MIDTERM SOLUTIONS - MATH 2121, FALL 2022

Problem 1. (3 + 3 + 3 + 3 + 8 = 20 points)

This problem has five parts.

(a) There are sixty-four 3×2 matrices whose entries are each zero or one. An example of such a matrix is $\begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$. List all of the 3×2 matrices whose entries are each zero or one that are in reduced echelon form.

Solution:

There are 5 such matrices:

(b) Suppose $v_1, v_2, v_3, v_4, v_5 \in \mathbb{R}^4$ are the columns of the 4×5 matrix

$$A = \left[\begin{array}{cccc} v_1 & v_2 & v_3 & v_4 & v_5 \end{array} \right].$$

The reduced echelon form of A is

$$\mathsf{RREF}(A) = \left[\begin{array}{rrrrr} 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

What is the reduced echelon form of the matrix $B = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$?

Solution:

Since *B* is the first three columns of *A*, $\mathsf{RREF}(B)$ is the first three columns of $\mathsf{RREF}(A)$, so the answer is

Г	1	2	0	
	0	0	1	
	0	0	0	ŀ
	0	0	0	

(c) What is the reduced echelon form of the matrix $C = \begin{bmatrix} v_1 & v_3 & v_5 \end{bmatrix}$?

Solution:

Since 1, 3 and 5 are pivot columns, v_1, v_3, v_5 are linearly independent, so C must have a pivot in every column and RREF(C) must be

Γ	1	0	0	1
	0	1	0	
	0	0	1	
L	0	0	0	
				- 1

(d) What is the reduced echelon form of the matrix $D = \begin{bmatrix} v_3 & v_4 & v_5 \end{bmatrix}$?

Solution:

D is the last three columns of *A*, so *D* is **row equivalent** to the last three columns of RREF(A). This submatrix is not yet in reduced echelon form, but a few row operations gets it there:

$$\begin{bmatrix} 0 & 3 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So the answer is again

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]$$

2

(e) Find the general solution to the linear system

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1\\ x_1 + 2x_2 + 4x_3 + 2x_4 = 0\\ 2x_1 - 4x_3 + x_4 = 0. \end{cases}$$

Solution:

The augmented matrix of this system is

$$A = \left[\begin{array}{rrrr|rrr} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 2 & 0 \\ 2 & 0 & -4 & 1 & 0 \end{array} \right].$$

We compute its reduced echelon form by the sequence of row operations

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 2 & 0 \\ 2 & 0 & -4 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 & -1 \\ 0 & -2 & -6 & -1 & -2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 1 & -1 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & | & 5 \\ 0 & 1 & 3 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & -2 & 0 & | & 2 \\ 0 & 1 & 3 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & -4 \end{bmatrix} = \mathsf{RREF}(A).$$

We see that 1, 2, and 4 are pivot columns, so the x_1 , x_2 , and x_4 are basic variables, x_3 is a free variable, and there are infinitely many solutions. The linear system with augmented matrix $\mathsf{RREF}(A)$ has the same solutions as our starting system, and is given by

$$\begin{cases} x_1 - 2x_3 = 2 \\ x_2 + 3x_3 = 3 \\ x_4 = -4 \end{cases}$$

so the general solution is $(x_1, x_2, x_3, x_4) = (2 + 2a, 3 - 3a, a, -4)$ where $a \in \mathbb{R}$ is any real number.

Problem 2. (4 + 4 + 4 + 4 + 4 = 20 points)

Recall that the standard matrix of a linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ is the matrix A such that f(x) = Ax for all $x \in \mathbb{R}^n$. This problem has five parts.

(a) Find the standard matrix of the linear function $f: \mathbb{R}^4 \to \mathbb{R}^2$ defined by

$$f\left(\left[\begin{array}{c}v_1\\v_2\\v_3\\v_4\end{array}\right]\right) = \left[\begin{array}{c}v_1&v_2\\v_3&v_4\end{array}\right] \left[\begin{array}{c}2\\3\end{array}\right].$$

Solution:

The standard matrix of
$$f$$
 is

$$\left[f\left(\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right) f\left(\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right) f\left(\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right) f\left(\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right) f\left(\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right) \right]$$
which we compute to be
$$\left[\begin{bmatrix} 2 & 3 & 0 & 0\\0 & 0 & 2 & 3 \end{bmatrix} \right].$$

(b) Find the standard matrix of the linear function $f : \mathbb{R}^3 \to \mathbb{R}$ defined by

$$f\left(\left[\begin{array}{c}v_1\\v_2\\v_3\end{array}\right]\right) = \det\left[\begin{array}{ccc}1&v_1&2\\5&v_2&4\\2&v_3&3\end{array}\right].$$

Solution:

Since $f(v) = (3v_2 - 4v_3) - v_1(15 - 8) + 2(5v_3 - 2v_2) = -7v_1 - v_2 + 6v_3$ the standard matrix is $\begin{bmatrix} -7 & -1 & 6 \end{bmatrix}$.

(c) Suppose $f : \mathbb{R}^2 \to \mathbb{R}^2$ and $g : \mathbb{R}^2 \to \mathbb{R}^2$ are both linear functions.

Recall that $f \circ g$ is the function defined by $(f \circ g)(x) = f(g(x))$.

If *f* has standard matrix $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ and $f \circ g$ has standard matrix $\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$ then what is the standard matrix of *g*?

Solution:

Let *A* and *B* be the standard matrices of *f* and *g*. Then
$$A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$$
 and
 $AB = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$ so $B = A^{-1}(AB) = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} -9 & 10 \\ 6 & -6 \end{bmatrix}$

(d) Suppose $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear function with standard matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 4 & 5 \end{array} \right]$$

Determine m, n, and whether or not f is one-to-one or onto.

m = 2		n = 3	
	-		
Is f one-to-one? No			

Justify your answer:

A linear function $\mathbb{R}^n \to \mathbb{R}^m$ with n > m is never one-to-one.

Is f onto? Yes

Justify your answer:

f is onto since *A* has a pivot in every row, as
$$\mathsf{RREF}(A) = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- (e) Suppose $a, b, c, d \in \mathbb{R}$ are real numbers with $ad bc \neq 0$. There is a unique linear function $f : \mathbb{R}^2 \to \mathbb{R}^2$ with
 - $f\left(\left[\begin{array}{c}a\\c\end{array}\right]\right) = \left[\begin{array}{c}0\\1\end{array}\right]$ and $f\left(\left[\begin{array}{c}b\\d\end{array}\right]\right) = \left[\begin{array}{c}1\\0\end{array}\right]$.

What is the standard matrix of f?

Solution:

$$g\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}a\\c\end{array}\right] \quad \text{and} \quad g\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}b\\d\end{array}\right]$$

has standard matrix $B = \left[\begin{array}{c}b&a\\d&c\end{array}\right]$. We have $AB = I$ since

Let *A* be the standard matrix of *f*. If *g* is the linear function $\mathbb{R}^2 \to \mathbb{R}^2$ with

$$AB\begin{bmatrix}1\\0\end{bmatrix} = f\left(g\left(\begin{bmatrix}1\\0\end{bmatrix}\right)\right) = f\left(\begin{bmatrix}b\\d\end{bmatrix}\right) = \begin{bmatrix}1\\0\end{bmatrix}$$

and

then g

$$AB\begin{bmatrix} 0\\1 \end{bmatrix} = f\left(g\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)\right) = f\left(\begin{bmatrix} a\\c \end{bmatrix}\right) = \begin{bmatrix} 0\\1 \end{bmatrix}$$

so $A = B^{-1} = \boxed{\frac{1}{bc - ad} \begin{bmatrix} c & -a\\-d & b \end{bmatrix}}.$

Problem 3. (4 + 4 + 4 + 8 = 20 points)

Suppose *A* is a (not necessarily square) $m \times n$ matrix. Note that $A^T A$ is a square $n \times n$ matrix. Here are some possible properties that *A* could have:

- (1) A is square with m = n.
- (2) every row of *A* has a pivot position.
- (3) every column of *A* has a pivot position.
- (4) the equation Ax = b has a solution for each $b \in \mathbb{R}^m$.
- (5) the equation Ax = b has a unique solution for each $b \in \mathbb{R}^m$.
- (6) the equation Ax = b has a unique solution for some $b \in \mathbb{R}^m$.
- (7) the equation Ax = 0 has infinitely many solutions.
- (8) the equation Ax = 0 has exactly one solution.
- (9) the equation Ax = 0 does not have a solution.
- (10) $\operatorname{Col}(A) = \mathbb{R}^m$.
- (11) $\operatorname{Nul}(A) = \mathbb{R}^n$.
- (12) $\operatorname{Col}(A) = \{0\}.$
- (13) $\operatorname{Nul}(A) = \{0\}.$
- (14) the columns of *A* are linearly independent.
- (15) the span of the columns of A is \mathbb{R}^m .
- (16) the reduced echelon form of *A* is an identity matrix.
- (17) *AB* is an identity matrix for some $n \times m$ matrix *B*.
- (18) $\operatorname{rank}(A) = \min\{m, n\}.$
- (19) $\det(A^T A) \neq 0.$
- (20) $(A^T A)^k$ is an identity matrix for some integer $k \ge 1$.

(a) Circle all of the properties that *A* must have **if** *A* **is invertible**.

(19) holds because if A is invertible then A is square with $det(A) \neq 0$ so $det(A^T A) = det(A^T) det(A) = det(A)^2 \neq 0$.

(20) does not always hold as A could be the 1×1 matrix $\begin{bmatrix} 2 \end{bmatrix}$, for example.

(b) Circle all of the properties that **imply by themselves that** *A* **is invertible**.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

The key thing to remember here is that *A* is not assumed to be square.

(c) Circle all of the properties that **imply by themselves that** A **is invertible if we also assume that** A **is a square matrix with** m = n.

(19) is sufficient since if A is square then $det(A)^2 = det(A^T A)$ so det(A) is nonzero (and A is invertible) whenever $det(A^T A)$ is nonzero.

(20) is sufficient since if $(A^T A)^k$ is an identity matrix for $k \ge 1$ then $(A^T A)^{k-1} A^T A = (A^T A)^k = I$ so A is invertible with $A^{-1} = (A^T A)^{k-1} A^T$.

(d) Compute the inverse of the matrix

$$A = \left[\begin{array}{rrrr} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 4 & 4 & 4 & 4 \end{array} \right].$$

Solution:

We row reduce

$$\begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 4 \mid 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 4 & 4 & 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 0 & 0 & 0 & 4 \mid 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 4 & 4 & 4 & 0 \mid -1 & 0 & 0 & 1 \end{bmatrix}$$
(subtract row 1 from row 4)
$$\rightarrow \begin{bmatrix} 0 & 0 & 0 & 4 \mid 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 4 & 0 \mid -1 & 0 & -2 & 1 \end{bmatrix}$$
(subtract twice row 3 from row 4)
$$\rightarrow \begin{bmatrix} 0 & 0 & 0 & 4 \mid 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 4 & 0 \mid -1 & 0 & -2 & 1 \end{bmatrix}$$
(subtract twice row 2 from row 3)
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 4 & 0 \mid -1 & 0 & -2 & 1 \end{bmatrix}$$
(rearrange rows)
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 1/2 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1/2 & 1/4 \\ 0 & 0 & 0 & 1 \mid 1/4 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$
to get the answer

	- 0	1	0	0]
<i>∧</i> −1	0	-1	1/2	0
A =	-1/4	0	-1/2	1/4
	1/4	0	0	0

8

Problem 4. (2 + 6 + 6 + 6 = 20 points)

The matrix

$$A = \begin{bmatrix} 2 & 4 & 2 & 0 & 2 \\ 1 & 2 & 0 & 1 & 3 \\ 2 & 4 & 2 & 0 & 2 \\ 1 & 2 & 2 & -1 & -1 \end{bmatrix}$$

has reduced echelon form

This question has four parts.

There was a type in this problem, we should have $PPEE(A)$ —	1	2	0	1	3 -]			
	0	0	1	-1	-2				
There was a typo in this problem: we should have $RKEF(A) =$			0	0	0	·			
		0	0	0	0				
If we ignore this and assume $RREF(A)$ is as given, then the solution is as follows:									

(a) Find a basis for the column space of *A*.

Solution:

One basis for the column space consists of the pivot columns of *A*, namely columns 1 and 3:

(2	1	2])	
	1		0		
۱Ì I	2	,	2	1	ŀ
	1		2		

(b) Find a basis for the null space of *A*.

Solution:

The linear system $\mathsf{RREF}(A)x = 0$, omitting trivial equations 0 = 0, can be written as

$$\begin{cases} x_1 = -2x_2 - x_4 - 3x_5 \\ x_3 = x_4 - 2x_5. \end{cases}$$

This tells us that if Ax = 0, which holds if and only if RREF(A)x = 0, then

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - x_4 - 3x_5 \\ x_2 \\ x_4 - 2x_5 \\ x_4 - 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}$$

so a basis for Nul(A) is

$\left\{ \left[\begin{array}{c} -2\\1\\0\\0\\0\\0 \end{array} \right], \left[\begin{array}{c} -1\\0\\1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} -3\\0\\-2\\0\\1\\1\\0 \end{array} \right] \right\}$
--

(c) Find all pairs of real numbers
$$(x, y)$$
 such that $\begin{bmatrix} 2 \\ x \\ 2 \\ y \end{bmatrix}$ is in $Col(A)$.

Solution:

In view of part (a), the given vector is in the column space if and only if there are coefficients $c_1, c_2 \in \mathbb{R}$ such that

c_1	$\begin{bmatrix} 2 \\ 1 \\ 2 \\ 1 \end{bmatrix}$	$+ c_2$	$\begin{bmatrix} 2\\0\\2\\2\end{bmatrix}$	=	$2(c_1 + c_2) c_1 2(c_1 + c_2) c_1 + 2c_2$	=	$\begin{bmatrix} 2 \\ x \\ 2 \\ y \end{bmatrix}$.
-------	--	---------	---	---	---	---	--	---

For this to hold we must have $c_1 + c_2 = 1$ and $c_1 = x$ and $c_1 + 2c_2 = y$. This means that $y = c_1 + 2c_2 = 2(c_1 + c_2) - c_1 = 2 - x$. So if the vector is in the column space then we must have y = 2 - x.

Conversely, as long as y = 2-x, the desired coefficients are given by $c_1 = x$ and $c_2 = 1-x$, so the vector is in the column space. So the vector is in column space precisely when (x, y) is any pair of real numbers with y = 2-x

(d) Find all pairs of real numbers (x, y) such that $\begin{bmatrix} x \\ 0 \\ y \\ 1 \\ 1 \end{bmatrix}$ is in Nul(A).

Solution:

This vector is in Nul(A) if and only if it is in Nul(RREF(A)). But

is zero precisely when (x, y) = (-4, -1).

	1	2	0	1	3]			
If we instead use the correct value of $PPEE(A)$ –	0	0	1	-1	-2			
If we instead use the correct value of $KKEF(A) =$		0	0	0	0			
		0	0	0	0			
then the solution is almost the same:								

(a) (same solution)

(b)	ł	$\left[\begin{array}{c} -2\\1\\0\\0\\0\end{array}\right]$,	$\left[\begin{array}{c} -1\\0\\1\\1\\0\end{array}\right]$,	$\left[\begin{array}{c} -3\\0\\2\\0\\1\end{array}\right]$		•
-----	---	---	---	---	---	---	--	---

(c) (same solution)

(d)
$$(x,y) = (-4,3)$$
.

When grading, we also gave full points if you got these answers.