_3 \bullet v_2}{v_2 \bullet v_2} v_2. \\ v_4 &= x_4 - \frac{x_4 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_4 \bullet v_2}{v_2 \bullet v_2} v_2 - \frac{x_4 \bullet v_3}{v_3 \bullet v_3} v_3. \\ &\vdots \\ v_p &= x_p - \frac{x_p \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_p \bullet v_2}{v_2 \bullet v_2} v_2 - \dots - \frac{x_p \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1}. \end{split}$$

1 Last time: orthogonal vectors and projections

The *inner product* or *dot product* of two vectors

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

in \mathbb{R}^n is the scalar $u \bullet v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = u^T v = v^T u = v \bullet u$.

The *length* of a vector $v \in \mathbb{R}^n$ is $||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}$.

A vector with length 1 is a *unit vector*. Note that $||v||^2 = v \bullet v$.

Two vectors $u, v \in \mathbb{R}^n$ are *orthogonal* if $u \bullet v = 0$.

In \mathbb{R}^2 , two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

Pythagorean Theorem. Two vectors $u, v \in \mathbb{R}^n$ are orthogonal if and only if $||u + v||^2 = ||u||^2 + ||v||^2$.

The *orthogonal complement* of a subspace $V \subseteq \mathbb{R}^n$ is the subspace V^{\perp} whose elements are the vectors $w \in \mathbb{R}^n$ such that $w \bullet v = 0$ for all $v \in V$.

The only vector that is in both V and V^{\perp} is the zero vector.

We have $\{0\}^{\perp} = \mathbb{R}^n$ and $(\mathbb{R}^n)^{\perp} = \{0\}$. If A is an $m \times n$ matrix then $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$.

We also showed last time that dim $V + \dim V^{\perp} \le n$.

A list of vectors $u_1, u_2, \ldots, u_p \in \mathbb{R}^n$ is *orthogonal* if $u_i \bullet u_j = 0$ whenever $1 \le i < j \le p$.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis of the subspace it spans.

Second proof. Suppose $u_1, u_2, \ldots, u_p \in \mathbb{R}^n$ are orthogonal and nonzero.

Let
$$A = \begin{bmatrix} u_1 & u_2 & \dots & u_p \end{bmatrix}$$
 and $d_i = u_i \bullet u_i > 0$ and $D = \begin{bmatrix} d_1 & & & \\ & \ddots & & \\ & & d_p \end{bmatrix}$.

Check that $A^TA = D$. Our vectors are linearly dependent if and only if Ax = 0 has a nonzero solution. This is impossible since if Ax = 0 then $A^TAx = 0$ which implies x = 0 since $A^TA = D$ is invertible. \square

If u_1, u_2, \ldots, u_p is an orthogonal basis for a subspace $V \subseteq \mathbb{R}^n$ and $y \in V$, then

$$y = c_1 u_2 + c_2 u_2 + \dots + c_p u_p$$
 where $c_i = \frac{y \bullet u_i}{u_i \bullet u_i} \in \mathbb{R}$.

This is an essential property of orthogonal bases. In general, to determine the coefficients that express a vector in a given basis, we have to solve an entire linear system. For orthogonal bases, we can just compute inner products.

Example. Let's work through this statement for the standard orthogonal basis e_1, e_2, \ldots, e_n for \mathbb{R}^n . If

$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = y_1 e_1 + y_2 e_2 + \dots + y_n e_n$$

then $y = c_1 e_1 + c_2 e_2 + \cdots + c_n e_n$ where $c_i = \frac{y \cdot e_i}{e_i \cdot e_i}$. But $e_i \cdot e_i = 1$ and $y \cdot e_i = y_i$, so we just have $c_i = y_i$.

Let $L \subseteq \mathbb{R}^n$ be a one-dimensional subspace.

Then $L = \mathbb{R}$ -span $\{u\}$ for any nonzero vector $u \in L$.

Let $y \in \mathbb{R}^n$. The *orthogonal projection* of y onto L is the vector

$$\operatorname{proj}_{L}(y) = \frac{y \bullet u}{u \bullet u} u$$
 for any $0 \neq u \in L$.

The value of $\operatorname{proj}_L(y)$ does not depend on the choice of the nonzero vector u.

The component of y orthogonal to L is the vector $z = y - \text{proj}_L(y)$.

Proposition. The only vector $\hat{y} \in L$ with $y - \hat{y} \in L^{\perp}$ is the orthogonal projection $\hat{y} = \operatorname{proj}_L(y)$.

Proof. Let $u \in L$ be nonzero. Then $y - \operatorname{proj}_L(y) = y - \frac{y \cdot u}{u \cdot u} u$ and it holds that

$$\left(y - \frac{y \bullet u}{u \bullet u}u\right) \bullet u = y \bullet u - \frac{y \bullet u}{u \bullet u}u \bullet u = y \bullet u - y \bullet u = 0.$$

This shows that $y - \operatorname{proj}_L(y) \in L^{\perp}$, and clearly $\operatorname{proj}_L(y) \in L$.

To see that $\operatorname{proj}_L(y)$ is the only vector in L with this property, suppose $\widehat{y} \in L$ is such that $y - \widehat{y} \in L^{\perp}$.

Then
$$(y - \widehat{y}) \bullet \widehat{y} = y \bullet \widehat{y} - \widehat{y} \bullet \widehat{y} = 0$$
 so $y \bullet \widehat{y} = \widehat{y} \bullet \widehat{y}$.

But $\hat{y} = cu$ for some nonzero $c \in \mathbb{R}$.

So we have $c(y \bullet u) = y \bullet cu = (cu) \bullet (cu) = c^2(u \bullet u)$.

Thus
$$c = \frac{y \cdot u}{u \cdot u}$$
 so $\widehat{y} = \operatorname{proj}_L(y)$.

Example. If $y = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $L = \mathbb{R}$ -span $\left\{ \begin{bmatrix} 4 \\ 2 \end{bmatrix} \right\}$ then

$$\operatorname{proj}_{L}(y) = \frac{\begin{bmatrix} 7 \\ 6 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 2 \end{bmatrix}}{\begin{bmatrix} 4 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 2 \end{bmatrix}} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \frac{28+12}{16+4} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}.$$

2 Orthonormal vectors

A set of vectors u_1, u_2, \ldots, u_p is *orthonormal* if the vectors are orthogonal and each vector is a unit vector. In other words, if $u_i \bullet u_i = 0$ when $i \neq j$ and $u_i \bullet u_i = 1$ for all i.

An *orthonormal basis* of a subspace is a basis that is orthonormal.

Confusing convention: a square matrix with orthonormal columns is called an *orthogonal matrix*.

It would make more sense to call such a matrix an "orthonormal matrix" but the term "orthogonal matrix" is standard and widely used.

Example. The standard basis e_1, e_2, \ldots, e_n is an orthonormal basis for \mathbb{R}^n .

Example. The vectors $\frac{1}{\sqrt{11}}\begin{bmatrix} 3\\1\\1 \end{bmatrix}$, $\frac{1}{\sqrt{6}}\begin{bmatrix} -1\\2\\1 \end{bmatrix}$, and $\frac{1}{\sqrt{66}}\begin{bmatrix} -1\\-4\\7 \end{bmatrix}$ are an orthonormal basis for \mathbb{R}^3 .

Theorem. Let U be an $m \times n$ matrix.

The columns of U are orthonormal vectors if and only if $U^TU = I_n$.

If U is square then its columns are orthonormal if and only if $U^T = U^{-1}$.

(In other words, a matrix U is *orthogonal* if and only if U is square and $U^T = U^{-1}$.)

Proof. Suppose $U = [u_1 \ u_2 \ \dots \ u_n]$ where each $u_i \in \mathbb{R}^m$.

The entry in position (i, j) of $U^T U$ is then $u_i^T u_j = u_i \bullet u_j$.

Therefore $u_i \bullet u_i = 1$ and $u_i \bullet u_j = 0$ for all $i \neq j$ if and only if $U^T U$ is the $n \times n$ identity matrix. \square

Corollary. If U is an orthogonal matrix then $det(U) \in \{-1, 1\}$.

Proof. We have
$$\det(U)^2 = \det(U^T) \det(U) = \det(U^T U) = \det(I) = 1.$$

Theorem. Let U be an $m \times n$ matrix with orthonormal columns. Suppose $x, y \in \mathbb{R}^n$. Then:

- 1. ||Ux|| = ||x||.
- 2. $(Ux) \bullet (Uy) = x \bullet y$.
- 3. $(Ux) \bullet (Uy) = 0$ if and only if $x \bullet y = 0$.

Proof. The first and third statements are special cases of the second since ||Ux|| = ||x|| if and only if $(Ux) \bullet (Ux) = x \bullet x$. The second statement holds since $(Ux) \bullet (Uy) = x^T U^T Uy = x^T Iy = x^T y = x \bullet y$. \square

3 Orthogonal projections onto subspaces

We have already seen that if $y \in \mathbb{R}^n$ and $L \subseteq \mathbb{R}^n$ is a 1-dimensional subspace then y can be written uniquely as $y = \hat{y} + z$ where $\hat{y} \in L$ and $z \in L^{\perp}$. This generalizes to arbitrary subspaces as follows:

Theorem. Let $W \subseteq \mathbb{R}^n$ be any subspace. Let $y \in \mathbb{R}^n$.

Then there are unique vectors $\hat{y} \in W$ and $z \in W^{\perp}$ such that $y = \hat{y} + z$.

If u_1, u_2, \ldots, u_p is an orthogonal basis for W then

$$\widehat{y} = \frac{y \bullet u_1}{u_1 \bullet u_1} u_1 + \frac{y \bullet u_2}{u_2 \bullet u_2} u_2 + \dots + \frac{y \bullet u_p}{u_p \bullet u_p} u_p \quad \text{and} \quad z = y - \widehat{y}.$$
 (*)

It doesn't matter which orthogonal basis is chosen for W; this formula gives the same value for \hat{y} and z.

Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact will be proved later in this lecture. Choose one such basis $u_1, u_2, \ldots, u_p \in W$.

Define \hat{y} by the given formula. Then $\hat{y} \in W$ and $y - \hat{y} \in W^{\perp}$ since for each i = 1, 2, ..., p we have

$$(y - \widehat{y}) \bullet u_i = y \bullet u_i - \frac{y \bullet u_i}{u_i \bullet u_i} u_i \bullet u_i = 0.$$

To show uniqueness, suppose $y = \hat{u} + v$ where $\hat{u} \in W$ and $v \in W^{\perp}$.

Since we already have $y = \hat{y} + z$, we must have $\hat{u} - \hat{y} = z - v$. But $\hat{u} - \hat{y}$ is in W while z - v is in W^{\perp} , so both expressions must be zero as $W \cap W^{\perp} = \{0\}$. This means we must have $\hat{u} = \hat{y}$ and v = z.

Definition. The vector \hat{y} , defined relative to y and W by the formula (*) in the preceding theorem, is the *orthogonal projection* of y onto W. From now on we will write $proj_W(y) = \hat{y}$ to refer to this vector.

Corollary. If $W \subseteq \mathbb{R}^n$ is any subspace then dim $W^{\perp} = n - \dim W$.

Proof. The preceding theorem shows that W and W^{\perp} together span \mathbb{R}^n . Therefore the union of any basis for W with a basis for W^{\perp} also spans \mathbb{R}^n .

The size of such a union is at most $\dim W + \dim W^{\perp}$ and at least n, so $n \leq \dim W + \dim W^{\perp}$. This means that $\dim W^{\perp} \geq n - \dim W$. We showed last time that $\dim W^{\perp} \leq n - \dim W$, so $\dim W^{\perp} = n - \dim W$. \square

Properties of orthogonal projections onto a subspace $W \subseteq \mathbb{R}^n$.

Fact. If $y \in W$ then $\operatorname{proj}_W(y) = y$. If $y \in W^{\perp}$ then $\operatorname{proj}_W(y) = 0$.

Proposition. If $v \in W$ and $y \in \mathbb{R}^n$ and $v \neq \operatorname{proj}_W(y)$ then $||y - \operatorname{proj}_W(y)|| < ||y - v||$.

In words: the projection $\operatorname{proj}_W(y)$ is the vector in W that is closest to y.

Proof. Let $\widehat{y} = \operatorname{proj}_W(y)$. Then $y - v = (y - \widehat{y}) + (\widehat{y} - v)$.

The first term in parentheses is in W^{\perp} while the second term is in W.

Therefore by the Pythagorean theorem $\|y-v\|^2 = \|y-\widehat{y}\|^2 + \|\widehat{y}-v\|^2 > \|y-\widehat{y}\|^2$ since $\|\widehat{y}-v\| > 0$. \square

Fact. Suppose u_1, u_2, \ldots, u_p is an orthonormal basis of W. Then

$$\operatorname{proj}_{W}(y) = (y \bullet u_{1})u_{1} + (y \bullet u_{2})u_{2} + \dots + (y \bullet u_{n})u_{n}.$$

Define the matrix $U = [u_1 \ u_2 \ \dots \ u_p]$. Then $\operatorname{proj}_W(y) = UU^T y$.

4 The Gram-Schmidt process

The *Gram-Schmidt process* is an algorithm that takes an arbitrary basis for some subspace of \mathbb{R}^n as input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let $W \subseteq \mathbb{R}^n$ be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we exclude this trivial case.)

Gram-Schmidt process. Suppose x_1, x_2, \ldots, x_p is any basis for W.

Then an orthogonal basis is given by the vectors v_1, v_2, \dots, v_p defined by the following formulas:

$$v_1 = x_1$$
.

$$v_2 = x_2 - \frac{x_2 \bullet v_1}{v_1 \bullet v_1} v_1.$$

$$\begin{split} v_3 &= x_3 - \frac{x_3 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_3 \bullet v_2}{v_2 \bullet v_2} v_2. \\ \\ v_4 &= x_4 - \frac{x_4 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_4 \bullet v_2}{v_2 \bullet v_2} v_2 - \frac{x_4 \bullet v_3}{v_3 \bullet v_3} v_3. \\ \\ \vdots \\ v_p &= x_p - \frac{x_p \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_p \bullet v_2}{v_2 \bullet v_2} v_2 - \dots - \frac{x_p \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1}. \end{split}$$

These formulas are inductive: to compute any v_i you need to have already computed v_1, v_2, \dots, v_{i-1} .

More strongly, we can say the following. Let $W_i = \mathbb{R}$ -span $\{v_1, v_2, \dots, v_i\}$ for each $i = 1, 2, \dots, p$.

Then v_1, v_2, \ldots, v_i is an orthogonal basis for W_i and $v_{i+1} = x_{i+1} - \operatorname{proj}_{W_i}(x_{i+1})$.

(Our proof of the existence of orthogonal projections relies on this theorem.)

Proof. For
$$i=1,2,\ldots,p$$
 and $y\in\mathbb{R}^n$ define $\operatorname{proj}_{W_i}(y)=\frac{y\bullet v_1}{v_1\bullet v_1}v_1+\frac{y\bullet v_2}{v_2\bullet v_2}v_2+\cdots+\frac{y\bullet v_i}{v_i\bullet v_i}v_i$.

We want to show that v_1, v_2, \dots, v_i is an orthogonal basis for W_i for each i.

If we assume that this is true for any particular value of i, then the formula $v_{i+1} = x_{i+1} - \operatorname{proj}_{W_i}(x_{i+1})$ automatically holds, which means that $v_{i+1} \in W_i^{\perp}$ so $v_1, v_2, \ldots, v_i, v_{i+1}$ is also an orthogonal set, and therefore an orthogonal basis for W_{i+1} .

The single vector $v_1 = x_1$ is necessarily an orthogonal basis for $W_1 = \mathbb{R}$ -span $\{v_1\}$.

Therefore v_1, v_2 is an orthogonal basis for W_2 , which means that v_1, v_2, v_3 is an orthogonal basis for W_3 ; continuing in this way, we deduce that v_1, v_2, \ldots, v_i is an orthogonal basis for W_i for each $i = 1, 2, \ldots, p$. In particular v_1, v_2, \ldots, v_p is an orthogonal basis for $W_p = W$.

Remark. To find an orthonormal basis for a subspace W, first find an orthogonal basis v_1, v_2, \ldots, v_p . Then replace each vector v_i by $u_i = \frac{1}{\|v_i\|} v_i$. The vectors u_1, u_2, \ldots, u_p will then be an orthonormal basis.

Example. Suppose
$$x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ and $x_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.

These vectors are linearly independent and so are a basis for the subspace $W = \mathbb{R}$ -span $\{x_1, x_2, x_3\}$.

To compute an orthogonal basis for W, we carry out the Gram-Schmit process as follows:

• We set
$$v_1 = x_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
. Then $v_2 = x_2 - \frac{x_2 \bullet v_1}{v_1 \bullet v_1} v_1 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} -3/4\\1/4\\1/4 \end{bmatrix}$.

• Finally let
$$v_3 = x_3 - \frac{x_3 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_3 \bullet v_2}{v_2 \bullet v_2} v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}.$$

The vectors
$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}$ are then an orthogonal basis for W .

5 Vocabulary

Keywords from today's lecture:

1. Orthonormal vectors.

Two vectors $u, v \in \mathbb{R}^n$ are *orthogonal* if $u \bullet v = 0$.

A set of vectors in \mathbb{R}^n is orthogonal if any two of the vectors are orthogonal.

A set of vectors in \mathbb{R}^n is *orthonormal* if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis e_1, e_2, \ldots, e_n of \mathbb{R}^n is orthonormal.

2. Orthogonal projection of a vector $y \in \mathbb{R}^n$ onto a subspace $W \subseteq \mathbb{R}^n$.

The unique vector $\operatorname{proj}_W(y) \in W$ such that $y - \operatorname{proj}_W(y)$ is orthogonal to every element of W.

If u_1, u_2, \ldots, u_p is an orthonormal basis for W then

$$\operatorname{proj}_W(y) = (y \bullet u_1)u_1 + (y \bullet u_2)u_2 + \dots + (y \bullet u_p)u_p.$$

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would be "orthonormal matrix," but this term is not commonly used.

Equivalently, a matrix U is orthogonal if and only if U is invertible and $U^{-1} = U^{T}$.

Example: every rotation matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.

4. Gram-Schmidt process.

A specific algorithm whose input is an arbitrary basis x_1, x_2, \ldots, x_p for a subspace of \mathbb{R}^n and whose output is an orthogonal basis v_1, v_2, \ldots, v_p for the same subspace. Explicitly:

$$\begin{split} v_1 &= x_1. \\ v_2 &= x_2 - \frac{x_2 \bullet v_1}{v_1 \bullet v_1} v_1. \\ v_3 &= x_3 - \frac{x_3 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_3 \bullet v_2}{v_2 \bullet v_2} v_2. \\ v_4 &= x_4 - \frac{x_4 \bullet v_1}{v_1 \bullet v_1} v_1 - \frac{x_4 \bullet v_2}{v_2 \bullet v_2} v_2 - \frac{x_4 \bullet v_3}{v_3 \bullet v_3} v_3. \\ &\vdots \\ v_p &= x_p - \frac{x_p \bullet v_1}{v_1 \bullet v_1} - \frac{x_p \bullet v_2}{v_2 \bullet v_2} - \dots - \frac{x_p \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1}. \end{split}$$