Summary

Quick summary of today's notes. Lecture starts on next page.

• A line of best fit through data points $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$ is an equation of the form

$$y = \beta_0 + \beta_1 x$$

where
$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \in \mathbb{R}^2$$
 is a least-squares solution to $Ax = b$ where $A = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots & \vdots \\ 1 & a_n \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$.

• A matrix A is *symmetric* if $A^T = A$. This can only hold if A is square. For example:

$$\left[\begin{array}{ccc} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7 \end{array}\right].$$

If A is symmetric then so is A^2 , A^3 , A^4 , etc.

If A is symmetric and invertible then so is A^{-1} , A^{-2} , A^{-3} , etc.

If A is symmetric and u and v are eigenvectors for A with different eigenvalues, then $u \bullet v = 0$.

• A list of vectors u_1, u_2, \ldots, u_p is *orthonormal* if $u_i \bullet u_i = 1$ and $u_i \bullet u_j = 0$ for all $i \neq j$.

A square matrix P is invertible with $P^{-1} = P^{T}$ if and only if its columns are orthonormal.

An $n \times n$ matrix A is orthogonally diagonalizable if there is a diagonal matrix D and an invertible matrix P with $P^{-1} = P^T$ such that $A = PDP^{-1}$.

• When we have such a decomposition $A = PDP^{-1}$ where D is diagonal and $P^{-1} = P^{T}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors for A.

Conversely, an $n \times n$ matrix A is orthogonally diagonalizable if and only if there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors for A.

• Surprising fact: all (complex) eigenvalues of a symmetric matrix $A = A^T$ belong to \mathbb{R} .

Surprising fact: an $n \times n$ matrix A is orthogonally diagonalizable if and only if $A = A^T$.

Much of this lecture is spent proving these facts.

• To orthogonally diagonalize a given $n \times n$ symmetric matrix A, you need to find an orthogonal basis of \mathbb{R}^n consisting of eigenvectors v_1, v_2, \ldots, v_n for A.

Once you find this, let
$$u_i = \frac{1}{\|v_i\|} v_i$$
 and $U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$.

Then $A = UDU^T$ where D is the diagonal matrix whose ith diagonal entry is the eigenvalue of v_i .

- To find the orthogonal basis of eigenvectors v_1, v_2, \ldots, v_n for A:
 - 1. Factor the characteristic polynomial of A to compute its eigenvalues.
 - 2. For each eigenvalue λ , do the usual row reduce procedure to find a basis for Nul $(A \lambda I)$.
 - 3. Apply the Gram-Schmidt process to convert your basis of $Nul(A \lambda I)$ to an orthogonal basis.
 - 4. Finally combine these orthogonal bases the combined list of vectors will still be orthogonal.

1 Last time: least-squares problems

Definition. Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^m$.

The linear system $A^TAx = A^Tb$ is always consistent, so has at least one solution.

A solution to $A^TAx = A^Tb$ is called a *least-squares solution* to the equation Ax = b.

Let $||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \ge 0$ for $v \in \mathbb{R}^n$. Recall that ||v|| = 0 if and only if v = 0.

Fact. A vector $s \in \mathbb{R}^n$ is a least-squares solution to Ax = b if and only if $||b - As|| \le ||b - Ax||$ for all x.

The linear system Ax = b is consistent if and only if ||b - Ax|| = 0 for some $x \in \mathbb{R}^n$.

This means that if Ax = b is consistent then all least-squares solutions s satisfy ||b - As|| = 0 so As = b. If Ax = b is inconsistent, there is still at least one least-squares solution s (but in this case ||b - As|| > 0).

Theorem. Let A be an $m \times n$ matrix. The following properties are equivalent:

- (a) Ax = b has a unique least-squares solution for each $b \in \mathbb{R}^m$.
- (b) The columns of A are linearly independent.
- (c) $A^T A$ is invertible.

Example (Lines of best fit). Suppose we have n data points $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$.

We want to find parameters $\beta_0, \beta_1 \in \mathbb{R}$ such that $y = \beta_0 + \beta_1 x$ describes the *line of best fit* for this data. If our points are all on the same line, then for some $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} \in \mathbb{R}^2$ we would have

$$b_i = \beta_0 + \beta_1 a_i$$
 for $i = 1, 2, \dots, n$,

meaning that $x=\left[\begin{array}{c}\beta_0\\\beta_1\end{array}\right]$ is an exact solution to the linear system Ax=b where

$$A = \begin{bmatrix} 1 & a_1 \\ 1 & a_2 \\ \vdots & \vdots \\ 1 & a_n \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

If the given points are not on the same line, then no exact solution to Ax = b exists, and we should instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2,1), (5,2), (7,3), and (8,3) so that

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

The least-squares solutions to Ax = b are the exact solutions to $A^TAx = A^Tb$. We have

$$A^T A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$$

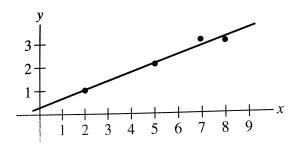
and

$$A^T b = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}.$$

The matrix A^TA is invertible. (Why?) It follows that a least-squares solution is provided by

$$\left[\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right] = (A^TA)^{-1}A^Tb = \left[\begin{array}{cc} 4 & 22 \\ 22 & 142 \end{array} \right]^{-1} \left[\begin{array}{c} 9 \\ 57 \end{array} \right] = \frac{1}{84} \left[\begin{array}{cc} 142 & -22 \\ -22 & 4 \end{array} \right] \left[\begin{array}{c} 9 \\ 57 \end{array} \right] = \left[\begin{array}{c} 2/7 \\ 5/14 \end{array} \right].$$

Thus our line of best fit for the data is $y = \frac{2}{7} + \frac{5}{14}x$:



2 Symmetric matrices

A matrix A is symmetric if $A^T = A$. This happens if A is square and $A_{ij} = A_{ji}$ for all i, j.

Example.
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7 \end{bmatrix}$ and $\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ are symmetric matrices.

$$\begin{bmatrix} 1 & -3 \\ 3 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & -4 & 0 \\ -6 & 1 & -4 \\ 6 & -6 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix} \text{ are not symmetric.}$$

Proposition. If A is a symmetric matrix and k is a positive integer then A^k is also symmetric.

Proof. If
$$A = A^T$$
 then $(A^k)^T = (AA \cdots A)^T = A^T \cdots A^T A^T = (A^T)^k = A^k$.

Proposition. If A is an invertible symmetric matrix then A^{-1} is also symmetric.

Proof. This is because
$$(A^{-1})^T = (A^T)^{-1}$$
.

Recall how we can diagonalize a matrix.

Example. Let
$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$
.

Then det(A - xI) = (8 - x)(6 - x)(3 - x) so the eigenvalues of A are 8, 6, and 3. By constructing bases for the null spaces of A - 8I, A - 5I, and A - 3I, we find that the following are eigenvectors of A:

$$v_1 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$$
 with eigenvalue 8.

$$v_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \end{bmatrix}$$
 with eigenvalue 6.
$$v_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 with eigenvalue 3.

These eigenvectors are actually an orthogonal basis for \mathbb{R}^3 .

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

$$u_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \qquad u_2 = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \qquad u_3 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}.$$

We then have $A = PDP^{-1}$ where

$$P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

(Why does this hold? It is enough to check that $PDP^{-1}v = Av$ for $v \in \{u_1, u_2, u_3\}$.)

Since the columns of P are orthonormal, we actually have $P^T = P^{-1}$ so $A = PDP^T$.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of A are orthogonal. In other words, if $A = A^T$ is $n \times n$ and $u, v \in \mathbb{R}^n$ are such that Au = au and Av = bv for numbers $a, b \in \mathbb{R}$ with $a \neq b$, then $u \bullet v = 0$.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where $a \neq b$.

Then
$$au \bullet v = Au \bullet v = (Au)^T v = u^T A^T v = u^T Av = u \bullet Av = u \bullet bv$$
.

But $au \bullet v = a(u \bullet v)$ and $u \bullet bv = b(u \bullet v)$, so this means $a(u \bullet v) = b(u \bullet v)$ and therefore $(a - b)(u \bullet v) = 0$.

Since
$$a - b \neq 0$$
, it follows that $u \bullet v = 0$.

Recall that a matrix P is *orthogonal* if P is invertible and $P^{-1} = P^{T}$.

Definition. A matrix A is *orthogonally diagonalizable* if there is an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1} = PDP^{T}$.

When A is orthogonally diagonalizable and $A = PDP^{-1} = PDP^{T}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors form an orthonormal basis of \mathbb{R}^{n} .

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an $n \times n$ matrix A is orthogonally diagonalizable if and only if there is an orthonormal basis for \mathbb{R}^n consisting of eigenvectors for A.

Surprisingly, there is a much more direct characterization of orthogonally diagonalizable matrices:

Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.

Proof. If X, Y, Z are $n \times n$ matrices then $(XYZ)^T = Z^T(XY)^T = Z^TY^TX^T$.

Suppose $A = PDP^T$ where D is diagonal. Then $D = D^T$ and $(P^T)^T = P$, so

$$A^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = PDP^{T} = A.$$

Lemma. All (complex) eigenvalues of an $n \times n$ symmetric matrix A with real entries belong to \mathbb{R} .

Proof. Suppose A is a symmetric $n \times n$ matrix with real entries, so that $A = A^T = \overline{A}$.

Let $v \in \mathbb{C}^n$. Then $\overline{v}^T A v$ is some complex number.

For example, if $A=\left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right]$ and $v=\left[\begin{array}{cc} 1+i \\ 1-i \end{array}\right]$ then

$$\overline{v}^T A v = \left[\begin{array}{cc} 1-i & 1+i \end{array} \right] \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] \left[\begin{array}{cc} 1+i \\ 1-i \end{array} \right] = \left[\begin{array}{cc} 3+i & 3-i \end{array} \right] \left[\begin{array}{cc} 1+i \\ 1-i \end{array} \right] = (3+i)(1+i) + (3-i)(1-i) = 4.$$

In fact, the number $\overline{v}^T A v$ belongs to \mathbb{R} since $\overline{v}^T A v = v^T A \overline{v} = (\overline{v}^T A v)^T = \overline{v}^T A v$.

(The last equality holds since both sides are 1×1 matrices, i.e., scalars.)

Now suppose $v \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\lambda \in \mathbb{C}$. Then $\overline{v}^T A v = \overline{v}^T (\lambda v) = \lambda(\overline{v}^T v) \in \mathbb{R}$. The complex number $\overline{v}^T v$ always belongs to \mathbb{R} (why?) so it must also hold that $\lambda \in \mathbb{R}$.

Lemma. An $n \times n$ matrix A with all real eigenvalues can be written as $A = URU^T$ where U is an $n \times n$ orthogonal matrix (i.e., has orthonormal columns) and R is an $n \times n$ upper-triangular matrix.

One calls $A = URU^T$ with U and R of this form a Schur factorization of A.

Proof. Suppose A is an $n \times n$ matrix with all real eigenvalues.

Let $u_1 \in \mathbb{R}^n$ be a unit eigenvector for A with eigenvalue $\lambda \in \mathbb{R}$.

Let $u_2, \ldots, u_n \in \mathbb{R}^n$ be any vectors such that u_1, u_2, \ldots, u_n is an orthonormal basis for \mathbb{R}^n .

(One way to construct these vectors: let $u_1 = x_1, x_2, ..., x_n$ be any basis, apply the Gram-Schmidt process to get $u_1 = v_1, v_2, ..., v_n$, and then convert each v_i to a unit vector.)

Define $U = [\begin{array}{cccc} u_1 & u_2 & \dots & u_n \end{array}]$ so that $U^T = U^{-1}$.

By considering the product U^TAUe_i for $i=1,2,\ldots,n$, one finds that U^TAU has the form

$$U^T A U = \left[\begin{array}{cc} \lambda & * \\ 0 & B \end{array} \right]$$

for some $(n-1) \times (n-1)$ matrix B. Here, * stands for n-1 arbitrary entries.

The matrix $U^TAU = U^{-1}AU$ has the same characteristic polynomial as A.

This polynomial is just $(\lambda - x) \det(B - xI)$, which is $\lambda - x$ times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue $\mu \in \mathbb{R}$ for B, an $(n-1) \times (n-1)$ orthogonal matrix V, and an $(n-2) \times (n-2)$ matrix C with all real eigenvalues such that

$$V^T B V = \left[\begin{array}{cc} \mu & * \\ 0 & C \end{array} \right].$$

The matrix $\begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$ is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)

It follows for the orthogonal matrix $W = U \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix}$ that $W^TAW = \begin{bmatrix} \lambda & * & * \\ 0 & \mu & * \\ 0 & 0 & C \end{bmatrix}$.

By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular matrix R such that $X^TAX = R$, in which case $A = XX^TAXX^T = XRX^T$.

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.

Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factorization $A = URU^T$. We then have $A^T = (URU^T)^T = UR^TU^T$ but also $A^T = A = URU^T$.

Since $U^T = U^{-1}$, it follows that $R = R^T$. Since R is upper-triangular, this can only hold if R is diagonal.

But if R is diagonal then $A = URU^T$ is orthogonally diagonalizable.

To orthogonally diagonalize an $n \times n$ symmetric matrix A, we just need to find an orthogonal basis of eigenvectors v_1, v_2, \ldots, v_n for \mathbb{R}^n . Then $A = UDU^T$ with $U = \begin{bmatrix} u_1 & u_2 & \ldots & u_n \end{bmatrix}$ where $u_i = \frac{1}{\|v_i\|}v_i$ and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

Corollary. If $A = UDU^T$ where $U = [\begin{array}{cccc} u_1 & u_2 & \dots & u_n \end{array}]$ has orthonormal columns and

$$D = \left[\begin{array}{ccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{array} \right]$$

is diagonal, then $A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T$.

Each product $u_i u_i^T$ is an $n \times n$ matrix of rank 1. One calls this expression a spectral decomposition of A.

Example. Let $A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$. A spectral decomposition of A is given by

$$A = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 8 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= 8 \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 3 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= \begin{bmatrix} 32/5 & 16/5 \\ 16/5 & 8/5 \end{bmatrix} + \begin{bmatrix} 3/5 & -6/5 \\ -6/5 & 12/5 \end{bmatrix}.$$

3 Vocabulary

Keywords from today's lecture:

1. Symmetric matrix.

A matrix A that is equal to its transpose, so that $A = A^T$. Such a matrix is square.

Symmetric matrices are precisely the square matrices A that are **orthogonally diagonalizable**, in other words, the matrices that can be expressed as

$$A = PDP^T$$

where D is a diagonal matrix and P is an invertible matrix with $P^{-1} = P^{T}$.

Example:
$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 or any diagonal matrix.

2. Schur factorization of an $n \times n$ matrix A.

A decomposition $A = URU^T$ where R is an $n \times n$ upper triangular matrix and U is an orthogonal matrix (i.e., U is invertible with $U^{-1} = U^T$).