MIDTERM SOLUTIONS - MATH 2121, FALL 2022

Problem 1. $(3+3+3+3+8=20$ points $)$

This problem has five parts.
(a) There are sixty-four 3×2 matrices whose entries are each zero or one. An example of such a matrix is $\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. List all of the 3×2 matrices whose entries are each zero or one that are in reduced echelon form.

Solution:

There are 5 such matrices:
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$.
(b) Suppose $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} \in \mathbb{R}^{4}$ are the columns of the 4×5 matrix

$$
A=\left[\begin{array}{lllll}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5}
\end{array}\right]
$$

The reduced echelon form of A is

$$
\operatorname{RREF}(A)=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

What is the reduced echelon form of the matrix $B=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$?

Solution:

Since B is the first three columns of $A, \operatorname{RREF}(B)$ is the first three columns of $\operatorname{RREF}(A)$, so the answer is
$\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
(c) What is the reduced echelon form of the matrix $C=\left[\begin{array}{lll}v_{1} & v_{3} & v_{5}\end{array}\right]$?

Solution:

Since 1,3 and 5 are pivot columns, v_{1}, v_{3}, v_{5} are linearly independent, so C must have a pivot in every column and $\operatorname{RREF}(C)$ must be
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$.
(d) What is the reduced echelon form of the matrix $D=\left[\begin{array}{lll}v_{3} & v_{4} & v_{5}\end{array}\right]$?

Solution:

D is the last three columns of A, so D is row equivalent to the last three columns of $\operatorname{RREF}(A)$. This submatrix is not yet in reduced echelon form, but a few row operations gets it there:

$$
\left[\begin{array}{lll}
0 & 3 & 0 \\
1 & 4 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So the answer is again

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(e) Find the general solution to the linear system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=1 \\
x_{1}+2 x_{2}+4 x_{3}+2 x_{4}=0 \\
2 x_{1}-4 x_{3}+x_{4}=0
\end{array}\right.
$$

Solution:

The augmented matrix of this system is

$$
A=\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 2 & 0 \\
2 & 0 & -4 & 1 & 0
\end{array}\right]
$$

We compute its reduced echelon form by the sequence of row operations

$$
\begin{aligned}
A=\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 2 & 0 \\
2 & 0 & -4 & 1 & 0
\end{array}\right] & \rightarrow\left[\begin{array}{rrrr|r}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & -2 & -6 & -1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|r}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 3 & 1 & -1 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{llll|r}
1 & 1 & 1 & 0 & 5 \\
0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 1 & -4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & -2 & 0 & 2 \\
0 & 1 & 3 & 0 & 3 \\
0 & 0 & 0 & 1 & -4
\end{array}\right]=\operatorname{RREF}(A)
\end{aligned}
$$

We see that 1,2 , and 4 are pivot columns, so the x_{1}, x_{2}, and x_{4} are basic variables, x_{3} is a free variable, and there are infinitely many solutions. The linear system with augmented matrix $\operatorname{RREF}(A)$ has the same solutions as our starting system, and is given by

$$
\left\{\begin{array}{l}
x_{1}-2 x_{3}=2 \\
x_{2}+3 x_{3}=3 \\
x_{4}=-4
\end{array}\right.
$$

so the general solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2+2 a, 3-3 a, a,-4)$ where $a \in \mathbb{R}$ is any real number.

Problem 2. $(4+4+4+4+4=20$ points $)$
Recall that the standard matrix of a linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the matrix A such that $f(x)=A x$ for all $x \in \mathbb{R}^{n}$. This problem has five parts.
(a) Find the standard matrix of the linear function $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ defined by

$$
f\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]\right)=\left[\begin{array}{ll}
v_{1} & v_{2} \\
v_{3} & v_{4}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

Solution:

The standard matrix of f is

$$
\left[f\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right) f\left(\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right) f\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right) f\left(\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)\right]
$$

which we compute to be $\left[\begin{array}{llll}2 & 3 & 0 & 0 \\ 0 & 0 & 2 & 3\end{array}\right]$.
(b) Find the standard matrix of the linear function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by

$$
f\left(\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]\right)=\operatorname{det}\left[\begin{array}{lll}
1 & v_{1} & 2 \\
5 & v_{2} & 4 \\
2 & v_{3} & 3
\end{array}\right]
$$

Solution:

Since $f(v)=\left(3 v_{2}-4 v_{3}\right)-v_{1}(15-8)+2\left(5 v_{3}-2 v_{2}\right)=-7 v_{1}-v_{2}+6 v_{3}$ the standard matrix is $\left[\begin{array}{lll}-7 & -1 & 6\end{array}\right]$.
(c) Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are both linear functions.

Recall that $f \circ g$ is the function defined by $(f \circ g)(x)=f(g(x))$.
If f has standard matrix $\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ and $f \circ g$ has standard matrix $\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$ then what is the standard matrix of g ?

Solution:

Let A and B be the standard matrices of f and g. Then $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right]$ and
$A B=\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$ so $B=A^{-1}(A B)=\left[\begin{array}{rr}5 & -3 \\ -3 & 2\end{array}\right]\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]=\left[\begin{array}{rr}-9 & 10 \\ 6 & -6\end{array}\right]$.
(d) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear function with standard matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5
\end{array}\right]
$$

Determine m, n, and whether or not f is one-to-one or onto.

$$
m=2
$$

$$
n=3
$$

Is f one-to-one? No
Justify your answer:
A linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ with $n>m$ is never one-to-one.
Is f onto? Yes
Justify your answer:
f is onto since A has a pivot in every row, as $\operatorname{RREF}(A)=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(e) Suppose $a, b, c, d \in \mathbb{R}$ are real numbers with $a d-b c \neq 0$. There is a unique linear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
f\left(\left[\begin{array}{l}
a \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { and } \quad f\left(\left[\begin{array}{l}
b \\
d
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

What is the standard matrix of f ?

Solution:

Let A be the standard matrix of f. If g is the linear function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
g\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
a \\
c
\end{array}\right] \quad \text { and } \quad g\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

then g has standard matrix $B=\left[\begin{array}{ll}b & a \\ d & c\end{array}\right]$. We have $A B=I$ since

$$
A B\left[\begin{array}{l}
1 \\
0
\end{array}\right]=f\left(g\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)\right)=f\left(\left[\begin{array}{l}
b \\
d
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

and

$$
A B\left[\begin{array}{l}
0 \\
1
\end{array}\right]=f\left(g\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right)=f\left(\left[\begin{array}{l}
a \\
c
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

so $A=B^{-1}=\frac{1}{b c-a d}\left[\begin{array}{rr}c & -a \\ -d & b\end{array}\right]$.

Problem 3. $(4+4+4+8=20$ points)
Suppose A is a (not necessarily square) $m \times n$ matrix. Note that $A^{T} A$ is a square $n \times n$ matrix. Here are some possible properties that A could have:
(1) A is square with $m=n$.
(2) every row of A has a pivot position.
(3) every column of A has a pivot position.
(4) the equation $A x=b$ has a solution for each $b \in \mathbb{R}^{m}$.
(5) the equation $A x=b$ has a unique solution for each $b \in \mathbb{R}^{m}$.
(6) the equation $A x=b$ has a unique solution for some $b \in \mathbb{R}^{m}$.
(7) the equation $A x=0$ has infinitely many solutions.
(8) the equation $A x=0$ has exactly one solution.
(9) the equation $A x=0$ does not have a solution.
(10) $\operatorname{Col}(A)=\mathbb{R}^{m}$.
(11) $\operatorname{Nul}(A)=\mathbb{R}^{n}$.
(12) $\operatorname{Col}(A)=\{0\}$.
(13) $\operatorname{Nul}(A)=\{0\}$.
(14) the columns of A are linearly independent.
(15) the span of the columns of A is \mathbb{R}^{m}.
(16) the reduced echelon form of A is an identity matrix.
(17) $A B$ is an identity matrix for some $n \times m$ matrix B.
(18) $\operatorname{rank}(A)=\min \{m, n\}$.
(19) $\operatorname{det}\left(A^{T} A\right) \neq 0$.
(20) $\left(A^{T} A\right)^{k}$ is an identity matrix for some integer $k \geq 1$.
(a) Circle all of the properties that A must have if A is invertible.

1	$\boxed{2}$	$\boxed{3}$	$\boxed{4}$	$\boxed{5}$
6	7	$\boxed{8}$	9	$\boxed{10}$
11	12	$\boxed{13}$	$\boxed{14}$	$\boxed{15}$
16	17	$\boxed{18}$	$\boxed{19}$	20

(19) holds because if A is invertible then A is square with $\operatorname{det}(A) \neq 0$ so $\operatorname{det}\left(A^{T} A\right)=\operatorname{det}\left(A^{T}\right) \operatorname{det}(A)=\operatorname{det}(A)^{2} \neq 0$.
(20) does not always hold as A could be the 1×1 matrix [2], for example.
(b) Circle all of the properties that imply by themselves that A is invertible.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

The key thing to remember here is that A is not assumed to be square.
(c) Circle all of the properties that imply by themselves that A is invertible if we also assume that A is a square matrix with $m=n$.

	$\boxed{2}$	$\boxed{3}$	$\boxed{4}$	$\boxed{5}$
6	7	$\boxed{8}$	9	$\boxed{10}$
11	12	$\boxed{13}$	$\boxed{14}$	$\boxed{15}$
16	$\boxed{17}$	$\boxed{18}$	$\boxed{19}$	$\boxed{20}$

(19) is sufficient since if A is square then $\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{T} A\right)$ so $\operatorname{det}(A)$ is nonzero (and A is invertible) whenever $\operatorname{det}\left(A^{T} A\right)$ is nonzero.
(20) is sufficient since if $\left(A^{T} A\right)^{k}$ is an identity matrix for $k \geq 1$ then $\left(A^{T} A\right)^{k-1} A^{T} A=$ $\left(A^{T} A\right)^{k}=I$ so A is invertible with $A^{-1}=\left(A^{T} A\right)^{k-1} A^{T}$.
(d) Compute the inverse of the matrix

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 4 \\
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
4 & 4 & 4 & 4
\end{array}\right]
$$

Solution:

We row reduce

$$
\begin{aligned}
& {[A \mid I]=\left[\begin{array}{llll|llll}
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\
4 & 4 & 4 & 4 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{llll|rrrr}
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\
4 & 4 & 4 & \mathbf{0} & -\mathbf{1} & 0 & 0 & 1
\end{array}\right] \text { (subtract row } 1 \text { from row 4) } \\
& \rightarrow\left[\begin{array}{rrrr|rrrr}
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 \\
\mathbf{0} & \mathbf{0} & 4 & 0 & -1 & 0 & -\mathbf{2} & 1
\end{array}\right] \text { (subtract twice row } 3 \text { from row 4) } \\
& \rightarrow\left[\begin{array}{llll|rrrr}
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\mathbf{0} & 2 & 0 & 0 & 0 & -\mathbf{2} & 1 & 0 \\
0 & 0 & 4 & 0 & -1 & 0 & -2 & 1
\end{array}\right] \text { (subtract twice row } 2 \text { from row 3) } \\
& \rightarrow\left[\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & -2 & 1 & 0 \\
0 & 0 & 4 & 0 & -1 & 0 & -2 & 1 \\
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0
\end{array}\right] \text { (rearrange rows) } \\
& \rightarrow\left[\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 / 2 & 0 \\
0 & 0 & 1 & 0 & -1 / 4 & 0 & -1 / 2 & 1 / 4 \\
0 & 0 & 0 & 1 & 1 / 4 & 0 & 0 & 0
\end{array}\right]=\left[I \mid A^{-1}\right] \\
& \text { to get the answer } \\
& A^{-1}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & -1 & 1 / 2 & 0 \\
-1 / 4 & 0 & -1 / 2 & 1 / 4 \\
1 / 4 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Problem 4. $(2+6+6+6=20$ points $)$
The matrix

$$
A=\left[\begin{array}{rrrrr}
2 & 4 & 2 & 0 & 2 \\
1 & 2 & 0 & 1 & 3 \\
2 & 4 & 2 & 0 & 2 \\
1 & 2 & 2 & -1 & -1
\end{array}\right]
$$

has reduced echelon form

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 1 & 3 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

This question has four parts.
There was a typo in this problem: we should have $\operatorname{RREF}(A)=\left[\begin{array}{rrrrr}1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
If we ignore this and assume $\operatorname{RREF}(A)$ is as given, then the solution is as follows:
(a) Find a basis for the column space of A.

Solution:

One basis for the column space consists of the pivot columns of A, namely columns 1 and 3:
$\left\{\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 2 \\ 2\end{array}\right]\right\}$.
(b) Find a basis for the null space of A.

Solution:

The linear system $\operatorname{RREF}(A) x=0$, omitting trivial equations $0=0$, can be written as

$$
\left\{\begin{array}{l}
x_{1}=-2 x_{2}-x_{4}-3 x_{5} \\
x_{3}=x_{4}-2 x_{5}
\end{array}\right.
$$

This tells us that if $A x=0$, which holds if and only if $\operatorname{RREF}(A) x=0$, then

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{2}-x_{4}-3 x_{5} \\
x_{2} \\
x_{4}-2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{r}
-3 \\
0 \\
-2 \\
0 \\
1
\end{array}\right]
$$

so a basis for $\operatorname{Nul}(A)$ is
$\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ -2 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) Find all pairs of real numbers (x, y) such that $\left[\begin{array}{l}2 \\ x \\ 2 \\ y\end{array}\right]$ is in $\operatorname{Col}(A)$.

Solution:

In view of part (a), the given vector is in the column space if and only if there are coefficients $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
c_{1}\left[\begin{array}{l}
2 \\
1 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
0 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{r}
2\left(c_{1}+c_{2}\right) \\
c_{1} \\
2\left(c_{1}+c_{2}\right) \\
c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
x \\
2 \\
y
\end{array}\right]
$$

For this to hold we must have $c_{1}+c_{2}=1$ and $c_{1}=x$ and $c_{1}+2 c_{2}=y$. This means that $y=c_{1}+2 c_{2}=2\left(c_{1}+c_{2}\right)-c_{1}=2-x$. So if the vector is in the column space then we must have $y=2-x$.

Conversely, as long as $y=2-x$, the desired coefficients are given by $c_{1}=x$ and $c_{2}=1-x$, so the vector is in the column space. So the vector is in column space precisely when (x, y) is any pair of real numbers with $y=2-x$.
(d) Find all pairs of real numbers (x, y) such that $\left[\begin{array}{l}x \\ 0 \\ y \\ 1 \\ 1\end{array}\right]$ is in $\operatorname{Nul}(A)$.

Solution:

This vector is in $\operatorname{Nul}(A)$ if and only if it is in $\operatorname{Nul}(\operatorname{RREF}(A))$. But

$$
\operatorname{RREF}(A)\left[\begin{array}{l}
x \\
0 \\
y \\
1 \\
1
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 2 & 0 & 1 & 3 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
0 \\
y \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
x+4 \\
y+1 \\
0 \\
0
\end{array}\right]
$$

is zero precisely when $(x, y)=(-4,-1)$.
If we instead use the correct value of $\operatorname{RREF}(A)=\left[\begin{array}{rrrrr}1 & 2 & 0 & 1 & 3 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
then the solution is almost the same:
(a) (same solution)
(b) $\left\{\left[\begin{array}{r}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-3 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$.
(c) (same solution)
(d) $(x, y)=(-4,3)$.

When grading, we also gave full points if you got these answers.

