Summary

Quick summary of today's notes. Lecture starts on next page.

- A line of best fit through data points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$ is an equation of the form

$$
y=\beta_{0}+\beta_{1} x
$$

where $\left[\begin{array}{c}\beta_{0} \\ \beta_{1}\end{array}\right] \in \mathbb{R}^{2}$ is a least-squares solution to $A x=b$ where $A=\left[\begin{array}{rr}1 & a_{1} \\ 1 & a_{2} \\ \vdots & \vdots \\ 1 & a_{n}\end{array}\right]$ and $b=\left[\begin{array}{r}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$.

- A matrix A is symmetric if $A^{T}=A$. This can only hold if A is square. For example:

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & 8 \\
0 & 8 & -7
\end{array}\right]
$$

If A is symmetric then so is A^{2}, A^{3}, A^{4}, etc.
If A is symmetric and invertible then so is A^{-1}, A^{-2}, A^{-3}, etc.
If A is symmetric and u and v are eigenvectors for A with different eigenvalues, then $u \bullet v=0$.

- A list of vectors $u_{1}, u_{2}, \ldots, u_{p}$ is orthonormal if $u_{i} \bullet u_{i}=1$ and $u_{i} \bullet u_{j}=0$ for all $i \neq j$.

A square matrix P is invertible with $P^{-1}=P^{T}$ if and only if its columns are orthonormal.
An $n \times n$ matrix A is orthogonally diagonalizable if there is a diagonal matrix D and an invertible matrix P with $P^{-1}=P^{T}$ such that $A=P D P^{-1}$.

- When we have such a decomposition $A=P D P^{-1}$ where D is diagonal and $P^{-1}=P^{T}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors for A.

Conversely, an $n \times n$ matrix A is orthogonally diagonalizable if and only if there exists an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors for A.

- Surprising fact: all (complex) eigenvalues of a symmetric matrix $A=A^{T}$ belong to \mathbb{R}.

Surprising fact: an $n \times n$ matrix A is orthogonally diagonalizable if and only if $A=A^{T}$.
Much of this lecture is spent proving these facts.

- To orthogonally diagonalize a given $n \times n$ symmetric matrix A, you need to find an orthogonal basis of \mathbb{R}^{n} consisting of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ for A.
Once you find this, let $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$ and $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$.
Then $A=U D U^{T}$ where D is the diagonal matrix whose i th diagonal entry is the eigenvalue of v_{i}.
- To find the orthogonal basis of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ for A :

1. Factor the characteristic polynomial of A to compute its eigenvalues.
2. For each eigenvalue λ, do the usual row reduce procedure to find a basis for $\operatorname{Nul}(A-\lambda I)$.
3. Apply the Gram-Schmidt process to convert your basis of $\operatorname{Nul}(A-\lambda I)$ to an orthogonal basis.
4. Finally combine these orthogonal bases - the combined list of vectors will still be orthogonal.

1 Last time: least-squares problems

Definition. Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$.
The linear system $A^{T} A x=A^{T} b$ is always consistent, so has at least one solution.
A solution to $A^{T} A x=A^{T} b$ is called a least-squares solution to the equation $A x=b$.

Let $\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}} \geq 0$ for $v \in \mathbb{R}^{n}$. Recall that $\|v\|=0$ if and only if $v=0$.
Fact. A vector $s \in \mathbb{R}^{n}$ is a least-squares solution to $A x=b$ if and only if $\|b-A s\| \leq\|b-A x\|$ for all x.
The linear system $A x=b$ is consistent if and only if $\|b-A x\|=0$ for some $x \in \mathbb{R}^{n}$.
This means that if $A x=b$ is consistent then all least-squares solutions s satisfy $\|b-A s\|=0$ so $A s=b$.
If $A x=b$ is inconsistent, there is still at least one least-squares solution s (but in this case $\|b-A s\|>0$).
Theorem. Let A be an $m \times n$ matrix. The following properties are equivalent:
(a) $A x=b$ has a unique least-squares solution for each $b \in \mathbb{R}^{m}$.
(b) The columns of A are linearly independent.
(c) $A^{T} A$ is invertible.

Example (Lines of best fit). Suppose we have n data points $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)$.
We want to find parameters $\beta_{0}, \beta_{1} \in \mathbb{R}$ such that $y=\beta_{0}+\beta_{1} x$ describes the line of best fit for this data. If our points are all on the same line, then for some $\left[\begin{array}{c}\beta_{0} \\ \beta_{1}\end{array}\right] \in \mathbb{R}^{2}$ we would have

$$
b_{i}=\beta_{0}+\beta_{1} a_{i} \quad \text { for } i=1,2, \ldots, n
$$

meaning that $x=\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]$ is an exact solution to the linear system $A x=b$ where

$$
A=\left[\begin{array}{cc}
1 & a_{1} \\
1 & a_{2} \\
\vdots & \vdots \\
1 & a_{n}
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{r}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

If the given points are not on the same line, then no exact solution to $A x=b$ exists, and we should instead try to find a least-squares solution to this linear system.
To be concrete, suppose we have four points $(2,1),(5,2),(7,3)$, and $(8,3)$ so that

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

The least-squares solutions to $A x=b$ are the exact solutions to $A^{T} A x=A^{T} b$. We have

$$
A^{T} A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]=\left[\begin{array}{rr}
4 & 22 \\
22 & 142
\end{array}\right]
$$

and

$$
A^{T} b=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{r}
9 \\
57
\end{array}\right]
$$

The matrix $A^{T} A$ is invertible. (Why?) It follows that a least-squares solution is provided by

$$
\left[\begin{array}{c}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} b=\left[\begin{array}{rr}
4 & 22 \\
22 & 142
\end{array}\right]^{-1}\left[\begin{array}{r}
9 \\
57
\end{array}\right]=\frac{1}{84}\left[\begin{array}{rr}
142 & -22 \\
-22 & 4
\end{array}\right]\left[\begin{array}{r}
9 \\
57
\end{array}\right]=\left[\begin{array}{r}
2 / 7 \\
5 / 14
\end{array}\right]
$$

Thus our line of best fit for the data is $y=\frac{2}{7}+\frac{5}{14} x$:

2 Symmetric matrices

A matrix A is symmetric if $A^{T}=A$. This happens if A is square and $A_{i j}=A_{j i}$ for all i, j.
Example. $\left[\begin{array}{rr}1 & 0 \\ 0 & -3\end{array}\right]$ and $\left[\begin{array}{rrr}0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7\end{array}\right]$ and $\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$ are symmetric matrices.
$\left[\begin{array}{rr}1 & -3 \\ 3 & 0\end{array}\right]$ and $\left[\begin{array}{rrr}1 & -4 & 0 \\ -6 & 1 & -4 \\ 6 & -6 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 5\end{array}\right]$ are not symmetric.

Proposition. If A is a symmetric matrix and k is a positive integer then A^{k} is also symmetric.
Proof. If $A=A^{T}$ then $\left(A^{k}\right)^{T}=(A A \cdots A)^{T}=A^{T} \cdots A^{T} A^{T}=\left(A^{T}\right)^{k}=A^{k}$.

Proposition. If A is an invertible symmetric matrix then A^{-1} is also symmetric.
Proof. This is because $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$.
Recall how we can diagonalize a matrix.
Example. Let $A=\left[\begin{array}{rrr}6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5\end{array}\right]$.
Then $\operatorname{det}(A-x I)=(8-x)(6-x)(3-x)$ so the eigenvalues of A are 8,6 , and 3 . By constructing bases for the null spaces of $A-8 I, A-5 I$, and $A-3 I$, we find that the following are eigenvectors of A :

$$
v_{1}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \text { with eigenvalue } 8
$$

$v_{2}=\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right]$ with eigenvalue 6.
$v_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ with eigenvalue 3.
These eigenvectors are actually an orthogonal basis for \mathbb{R}^{3}.
Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

$$
u_{1}=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{r}
-1 / \sqrt{6} \\
-1 / \sqrt{6} \\
2 / \sqrt{6}
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right] .
$$

We then have $A=P D P^{-1}$ where

$$
P=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ccc}
8 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(Why does this hold? It is enough to check that $P D P^{-1} v=A v$ for $v \in\left\{u_{1}, u_{2}, u_{3}\right\}$.)
Since the columns of P are orthonormal, we actually have $P^{T}=P^{-1}$ so $A=P D P^{T}$.
The special properties in this example will turn out to hold for all symmetric matrices.
Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of A are orthogonal. In other words, if $A=A^{T}$ is $n \times n$ and $u, v \in \mathbb{R}^{n}$ are such that $A u=a u$ and $A v=b v$ for numbers $a, b \in \mathbb{R}$ with $a \neq b$, then $u \bullet v=0$.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where $a \neq b$.
Then $a u \bullet v=A u \bullet v=(A u)^{T} v=u^{T} A^{T} v=u^{T} A v=u \bullet A v=u \bullet b v$.
But $a u \bullet v=a(u \bullet v)$ and $u \bullet b v=b(u \bullet v)$, so this means $a(u \bullet v)=b(u \bullet v)$ and therefore $(a-b)(u \bullet v)=0$. Since $a-b \neq 0$, it follows that $u \bullet v=0$.

Recall that a matrix P is orthogonal if P is invertible and $P^{-1}=P^{T}$.
Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{-1}=P D P^{T}$.

When A is orthogonally diagonalizable and $A=P D P^{-1}=P D P^{T}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors form an orthonormal basis of \mathbb{R}^{n}.

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an $n \times n$ $\operatorname{matrix} A$ is orthogonally diagonalizable if and only if there is an orthonormal basis for \mathbb{R}^{n} consisting of eigenvectors for A.
Surprisingly, there is a much more direct characterization of orthogonally diagonalizable matrices:
Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.
We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.

Proof. If X, Y, Z are $n \times n$ matrices then $(X Y Z)^{T}=Z^{T}(X Y)^{T}=Z^{T} Y^{T} X^{T}$. Suppose $A=P D P^{T}$ where D is diagonal. Then $D=D^{T}$ and $\left(P^{T}\right)^{T}=P$, so

$$
A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A
$$

Lemma. All (complex) eigenvalues of an $n \times n$ symmetric matrix A with real entries belong to \mathbb{R}.
Proof. Suppose A is a symmetric $n \times n$ matrix with real entries, so that $A=A^{T}=\bar{A}$.
Let $v \in \mathbb{C}^{n}$. Then $\bar{v}^{T} A v$ is some complex number.
For example, if $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ and $v=\left[\begin{array}{l}1+i \\ 1-i\end{array}\right]$ then
$\bar{v}^{T} A v=\left[\begin{array}{ll}1-i & 1+i\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1+i \\ 1-i\end{array}\right]=\left[\begin{array}{ll}3+i & 3-i\end{array}\right]\left[\begin{array}{l}1+i \\ 1-i\end{array}\right]=(3+i)(1+i)+(3-i)(1-i)=4$.
In fact, the number $\bar{v}^{T} A v$ belongs to \mathbb{R} since $\overline{\bar{v}^{T} A v}=v^{T} A \bar{v}=\left(\bar{v}^{T} A v\right)^{T}=\bar{v}^{T} A v$.
(The last equality holds since both sides are 1×1 matrices, i.e., scalars.)
Now suppose $v \in \mathbb{C}^{n}$ is an eigenvector for A with eigenvalue $\lambda \in \mathbb{C}$. Then $\bar{v}^{T} A v=\bar{v}^{T}(\lambda v)=\lambda\left(\bar{v}^{T} v\right) \in \mathbb{R}$. The complex number $\bar{v}^{T} v$ always belongs to \mathbb{R} (why?) so it must also hold that $\lambda \in \mathbb{R}$.

Lemma. An $n \times n$ matrix A with all real eigenvalues can be written as $A=U R U^{T}$ where U is an $n \times n$ orthogonal matrix (i.e., has orthonormal columns) and R is an $n \times n$ upper-triangular matrix.
One calls $A=U R U^{T}$ with U and R of this form a Schur factorization of A.
Proof. Suppose A is an $n \times n$ matrix with all real eigenvalues.
Let $u_{1} \in \mathbb{R}^{n}$ be a unit eigenvector for A with eigenvalue $\lambda \in \mathbb{R}$.
Let $u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}$ be any vectors such that $u_{1}, u_{2}, \ldots, u_{n}$ is an orthonormal basis for \mathbb{R}^{n}.
(One way to construct these vectors: let $u_{1}=x_{1}, x_{2}, \ldots, x_{n}$ be any basis, apply the Gram-Schmidt process to get $u_{1}=v_{1}, v_{2}, \ldots, v_{n}$, and then convert each v_{i} to a unit vector.)

Define $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ so that $U^{T}=U^{-1}$.
By considering the product $U^{T} A U e_{i}$ for $i=1,2, \ldots, n$, one finds that $U^{T} A U$ has the form

$$
U^{T} A U=\left[\begin{array}{cc}
\lambda & * \\
0 & B
\end{array}\right]
$$

for some $(n-1) \times(n-1)$ matrix B. Here, $*$ stands for $n-1$ arbitrary entries.
The matrix $U^{T} A U=U^{-1} A U$ has the same characteristic polynomial as A.
This polynomial is just $(\lambda-x) \operatorname{det}(B-x I)$, which is $\lambda-x$ times the characteristic polynomial of B.
Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue $\mu \in \mathbb{R}$ for B, an $(n-1) \times(n-1)$ orthogonal matrix V, and an $(n-2) \times(n-2)$ matrix C with all real eigenvalues such that

$$
V^{T} B V=\left[\begin{array}{rr}
\mu & * \\
0 & C
\end{array}\right]
$$

The matrix $\left[\begin{array}{rr}1 & 0 \\ 0 & V\end{array}\right]$ is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)
It follows for the orthogonal matrix $W=U\left[\begin{array}{cc}1 & 0 \\ 0 & V\end{array}\right]$ that $W^{T} A W=\left[\begin{array}{ccc}\lambda & * & * \\ 0 & \mu & * \\ 0 & 0 & C\end{array}\right]$.
By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular matrix R such that $X^{T} A X=R$, in which case $A=X X^{T} A X X^{T}=X R X^{T}$.

Now we can prove the theorem.
Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.
Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factorization $A=U R U^{T}$. We then have $A^{T}=\left(U R U^{T}\right)^{T}=U R^{T} U^{T}$ but also $A^{T}=A=U R U^{T}$.
Since $U^{T}=U^{-1}$, it follows that $R=R^{T}$. Since R is upper-triangular, this can only hold if R is diagonal. But if R is diagonal then $A=U R U^{T}$ is orthogonally diagonalizable.

To orthogonally diagonalize an $n \times n$ symmetric matrix A, we just need to find an orthogonal basis of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ for \mathbb{R}^{n}. Then $A=U D U^{T}$ with $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ where $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$ and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

Corollary. If $A=U D U^{T}$ where $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ has orthonormal columns and

$$
D=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

is diagonal, then $A=\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\cdots+\lambda_{n} u_{n} u_{n}^{T}$.
Each product $u_{i} u_{i}^{T}$ is an $n \times n$ matrix of rank 1 . One calls this expression a spectral decomposition of A.
Example. Let $A=\left[\begin{array}{ll}7 & 2 \\ 2 & 4\end{array}\right]$. A spectral decomposition of A is given by

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
2 / \sqrt{5} & -1 / \sqrt{5} \\
1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right]\left[\begin{array}{ll}
8 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
2 / \sqrt{5} & 1 / \sqrt{5} \\
-1 / \sqrt{5} & 2 / \sqrt{5}
\end{array}\right] \\
&=8\left[\begin{array}{r}
2 / \sqrt{5} \\
1 / \sqrt{5}
\end{array}\right][2 / \sqrt{5} \\
&1 / \sqrt{5}]+3\left[\begin{array}{r}
-1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]\left[\begin{array}{lr}
-1 / \sqrt{5} & 2 / \sqrt{5}]
\end{array}\right. \\
&=\left[\begin{array}{rr}
32 / 5 & 16 / 5 \\
16 / 5 & 8 / 5
\end{array}\right]+\left[\begin{array}{rr}
3 / 5 & -6 / 5 \\
-6 / 5 & 12 / 5
\end{array}\right] .
\end{aligned}
$$

3 Vocabulary

Keywords from today's lecture:

1. Symmetric matrix.

A matrix A that is equal to its transpose, so that $A=A^{T}$. Such a matrix is square.
Symmetric matrices are precisely the square matrices A that are orthogonally diagonalizable, in other words, the matrices that can be expressed as

$$
A=P D P^{T}
$$

where D is a diagonal matrix and P is an invertible matrix with $P^{-1}=P^{T}$.
Example: $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ or any diagonal matrix.
2. Schur factorization of an $n \times n$ matrix A.

A decomposition $A=U R U^{T}$ where R is an $n \times n$ upper triangular matrix and U is an orthogonal matrix (i.e., U is invertible with $U^{-1}=U^{T}$).

