MIDTERM SOLUTIONS - MATH 2121, FALL 2021.

Problem 1. (10 points)
Suppose A is a 2×3 matrix whose columns span \mathbb{R}^{2}.
(a) Describe all matrices that could occur as the reduced echelon form of A. Be as specific as possible.
(b) Suppose further that $A\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ for some $a, b, c \in \mathbb{R}$ with $c \neq 0$. Describe all matrices that could occur as the reduced echelon form of A.

Solution:

(a) The columns of A span \mathbb{R}^{2} so A must have pivot positions in every row. Therefore the possibilities for the reduced echelon form of A are
$\left[\begin{array}{lll}1 & 0 & u \\ 0 & 1 & v\end{array}\right], \quad\left[\begin{array}{lll}1 & u & 0 \\ 0 & 0 & 1\end{array}\right], \quad$ or $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
where $u, v \in \mathbb{R}$ are arbitrary real numbers.
(b) The linear systems $A x=0$ and $\operatorname{RREF}(A) x=0$ have the same solutions because their augmented matrices are row equivalent. Therefore

$$
\operatorname{RREF}(A)\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\operatorname{If} \operatorname{RREF}(A)=\left[\begin{array}{ccc}1 & 0 & u \\ 0 & 1 & v\end{array}\right]$ then

$$
\operatorname{RREF}(A)\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a+u c \\
b+v c
\end{array}\right]
$$

which is the zero vector if and only if $u=-a / c$ and $v=-b / c$.
If $\operatorname{RREF}(A)$ is $\left[\begin{array}{lll}1 & u & 0 \\ 0 & 0 & 1\end{array}\right]$ or $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ then $\operatorname{RREF}(A)\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ is nonzero
since its second entry is $c \neq 0$, $\operatorname{so} \operatorname{RREF}(A)$ cannot have this form.
Therefore we must have $\operatorname{RREF}(A)=\left[\begin{array}{ccc}1 & 0 & -a / c \\ 0 & 1 & -b / c\end{array}\right]$.

Problem 2. (15 points)
Suppose a and b are real numbers. Consider the lines

$$
L_{1}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: y=a x\right\} \quad \text { and } \quad L_{2}=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{R}^{2}: y=b x\right\}
$$

(a) When is it impossible to express the vector $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ as a sum of two vectors, one on the line L_{1} and one on the line L_{2} ?
(b) When is there more than one way of expressing the vector $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ as a sum of two vectors, one on the line L_{1} and one on the line L_{2} ?
(c) When is there exactly one way of writing

$$
\left[\begin{array}{l}
5 \\
6
\end{array}\right]=v+w
$$

with $v \in L_{1}$ and $w \in L_{2}$? Find a formula for v and w in this case.

Solution:

(a) This happens if and only if $L_{1}=L_{2}$ are the same line and $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ is not on this line. In other words, when $a=b \neq \frac{6}{5}$.
(b) This happens if and only if $L_{1}=L_{2}$ are the same line and $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ is on this line. In other words, when $a=b=\frac{6}{5}$.
(c) This happens when L_{1} and L_{2} are distinct lines, that is, when $a \neq b$.

Expressing $\left[\begin{array}{l}5 \\ 6\end{array}\right]=v+w$ where $v \in L_{1}$ and $w \in L_{2}$ means finding numbers $x_{1}, x_{2} \in \mathbb{R}$ such that $\left[\begin{array}{r}x_{1} \\ a x_{1}\end{array}\right]+\left[\begin{array}{r}x_{2} \\ b x_{2}\end{array}\right]=\left[\begin{array}{l}5 \\ 6\end{array}\right]$.

We can rewrite this as the matrix equation

$$
\left[\begin{array}{ll}
1 & 1 \tag{}\\
a & b
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

which we solve by row reducing the augmented matrix
$\left[\begin{array}{lll}1 & 1 & 5 \\ a & b & 6\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 5 \\ 0 & b-a & 6-5 a\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 1 & 5 \\ 0 & 1 & \frac{6-5 a}{b-a}\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & 5-\frac{6-5 a}{b-a} \\ 0 & 1 & \frac{6-5 a}{b-a}\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & \frac{5 b-6}{b-a} \\ 0 & 1 & \frac{6-5 a}{b-a}\end{array}\right]$.
Thus the unique solution to $\left(^{*}\right)$ has $x_{1}=\frac{5 b-6}{b-a}$ and $x_{2}=\frac{6-5 a}{b-a}$ which gives

$$
v=\frac{5 b-6}{b-a}\left[\begin{array}{l}
1 \\
a
\end{array}\right] \quad \text { and } \quad w=\frac{6-5 a}{b-a}\left[\begin{array}{l}
1 \\
b
\end{array}\right]
$$

Problem 3. (10 points)
(a) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that rotates a vector counterclockwise by 45 degrees and then doubles its length. Find the standard matrix of T, that is, the matrix A such that $T(v)=A v$ for all $v \in \mathbb{R}^{2}$.
(b) Let M be a 2×2 rotation matrix not equal to the identity matrix.

Suppose $M^{-1}=M^{5}$ and $v=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
How many different vectors could be in the set

$$
S=\left\{v, M v, M^{2} v, M^{3} v, M^{4} v, M^{5} v\right\} ?
$$

For each possibility, draw a picture representing the vectors in S and compute the sum $v+M v+M^{2} v+M^{3} v+M^{4} v+M^{5} v$.

Solution:

(a) The standard basis vector $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ rotated CCW by 45 degrees is $\left[\begin{array}{c}\sqrt{2} / 2 \\ \sqrt{2} / 2\end{array}\right]$.

The standard basis vector $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ rotated CCW by 45 degrees is $\left[\begin{array}{r}-\sqrt{2} / 2 \\ \sqrt{2} / 2\end{array}\right]$.
Doubling the length of these vectors gives $\left[\begin{array}{l}\sqrt{2} \\ \sqrt{2}\end{array}\right]$ and $\left[\begin{array}{r}-\sqrt{2} \\ \sqrt{2}\end{array}\right]$ which are the columns of the desired standard matrix

$$
A=\left[\begin{array}{rr}
\sqrt{2} & -\sqrt{2} \\
\sqrt{2} & \sqrt{2}
\end{array}\right] .
$$

(b) Since $M^{-1}=M^{5}$, the matrix M^{6} is the identity matrix. Thus if M rotates all vectors CCW by angle θ, then 6θ must be a multiple of 360 degrees. The angle θ cannot be zero since M is not the identity matrix. It follows that θ is either 60,120 , or 180 degrees, so the set S has either 2,3 , or 6 elements.

If θ is 60 degrees then S consists of the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and fives copies of this vector rotated by $60,120,180,240$, and 300 degrees CCW.

If θ is 120 degrees then S consists of the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and two copies of this vector rotated by 120 and 240 degrees CCW.
If θ is 180 degrees then S consists of just $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}-1 \\ -2\end{array}\right]$.
If $w=v+M v+M^{2} v+M^{3} v+M^{4} v+M^{5} v$ then $M w=M v+M^{2} v+$ $M^{3} v+M^{4} v+M^{5} v+v=w$. But M rotates w by a nonzero angle, so it is only possible to have $M w=w$ if $w=0$.

Problem 4. (5 points)
Find the value(s) of $h \in \mathbb{R}$ for which the following vectors are linearly dependent:

$$
\left[\begin{array}{r}
1 \\
-3 \\
4
\end{array}\right], \quad\left[\begin{array}{r}
-6 \\
8 \\
7
\end{array}\right], \quad\left[\begin{array}{r}
4 \\
-2 \\
h
\end{array}\right]
$$

Solution:

The given vectors are linearly dependent if and only if the matrix

$$
\left[\begin{array}{rrr}
1 & -6 & 4 \\
-3 & 8 & -2 \\
4 & 7 & h
\end{array}\right]
$$

has fewer than three pivot columns. Row reducing this matrix gives
$\left[\begin{array}{rrr}1 & -6 & 4 \\ -3 & 8 & -2 \\ 4 & 7 & h\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & -6 & 4 \\ 0 & -10 & 10 \\ 4 & 7 & h\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & -6 & 4 \\ 0 & 1 & -1 \\ 4 & 7 & h\end{array}\right] \rightarrow\left[\begin{array}{rrr}1 & 0 & -2 \\ 0 & 1 & -1 \\ 4 & 0 & h+7\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & h+15\end{array}\right]$.
Thus there are fewer than three pivot columns if and only if $h=-15$.

Problem 5. (15 points)
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
Suppose H is a k-dimensional subspace of \mathbb{R}^{n}. Define the set

$$
T(H)=\{T(v): v \in H\}
$$

(a) Explain why $T(H)$ is a subspace of \mathbb{R}^{m}.
(b) If T is onto, then what are the possibilities for $\operatorname{dim} T(H)$?

Justify your answer, which should be in terms of k, m, and n.
(c) If T is one-to-one, then what are the possibilities for $\operatorname{dim} T(H)$? Justify your answer, which should be in terms of k, m, and n.

Solution:

(a) Let A be the standard matrix of T and let B be a $n \times k$ matrix whose columns are a basis for H. Then $H=\operatorname{Col} B$ and $T(H)=\operatorname{Col}(A B)$. This is a subspace since column spaces are subspaces.
(b) Suppose $u_{1}, \ldots, u_{j}, v_{1}, \ldots, v_{k-j}$ is a basis for H where each $T\left(u_{1}\right)=\cdots=$ $T\left(u_{j}\right)=0$, and j is as large as possible. Then $T\left(v_{1}\right), \ldots, T\left(v_{k-j}\right)$ are linearly independent since if $c_{1} T\left(v_{1}\right)+\cdots+c_{k-j} T\left(v_{k-j}\right)=0$ then $T\left(c_{1} v_{1}+\right.$ $\left.\cdots+c_{k-j} v_{k-j}\right)=0$ which can only happen if $c_{1}=\cdots=c_{k-j}=0$ as otherwise we could set $u_{j+1}=c_{1} v_{1}+\cdots+c_{k-j} v_{k-j}$.

Since $T(H)$ is spanned by $T\left(v_{1}\right), \ldots, T\left(v_{k-j}\right)$, we have $\operatorname{dim} T(H)=k-j$. This is at most k, and also at most m since $T(H) \subseteq \mathbb{R}^{m}$.

The value of j is at most $\operatorname{dim}\left\{v \in \mathbb{R}^{n}: T(v)=0\right\}=\operatorname{dim} \operatorname{Nul} A=n-\operatorname{rank} A$ and also at most k. If T is onto then rank $A=m \leq n$ so $j \leq \min \{n-m, k\}$ and therefore $\max \{k-(n-m), 0\} \leq \operatorname{dim} T(H) \leq \min \{k, m\}$.
(c) If T is one-to-one then $k \leq n \leq m$ and $T(v) \neq 0$ if $v \neq 0$, so we must have $j=0$ and $\operatorname{dim} T(H)=k$.

Problem 6. (10 points) Suppose $A=\left[\begin{array}{llllll}u & v & w & x & y & z\end{array}\right]$ is a 4×6 matrix with columns $u, v, w, x, y, z \in \mathbb{R}^{4}$. The reduced echelon form of A is

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrrrr}
0 & 1 & 0 & 3 & 0 & -2 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(a) We have $A x=0$ if and only if $\operatorname{RREF}(A) x=0$, which holds if and only if

$$
\left\{\begin{array}{l}
x_{2}+3 x_{4}-2 x_{6}=0 \\
x_{3}-x_{4}=0 \\
x_{5}+x_{6}=0
\end{array}\right.
$$

In other words any $x \in \operatorname{Nul} A$ must have the form

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{r}
x_{1} \\
-3 x_{4}+2 x_{6} \\
x_{4} \\
x_{4} \\
-x_{6} \\
x_{6}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
0 \\
-3 \\
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{r}
0 \\
2 \\
0 \\
0 \\
-1 \\
1
\end{array}\right]
$$

This means that a basis for $\operatorname{Nul} A$ is
$\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -3 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 2 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]\right\}$.
(b) A basis for $\operatorname{Col} A$ is given by the pivot columns in A, which are $\{v, w, y\}$.

Problem 7. (15 points)
Let $n \geq 2$ be a positive integer. Suppose A is the $n \times n$ matrix with 0 's on the main diagonal and 1's everywhere else. For example, if $n=4$ then we would have

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

Let I be the $n \times n$ identity matrix.
(a) Find numbers b and c such that $A^{2}=b I+c A$. (These will depend on n.)
(b) Compute a formula for the inverse of A. Be as specific as possible.
(c) Compute a formula for $\operatorname{det}(A)$.

Solution:

(a) Multiplying row i by column i of A results in a sum of n numbers, one of which is zero and the rest of which are one. Multiplying row i by column j of A when $i \neq j$ results in a sum of n numbers, two of which are zero and the rest of which are one. Therefore A^{2} has $n-1$ in all diagonal positions and $n-2$ in all other positions, meaning that $A^{2}=(n-1) I+(n-2) A$ so

$$
b=n-1 \text { and } c=n-2 \text {. }
$$

(b) By part (a) we have $A(A+(2-n) I)=A^{2}+(2-n) A=(n-1) I$ so

$$
A\left(\frac{1}{n-1} A+\frac{2-n}{n-1} I\right)=I
$$

Since A is square this means that $A^{-1}=\frac{1}{n-1} A+\frac{2-n}{n-1} I$.
(c) Replace the first row of A by the sum of all of its rows. This gives a row equivalent matrix with the same determinant whose first row is

$$
\left[\begin{array}{llll}
n-1 & n-1 & \ldots & n-1
\end{array}\right]
$$

and whose other rows are the same as in A. Next subtract $\frac{1}{n-1}$ times the new first row from all other rows. This gives another matrix which is row equivalent to A with the same determinant. This new matrix looks like

$$
\left[\begin{array}{rrrrr}
n-1 & n-1 & n-1 & \cdots & n-1 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{array}\right] .
$$

The matrix has $n-1$ in all entries in the first row, -1 in all diagonal entries after the first row, and zero in all other entries. It is triangular so its determinant is the product of its diagonal entries. This product is

$$
(n-1)(-1)^{n-1}=\operatorname{det} A \text {. }
$$

