MIDTERM SOLUTIONS - MATH 2121, FALL 2021.

Problem 1. (10 points)

Suppose *A* is a 2×3 matrix whose columns span \mathbb{R}^2 .

- (a) Describe all matrices that could occur as the reduced echelon form of *A*. Be as specific as possible.
- (b) Suppose further that $A\begin{bmatrix} a\\b\\c\end{bmatrix} = \begin{bmatrix} 0\\0\end{bmatrix}$ for some $a, b, c \in \mathbb{R}$ with $c \neq 0$.

Describe all matrices that could occur as the reduced echelon form of A.

Solution:

(a) The columns of A span \mathbb{R}^2 so A must have pivot positions in every row. Therefore the possibilities for the reduced echelon form of A are

$\begin{bmatrix} 1 & 0 & u \\ 0 & 1 & v \end{bmatrix}, \begin{bmatrix} 1 & u & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ or } \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	Ň
--	---

where $u, v \in \mathbb{R}$ are arbitrary real numbers.

(b) The linear systems Ax = 0 and $\mathsf{RREF}(A)x = 0$ have the same solutions because their augmented matrices are row equivalent. Therefore

$$\mathsf{RREF}(A) \left[\begin{array}{c} a \\ b \\ c \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

If $\mathsf{RREF}(A) = \begin{bmatrix} 1 & 0 & u \\ 0 & 1 & v \end{bmatrix}$ then $\mathsf{RREF}(A) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a + uc \\ b + vc \end{bmatrix}$

which is the zero vector if and only if u = -a/c and v = -b/c.

If $RREF(A)$ is	$\left[\begin{array}{c} 1\\ 0 \end{array} \right]$	$egin{array}{c} u \ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	or	00	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	then $RREF(A)$	$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$	is nonzero
								\ .1 .1		

since its second entry is $c \neq 0$, so $\mathsf{RREF}(A)$ cannot have this form.

Therefore we must have	$RREF(A) = \bigg[$	$\begin{array}{c} 1\\ 0\end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\left[\begin{array}{c} -a/c \\ -b/c \end{array} ight].$
------------------------	--------------------	-------------------------------------	---------------------------------------	--

Problem 2. (15 points)

Suppose a and b are real numbers. Consider the lines

$$L_1 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : y = ax \right\}$$
 and $L_2 = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 : y = bx \right\}.$

- (a) When is it impossible to express the vector $\begin{bmatrix} 5\\ 6 \end{bmatrix}$ as a sum of two vectors, one on the line L_1 and one on the line L_2 ?
- (b) When is there more than one way of expressing the vector $\begin{bmatrix} 5\\6 \end{bmatrix}$ as a sum of two vectors, one on the line L_1 and one on the line L_2 ?
- (c) When is there exactly one way of writing

$$\left[\begin{array}{c}5\\6\end{array}\right] = v + u$$

with $v \in L_1$ and $w \in L_2$? Find a formula for v and w in this case.

Solution:

(*)

(a) This happens if and only if $L_1 = L_2$ are the same line and $\begin{bmatrix} 5\\6 \end{bmatrix}$ is not on this line. In other words, when $a = b \neq \frac{6}{5}$.

(b) This happens if and only if $L_1 = L_2$ are the same line and $\begin{bmatrix} 5\\6 \end{bmatrix}$ is on this line. In other words, when $a = b = \frac{6}{5}$.

(c) This happens when L_1 and L_2 are distinct lines, that is, when $a \neq b$.

Expressing $\begin{bmatrix} 5\\6 \end{bmatrix} = v + w$ where $v \in L_1$ and $w \in L_2$ means finding numbers $x_1, x_2 \in \mathbb{R}$ such that $\begin{bmatrix} x_1\\ax_1 \end{bmatrix} + \begin{bmatrix} x_2\\bx_2 \end{bmatrix} = \begin{bmatrix} 5\\6 \end{bmatrix}$.

We can rewrite this as the matrix equation

$$\left[\begin{array}{cc}1&1\\a&b\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right] = \left[\begin{array}{c}5\\6\end{array}\right]$$

which we solve by row reducing the augmented matrix

 $\begin{bmatrix} 1 & 1 & 5 \\ a & b & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & b-a & 6-5a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & \frac{6-5a}{b-a} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5-\frac{6-5a}{b-a} \\ 0 & 1 & \frac{6-5a}{b-a} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{5b-6}{b-a} \\ 0 & 1 & \frac{6-5a}{b-a} \end{bmatrix}.$ Thus the unique solution to (*) has $x_1 = \frac{5b-6}{b-a}$ and $x_2 = \frac{6-5a}{b-a}$ which gives

$v = \frac{5b-6}{b-a} \begin{bmatrix} 1\\a \end{bmatrix}$	and	$w = \frac{6 - 5a}{b - a} \left[\begin{array}{c} 1\\ b \end{array} \right].$
---	-----	---

Problem 3. (10 points)

- (a) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that rotates a vector counterclockwise by 45 degrees and then doubles its length. Find the standard matrix of T, that is, the matrix A such that T(v) = Av for all $v \in \mathbb{R}^2$.
- (b) Let *M* be a 2×2 rotation matrix not equal to the identity matrix.

Suppose $M^{-1} = M^5$ and $v = \begin{bmatrix} 1\\ 2 \end{bmatrix}$.

How many different vectors could be in the set

$$S = \{v, Mv, M^2v, M^3v, M^4v, M^5v\}$$

For each possibility, draw a picture representing the vectors in S and compute the sum $v + Mv + M^2v + M^3v + M^4v + M^5v$.

Solution:

(a) The standard basis vector $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ rotated CCW by 45 degrees is $\begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$. The standard basis vector $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ rotated CCW by 45 degrees is $\begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$.

Doubling the length of these vectors gives $\begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$ and $\begin{bmatrix} -\sqrt{2} \\ \sqrt{2} \end{bmatrix}$ which are the columns of the desired standard matrix

$$A = \left[\begin{array}{cc} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{array} \right].$$

(b) Since $M^{-1} = M^5$, the matrix M^6 is the identity matrix. Thus if M rotates all vectors CCW by angle θ , then 6θ must be a multiple of 360 degrees. The angle θ cannot be zero since M is not the identity matrix. It follows that θ is either 60, 120, or 180 degrees, so the set S has either 2, 3, or 6 elements.

If θ is 60 degrees then *S* consists of the vector $\begin{bmatrix} 1\\2 \end{bmatrix}$ and fives copies of this vector rotated by 60, 120, 180, 240, and 300 degrees CCW.

If θ is 120 degrees then *S* consists of the vector $\begin{bmatrix} 1\\2 \end{bmatrix}$ and two copies of this vector rotated by 120 and 240 degrees CCW.

If θ is 180 degrees then *S* consists of just $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} -1\\-2 \end{bmatrix}$.

If $w = v + Mv + M^2v + M^3v + M^4v + M^5v$ then $Mw = Mv + M^2v + M^3v + M^4v + M^5v + v = w$. But *M* rotates *w* by a nonzero angle, so it is only possible to have Mw = w if w = 0.

Problem 4. (5 points)

Find the value(s) of $h \in \mathbb{R}$ for which the following vectors are linearly dependent:

[1]		[-6]		4	
-3	,	8	,	-2	
4		7		h	

Solution:

The given vectors are linearly dependent if and only if the matrix

$$\begin{bmatrix} 1 & -6 & 4 \\ -3 & 8 & -2 \\ 4 & 7 & h \end{bmatrix}$$

has fewer than three pivot columns. Row reducing this matrix gives

Γ	1	-6	4		1	-6	4]	1	-6	4		1	0	-2		[1]	0	-2	1
	-3	8	-2	\rightarrow	0	-10	10	\rightarrow	0	1	-1	\rightarrow	0	1	-1	\rightarrow	0	1	-1	.
	4	7	h		4	7	h		4	7	h		4	0	h+7		0	0	-2 -1 -1 h + 15	

Thus there are fewer than three pivot columns if and only if h = -15.

Problem 5. (15 points)

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

Suppose *H* is a *k*-dimensional subspace of \mathbb{R}^n . Define the set

$$T(H) = \{T(v) : v \in H\}.$$

- (a) Explain why T(H) is a subspace of \mathbb{R}^m .
- (b) If *T* is onto, then what are the possibilities for dim *T*(*H*)? Justify your answer, which should be in terms of *k*, *m*, and *n*.
- (c) If *T* is one-to-one, then what are the possibilities for $\dim T(H)$? Justify your answer, which should be in terms of *k*, *m*, and *n*.

Solution:

- (a) Let *A* be the standard matrix of *T* and let *B* be a $n \times k$ matrix whose columns are a basis for *H*. Then H = Col B and T(H) = Col(AB). This is a subspace since column spaces are subspaces.
- (b) Suppose $u_1, \ldots, u_j, v_1, \ldots, v_{k-j}$ is a basis for H where each $T(u_1) = \cdots = T(u_j) = 0$, and j is as large as possible. Then $T(v_1), \ldots, T(v_{k-j})$ are linearly independent since if $c_1T(v_1) + \cdots + c_{k-j}T(v_{k-j}) = 0$ then $T(c_1v_1 + \cdots + c_{k-j}v_{k-j}) = 0$ which can only happen if $c_1 = \cdots = c_{k-j} = 0$ as otherwise we could set $u_{j+1} = c_1v_1 + \cdots + c_{k-j}v_{k-j}$.

Since T(H) is spanned by $T(v_1), \ldots, T(v_{k-j})$, we have dim T(H) = k - j. This is at most k, and also at most m since $T(H) \subseteq \mathbb{R}^m$.

The value of *j* is at most dim{ $v \in \mathbb{R}^n : T(v) = 0$ } = dim Nul $A = n - \operatorname{rank} A$ and also at most *k*. If *T* is onto then rank $A = m \le n$ so $j \le \min\{n - m, k\}$ and therefore $\max\{k - (n - m), 0\} \le \dim T(H) \le \min\{k, m\}$.

(c) If *T* is one-to-one then $k \le n \le m$ and $T(v) \ne 0$ if $v \ne 0$, so we must have j = 0 and $\dim T(H) = k$.

Problem 6. (10 points) Suppose $A = \begin{bmatrix} u & v & w & x & y & z \end{bmatrix}$ is a 4×6 matrix with columns $u, v, w, x, y, z \in \mathbb{R}^4$. The reduced echelon form of A is

RREF(A) =	0	1	0	3	0	-2]	
	0	0	1	$^{-1}$	0	0	
RREF(A) =	0	0	0	0	1	1	·
	0	0	0	0	0	0	

- (a) Find a basis for the null space of *A*.
- (b) Find a basis for the column space of *A*.
- (a) We have Ax = 0 if and only if RREF(A)x = 0, which holds if and only if

$$\begin{cases} x_2 + 3x_4 - 2x_6 = 0\\ x_3 - x_4 = 0\\ x_5 + x_6 = 0. \end{cases}$$

In other words any $x \in \text{Nul} A$ must have the form

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} x_1 \\ -3x_4 + 2x_6 \\ x_4 \\ -x_6 \\ x_6 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -3 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} 0 \\ 2 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

_

This means that a basis for Nul *A* is

<pre>{</pre>	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$,	$\begin{bmatrix} 0\\ -3\\ 1\\ 1\\ 0 \end{bmatrix}$,	$\begin{bmatrix} 0\\2\\0\\-1 \end{bmatrix}$	
	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		$ -1 \\ 1 $	J

(b) A basis for $\operatorname{Col} A$ is given by the pivot columns in A, which are $|\{v, w, y\}|$

Problem 7. (15 points)

Let $n \ge 2$ be a positive integer. Suppose *A* is the $n \times n$ matrix with 0's on the main diagonal and 1's everywhere else. For example, if n = 4 then we would have

$$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

Let *I* be the $n \times n$ identity matrix.

- (a) Find numbers *b* and *c* such that $A^2 = bI + cA$. (These will depend on *n*.)
- (b) Compute a formula for the inverse of *A*. Be as specific as possible.
- (c) Compute a formula for det(A).

Solution:

(a) Multiplying row *i* by column *i* of *A* results in a sum of *n* numbers, one of which is zero and the rest of which are one. Multiplying row *i* by column *j* of *A* when $i \neq j$ results in a sum of *n* numbers, two of which are zero and the rest of which are one. Therefore A^2 has n - 1 in all diagonal positions and n - 2 in all other positions, meaning that $A^2 = (n - 1)I + (n - 2)A$ so

$$b = n - 1$$
 and $c = n - 2$

(b) By part (a) we have $A(A + (2 - n)I) = A^2 + (2 - n)A = (n - 1)I$ so $A(\frac{1}{n-1}A + \frac{2-n}{n-1}I) = I.$

Since *A* is square this means that $A^{-1} = \frac{1}{n-1}A + \frac{2-n}{n-1}I$

(c) Replace the first row of *A* by the sum of all of its rows. This gives a row equivalent matrix with the same determinant whose first row is

$$\begin{bmatrix} n-1 & n-1 & \dots & n-1 \end{bmatrix}$$

and whose other rows are the same as in *A*. Next subtract $\frac{1}{n-1}$ times the new first row from all other rows. This gives another matrix which is row equivalent to *A* with the same determinant. This new matrix looks like

n-1	n-1	n-1	• • •	n-1	
0	-1	0	• • •	0	
0	0	$^{-1}$		0	
:	:	÷	•.	÷	
•	•	•	•		
0	0	0	• • •	-1	

The matrix has n - 1 in all entries in the first row, -1 in all diagonal entries after the first row, and zero in all other entries. It is triangular so its determinant is the product of its diagonal entries. This product is

$$(n-1)(-1)^{n-1} = \det A$$