MORE FINAL REVIEW PROBLEMS - MATH 2121

Below are some more exercises to help you review for our final examination.
Exercise 1. Find a general formula for all solutions to the linear system

$$
\begin{aligned}
x_{1}+5 x_{3} & =4 \\
2 x_{1}+x_{2}+6 x_{3} & =4 \\
3 x_{1}+4 x_{2}-x_{3} & =-4
\end{aligned}
$$

Solution:

Exercise 2. Express the vector $b=\left[\begin{array}{r}2 \\ 13 \\ 6\end{array}\right]$ as a linear combination of the vectors

$$
u=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right], \quad w=\left[\begin{array}{l}
5 \\
6 \\
0
\end{array}\right] .
$$

Solution:

Exercise 3. Show that the vector $b=\left[\begin{array}{l}4 \\ 4 \\ 4\end{array}\right]$ is not in the span of the vectors

$$
u=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right], \quad w=\left[\begin{array}{r}
5 \\
6 \\
-1
\end{array}\right]
$$

Solution:

Exercise 4. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is a linear transformation with

$$
T\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad T\left(\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad T\left(\left[\begin{array}{l}
5 \\
6 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Find the standard matrix A for T, which satisfies $T(v)=A v$ for all $v \in \mathbb{R}^{3}$.

Solution:

Exercise 5. Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a function
(a) Write down what it means for T to be linear.
(b) Write down what it means for T to be one-to-one.

Explain how to determine if T is one-to-one when T is linear.
(c) Write down what it means for T to be onto.

Explain how to determine if T is onto when T is linear.

Solution:

Exercise 6. Compute the matrix products

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrrr}
a & b & c & d \\
e & f & g & h \\
i & j & k & l \\
m & n & o & p
\end{array}\right]\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right] .
$$

Solution:

Exercise 7. Find the inverse of $A=\left[\begin{array}{rrr}0 & -1 & 2 \\ 1 & 2 & 4 \\ 0 & 2 & 3\end{array}\right]$.

Solution:

Exercise 8. Write in your own words definitions to the following vocabulary:
(1) A linear combination of some vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$.
(2) The span of some vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$.
(3) A linearly independent set of vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$.
(4) A linearly dependent set of vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$.
(5) A subspace of \mathbb{R}^{n}.
(6) A basis of a subspace of \mathbb{R}^{n}.
(7) The dimension of a subspace of \mathbb{R}^{n}.
(8) The column space of a matrix A.
(9) The null space of a matrix A
(10) The rank of a matrix A.

Solution:

Exercise 9. Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$ when $A=\left[\begin{array}{llll}6 & 3 & 6 & 9 \\ 4 & 2 & 4 & 6 \\ 6 & 3 & 5 & 9\end{array}\right]$.

Solution:

Exercise 10. Consider the matrix

$$
A=\left[\begin{array}{rrr}
6 & 1 & 1 \\
4 & -2 & 5 \\
2 & 8 & 7
\end{array}\right]
$$

(a) Compute $\operatorname{det} A$ using the formula

$$
\operatorname{det} A=\sum_{X \in S_{3}} \operatorname{prod}(X, A)(-1)^{\operatorname{inv}(X)} .
$$

(b) Compute $\operatorname{det} A$ using the row reduction algorithm discussed in Lecture 12.
(c) Compute $\operatorname{det} A$ using the formula

$$
\operatorname{det} A=a_{11} \operatorname{det} A^{(1,1)}-a_{21} \operatorname{det} A^{(2,1)}+a_{31} A^{(3,1)}
$$

discussed at the end of Lecture 12.
(d) Without doing any (significant) calculation, compute

$$
\operatorname{det} A^{-1}, \quad \operatorname{det} A^{T}, \quad \operatorname{det} B, \quad \text { and } \quad \operatorname{det} C
$$

for the matrices

$$
B=\left[\begin{array}{rrr}
1 & 1 & 6 \\
5 & -2 & 4 \\
7 & 8 & 2
\end{array}\right] \quad \text { and } \quad C=\left[\begin{array}{rrr}
12 & 1 & 2 \\
8 & -2 & 3 \\
4 & 8 & 15
\end{array}\right]
$$

Solution:

Exercise 11. Find all (possibly complex) eigenvalues for the matrices

$$
P=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad Q=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Are these matrices similar?
Solution:

Exercise 12. Diagonalize the matrix

$$
A=\left[\begin{array}{ll}
.6 & .2 \\
.4 & .8
\end{array}\right]
$$

In other words, find an invertible matrix P and a diagonal matrix D such that

$$
A=P D P^{-1}
$$

Use this to compute exact formulas for the functions defined by

$$
\left[\begin{array}{ll}
a(n) & b(n) \\
c(n) & d(n)
\end{array}\right]=A^{n}
$$

for positive integers $n=1,2,3, \ldots$.
Finally, calculate the limit $\lim _{n \rightarrow \infty} A^{n}$.

Solution:

Exercise 13. Find the rank and eigenvalues of

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Solution:

Exercise 14. Find the eigenvalues and determinants of

$$
B=A-I=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right] \quad \text { and } \quad C=I-A=\left[\begin{array}{rrrr}
0 & -1 & -1 & -1 \\
-1 & 0 & -1 & -1 \\
-1 & -1 & 0 & -1 \\
-1 & -1 & -1 & 0
\end{array}\right]
$$

Solution:

Exercise 15. Consider the vector space

$$
V=\left\{a x^{2}+b x+c: a, b, c \in \mathbb{R}\right\}
$$

of polynomials in one variable x with degree at most three.
(a) Define $T: V \rightarrow V$ to be the function with $T(f(x))=f(x+1)$ for $f \in V$, so

$$
T(3 x)=3 x+3 \quad \text { and } \quad T\left(x^{2}\right)=x^{2}+2 x+1
$$

for example. Explain why this function is linear.
(b) Let $A: \mathbb{R}^{3} \rightarrow V$ and $B: V \rightarrow \mathbb{R}^{3}$ be the linear functions with

$$
A\left(e_{i}\right)=x^{i-1} \quad \text { and } \quad B\left(x^{i-1}\right)=e_{i} \quad \text { for } i \in\{1,2,3\}
$$

where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The composition $F=B \circ T \circ A$ is a linear function $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Determine the standard matrix of F.
(c) Using part (b), find all eigenvalues for T and for each eigenvalue find a corresponding eigenvector.

In this context, an eigenvector for T with eigenvalue λ is a nonzero polynomial $f(x)=a x^{2}+b x+c \in V$ such that

$$
T(f(x))=f(x+1)=\lambda f(x)
$$

which is equivalent to

$$
a(x+1)^{2}+b(x+1)+c=(\lambda a) x^{2}+(\lambda b) x+(\lambda c) .
$$

Solution:

Exercise 16.

(a) Draw a picture representing a subspace V, a vector b, and the orthogonal projection $\operatorname{proj}_{V}(b)$ of b onto V (say, in \mathbb{R}^{3}).
(b) Suppose A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$. Assume the linear system $A x=b$ is inconsistent.

Draw a picture representing $\operatorname{Col} A$ and b and $\operatorname{proj}_{\text {Col } A}(b)$.
Use this picture to explain why the equation $A x=\operatorname{proj}_{\mathrm{Col} A}(b)$ always has a solution and why a solution to this equation minimizes $\|A x-b\|$.
(This shows that the exact solutions to $A x=\operatorname{proj}_{C o l}(b)$ are the leastsquares solutions to $A x=b$. We showed in class that the exact solutions to $A x=\operatorname{proj}_{\mathrm{Col} A}(b)$ are the same as the exact solutions to $A^{T} A x=A^{T} b$.)

Solution:

Exercise 17. There are three parts to this problem.
(a) Find an orthogonal basis for the column space of the matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 0 & 2 \\
2 & 2 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

(b) Find the orthogonal projection of the vector $v=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ onto $\operatorname{Col}(A)$.
(c) Finally, find a basis for $\operatorname{Col}(A)^{\perp}$.

Solution:

Exercise 18. Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the following values:

x	$f(x)$
0	0
1	6
2	5
3	10
4	7

Find $a, b, c, d \in \mathbb{R}$ such that the cubic equation

$$
y=a x^{3}+b x^{2}+c x+d
$$

best approximates $f(x)$ in the sense of least-squares.

Solution:

Exercise 19. Consider the symmetric matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

Find an orthogonal matrix U and a diagonal matrix D such that

$$
A=U D U^{T}
$$

Solution:

Exercise 20. Find a singular value decomposition for the matrix

$$
A=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

Solution:

