This document is intended as an exact transcript of the lecture, with extra summary and vocabulary sections for your convenience. By design, the material covered in lecture is exactly the same as what is in these notes. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs, and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today's notes. Lecture starts on next page.

- The inner product or dot product of two vectors $u, v \in \mathbb{R}^{n}$ is the scalar

$$
u \bullet v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=u^{T} v=v^{T} u \in \mathbb{R}^{1}=\mathbb{R}
$$

A unit vector is a vector $v \in \mathbb{R}^{n}$ with $v \bullet v=1$.

- Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.

If $V \subseteq \mathbb{R}^{n}$ is a subspace then its orthogonal complement is the subspace

$$
V^{\perp}=\left\{w \in \mathbb{R}^{n}: v \bullet w=0 \text { for all } v \in V\right\}
$$

- A set of nonzero vectors $v_{1}, v_{2}, \ldots, v_{p} \in \mathbb{R}^{n}$ is orthogonal if $v_{i} \bullet v_{j}=0$ for all $i \neq j$.

Any such set is automatically linearly independent and therefore a basis for a subspace.

- An orthogonal basis is orthonormal if it consists entirely of unit vectors.

If $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{m}$ are orthonormal and $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ then $U^{T} U=I_{n}$.
A square matrix U is orthogonal if $U^{-1}=U^{T}$.
This occurs if and only if the columns of U are orthonormal.

- Any subspace $V \subseteq \mathbb{R}^{n}$ has an orthogonal basis.

Any subspace $V \subseteq \mathbb{R}^{n}$ therefore also has an orthonormal basis.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for V then the projection of $y \in \mathbb{R}^{n}$ onto V is the vector

$$
\operatorname{proj}_{V}(y)=\frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2}+\cdots+\frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p} \in V .
$$

This formula does not depend on the choice of orthogonal basis for V.
The projection of y onto V is the unique vector in V such that $y-\operatorname{proj}_{V}(y) \in V^{\perp}$.
The projection of y onto V is also characterized as the vector in V that is the shortest distance away from y. If $v \in V$ and $v \neq \operatorname{proj}_{V}(y)$ then $\left\|y-\operatorname{proj}_{V}(y)\right\|<\|y-v\|$.

- The Gram-Schmidt process is an algorithm that takes a basis $x_{1}, x_{2}, \ldots, x_{p}$ for a subspace of \mathbb{R}^{n} as input, and produces an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ of the same subspace as output.

The orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ is defined from the input basis $x_{1}, x_{2}, \ldots, x_{p}$ by these formulas:

$$
\begin{aligned}
v_{1} & =x_{1} \\
v_{2} & =x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} . \\
v_{3} & =x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
v_{4} & =x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet \bullet{ }_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
v_{p} & =x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

1 Last time: orthogonal vectors and projections

The inner product or dot product of two vectors

$$
u=\left[\begin{array}{r}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

in \mathbb{R}^{n} is the scalar $u \bullet v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=u^{T} v=v^{T} u=v \bullet u$.

The length of a vector $v \in \mathbb{R}^{n}$ is $\|v\|=\sqrt{v \bullet v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$.
A vector with length 1 is a unit vector. Note that $\|v\|^{2}=v \bullet v$.

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
In \mathbb{R}^{2}, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

Pythagorean Theorem. Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if and only if $\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}$.

The orthogonal complement of a subspace $V \subseteq \mathbb{R}^{n}$ is the subspace V^{\perp} whose elements are the vectors $w \in \mathbb{R}^{n}$ such that $w \bullet v=0$ for all $v \in V$.

The only vector that is in both V and V^{\perp} is the zero vector.
We have $\{0\}^{\perp}=\mathbb{R}^{n}$ and $\left(\mathbb{R}^{n}\right)^{\perp}=\{0\}$. If A is an $m \times n$ matrix then $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
We also showed last time that $\operatorname{dim} V+\operatorname{dim} V^{\perp} \leq n$.

A list of vectors $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{R}^{n}$ is orthogonal if $u_{i} \bullet u_{j}=0$ whenever $1 \leq i<j \leq p$.
Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis of the subspace it spans.

Second proof. Suppose $u_{1}, u_{2}, \ldots, u_{p} \in \mathbb{R}^{n}$ are orthogonal and nonzero.
Let $A=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$ and $d_{i}=u_{i} \bullet u_{i}>0$ and $D=\left[\begin{array}{lll}d_{1} & & \\ & \ddots & \\ & & d_{p}\end{array}\right]$.
Check that $A^{T} A=D$. Our vectors are linearly dependent if and only if $A x=0$ has a nonzero solution. This is impossible since if $A x=0$ then $A^{T} A x=0$ which implies $x=0$ since $A^{T} A=D$ is invertible.

If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for a subspace $V \subseteq \mathbb{R}^{n}$ and $y \in V$, then

$$
y=c_{1} u_{2}+c_{2} u_{2}+\cdots+c_{p} u_{p} \quad \text { where } c_{i}=\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} \in \mathbb{R}
$$

This is an essential property of orthogonal bases. In general, to determine the coefficients that express a vector in a given basis, we have to solve an entire linear system. For orthogonal bases, we can just compute inner products.

Example. Let's work through this statement for the standard orthogonal basis $e_{1}, e_{2}, \ldots, e_{n}$ for \mathbb{R}^{n}. If

$$
y=\left[\begin{array}{r}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1} e_{1}+y_{2} e_{2}+\cdots+y_{n} e_{n}
$$

then $y=c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{n} e_{n}$ where $c_{i}=\frac{y \bullet e_{i}}{e_{i} \bullet e_{i}}$. But $e_{i} \bullet e_{i}=1$ and $y \bullet e_{i}=y_{i}$, so we just have $c_{i}=y_{i}$.
Let $L \subseteq \mathbb{R}^{n}$ be a one-dimensional subspace.
Then $L=\mathbb{R}-\operatorname{span}\{u\}$ for any nonzero vector $u \in L$.
Let $y \in \mathbb{R}^{n}$. The orthogonal projection of y onto L is the vector

$$
\operatorname{proj}_{L}(y)=\frac{y \bullet u}{u \bullet u} u \quad \text { for any } 0 \neq u \in L
$$

The value of $\operatorname{proj}_{L}(y)$ does not depend on the choice of the nonzero vector u.
The component of y orthogonal to L is the vector $z=y-\operatorname{proj}_{L}(y)$.
Proposition. The only vector $\widehat{y} \in L$ with $y-\widehat{y} \in L^{\perp}$ is the orthogonal projection $\widehat{y}=\operatorname{proj}_{L}(y)$.
Proof. Let $u \in L$ be nonzero. Then $y-\operatorname{proj}_{L}(y)=y-\frac{y \bullet u}{u \bullet u} u$ and it holds that

$$
\left(y-\frac{y \bullet u}{u \bullet u} u\right) \bullet u=y \bullet u-\frac{y \bullet u}{u \bullet u} u \bullet u=y \bullet u-y \bullet u=0 .
$$

This shows that $y-\operatorname{proj}_{L}(y) \in L^{\perp}$, and clearly $\operatorname{proj}_{L}(y) \in L$.
To see that $\operatorname{proj}_{L}(y)$ is the only vector in L with this property, suppose $\widehat{y} \in L$ is such that $y-\widehat{y} \in L^{\perp}$.
Then $(y-\widehat{y}) \bullet \widehat{y}=y \bullet \widehat{y}-\widehat{y} \bullet \widehat{y}=0$ so $y \bullet \widehat{y}=\widehat{y} \bullet \widehat{y}$.
But $\widehat{y}=c u$ for some nonzero $c \in \mathbb{R}$.
So we have $c(y \bullet u)=y \bullet c u=(c u) \bullet(c u)=c^{2}(u \bullet u)$.
Thus $c=\frac{y \bullet u}{u \bullet u}$ so $\widehat{y}=\operatorname{proj}_{L}(y)$.
Example. If $y=\left[\begin{array}{l}7 \\ 6\end{array}\right]$ and $L=\mathbb{R}$-span $\left\{\left[\begin{array}{l}4 \\ 2\end{array}\right]\right\}$ then

$$
\operatorname{proj}_{L}(y)=\frac{\left[\begin{array}{l}
7 \\
6
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}{\left[\begin{array}{l}
4 \\
2
\end{array}\right] \bullet\left[\begin{array}{l}
4 \\
2
\end{array}\right]}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{28+12}{16+4}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right]
$$

2 Orthonormal vectors

A set of vectors $u_{1}, u_{2}, \ldots, u_{p}$ is orthonormal if the vectors are orthogonal and each vector is a unit vector. In other words, if $u_{i} \bullet u_{j}=0$ when $i \neq j$ and $u_{i} \bullet u_{i}=1$ for all i.

An orthonormal basis of a subspace is a basis that is orthonormal.
Confusing convention: a square matrix with orthonormal columns is called an orthogonal matrix.
It would make more sense to call such a matrix an "orthonormal matrix" but the term "orthogonal matrix" is standard and widely used.

Example. The standard basis $e_{1}, e_{2}, \ldots, e_{n}$ is an orthonormal basis for \mathbb{R}^{n}.
Example. The vectors $\frac{1}{\sqrt{11}}\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$, and $\frac{1}{\sqrt{66}}\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]$ are an orthonormal basis for \mathbb{R}^{3}.
Theorem. Let U be an $m \times n$ matrix.
The columns of U are orthonormal vectors if and only if $U^{T} U=I_{n}$.
If U is square then its columns are orthonormal if and only if $U^{T}=U^{-1}$.
(In other words, a matrix U is orthogonal if and only if U is square and $U^{T}=U^{-1}$.)
Proof. Suppose $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{n}\end{array}\right]$ where each $u_{i} \in \mathbb{R}^{m}$.
The entry in position (i, j) of $U^{T} U$ is then $u_{i}^{T} u_{j}=u_{i} \bullet u_{j}$.
Therefore $u_{i} \bullet u_{i}=1$ and $u_{i} \bullet u_{j}=0$ for all $i \neq j$ if and only if $U^{T} U$ is the $n \times n$ identity matrix.

Corollary. If U is an orthogonal matrix then $\operatorname{det}(U) \in\{-1,1\}$.
Proof. We have $\operatorname{det}(U)^{2}=\operatorname{det}\left(U^{T}\right) \operatorname{det}(U)=\operatorname{det}\left(U^{T} U\right)=\operatorname{det}(I)=1$.

Theorem. Let U be an $m \times n$ matrix with orthonormal columns. Suppose $x, y \in \mathbb{R}^{n}$. Then:

1. $\|U x\|=\|x\|$.
2. $(U x) \bullet(U y)=x \bullet y$.
3. $(U x) \bullet(U y)=0$ if and only if $x \bullet y=0$.

Proof. The first and third statements are special cases of the second since $\|U x\|=\|x\|$ if and only if $(U x) \bullet(U x)=x \bullet x$. The second statement holds since $(U x) \bullet(U y)=x^{T} U^{T} U y=x^{T} I y=x^{T} y=x \bullet y$.

3 Orthogonal projections onto subspaces

We have already seen that if $y \in \mathbb{R}^{n}$ and $L \subseteq \mathbb{R}^{n}$ is a 1 -dimensional subspace then y can be written uniquely as $y=\widehat{y}+z$ where $\widehat{y} \in L$ and $z \in L^{\perp}$. This generalizes to arbitrary subspaces as follows:

Theorem. Let $W \subseteq \mathbb{R}^{n}$ be any subspace. Let $y \in \mathbb{R}^{n}$.
Then there are unique vectors $\widehat{y} \in W$ and $z \in W^{\perp}$ such that $y=\widehat{y}+z$.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthogonal basis for W then

$$
\begin{equation*}
\widehat{y}=\frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1}+\frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2}+\cdots+\frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p} \quad \text { and } \quad z=y-\widehat{y} . \tag{}
\end{equation*}
$$

It doesn't matter which orthogonal basis is chosen for W; this formula gives the same value for \widehat{y} and z.
Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact will be proved later in this lecture. Choose one such basis $u_{1}, u_{2}, \ldots, u_{p} \in W$.
Define \widehat{y} by the given formula. Then $\widehat{y} \in W$ and $y-\widehat{y} \in W^{\perp}$ since for each $i=1,2, \ldots, p$ we have

$$
(y-\widehat{y}) \bullet u_{i}=y \bullet u_{i}-\frac{y \bullet u_{i}}{u_{i} \bullet u_{i}} u_{i} \bullet u_{i}=0 .
$$

To show uniqueness, suppose $y=\widehat{u}+v$ where $\widehat{u} \in W$ and $v \in W^{\perp}$.
Since we already have $y=\widehat{y}+z$, we must have $\widehat{u}-\widehat{y}=z-v$. But $\widehat{u}-\widehat{y}$ is in W while $z-v$ is in W^{\perp}, so both expressions must be zero as $W \cap W^{\perp}=\{0\}$. This means we must have $\widehat{u}=\widehat{y}$ and $v=z$.

Definition. The vector \widehat{y}, defined relative to y and W by the formula (*) in the preceding theorem, is the orthogonal projection of y onto W. From now on we will write $\operatorname{proj}_{W}(y)=\widehat{y}$ to refer to this vector.

Corollary. If $W \subseteq \mathbb{R}^{n}$ is any subspace then $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
Proof. The preceding theorem shows that W and W^{\perp} together span \mathbb{R}^{n}. Therefore the union of any basis for W with a basis for W^{\perp} also spans \mathbb{R}^{n}.

The size of such a union is at most $\operatorname{dim} W+\operatorname{dim} W^{\perp}$ and at least n, so $n \leq \operatorname{dim} W+\operatorname{dim} W^{\perp}$. This means that $\operatorname{dim} W^{\perp} \geq n-\operatorname{dim} W$. We showed last time that $\operatorname{dim} W^{\perp} \leq n-\operatorname{dim} W$, so $\operatorname{dim} W^{\perp}=n-\operatorname{dim} W$.
$\underline{\text { Properties of orthogonal projections onto a subspace } W \subseteq \mathbb{R}^{n} \text {. }}$
Fact. If $y \in W$ then $\operatorname{proj}_{W}(y)=y$. If $y \in W^{\perp}$ then $\operatorname{proj}_{W}(y)=0$.
Proposition. If $v \in W$ and $y \in \mathbb{R}^{n}$ and $v \neq \operatorname{proj}_{W}(y)$ then $\left\|y-\operatorname{proj}_{W}(y)\right\|<\|y-v\|$.
In words: the projection $\operatorname{proj}_{W}(y)$ is the vector in W that is closest to y.
Proof. Let $\widehat{y}=\operatorname{proj}_{W}(y)$. Then $y-v=(y-\widehat{y})+(\widehat{y}-v)$.
The first term in parentheses is in W^{\perp} while the second term is in W.
Therefore by the Pythagorean theorem $\|y-v\|^{2}=\|y-\widehat{y}\|^{2}+\|\widehat{y}-v\|^{2}>\|y-\widehat{y}\|^{2}$ since $\|\widehat{y}-v\|>0$.

Fact. Suppose $u_{1}, u_{2}, \ldots, u_{p}$ is an orthonormal basis of W. Then

$$
\operatorname{proj}_{W}(y)=\left(y \bullet u_{1}\right) u_{1}+\left(y \bullet u_{2}\right) u_{2}+\cdots+\left(y \bullet u_{p}\right) u_{p}
$$

Define the matrix $U=\left[\begin{array}{llll}u_{1} & u_{2} & \ldots & u_{p}\end{array}\right]$. Then $\operatorname{proj}_{W}(y)=U U^{T} y$.

4 The Gram-Schmidt process

The Gram-Schmidt process is an algorithm that takes an arbitrary basis for some subspace of \mathbb{R}^{n} as input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let $W \subseteq \mathbb{R}^{n}$ be a nonzero subspace. Then W has an orthogonal basis.
(The zero subspace $\{0\}$ has an orthogonal basis given by the empty set, but we exclude this trivial case.)
Gram-Schmidt process. Suppose $x_{1}, x_{2}, \ldots, x_{p}$ is any basis for W.
Then an orthogonal basis is given by the vectors $v_{1}, v_{2}, \ldots, v_{p}$ defined by the following formulas:

$$
\begin{aligned}
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
& v_{4}=x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
& v_{p}=x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

These formulas are inductive: to compute any v_{i} you need to have already computed $v_{1}, v_{2}, \ldots, v_{i-1}$.

More strongly, we can say the following. Let $W_{i}=\mathbb{R}-\operatorname{span}\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$ for each $i=1,2, \ldots, p$.
Then $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} and $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$.
(Our proof of the existence of orthogonal projections relies on this theorem.)
Proof. For $i=1,2, \ldots, p$ and $y \in \mathbb{R}^{n}$ define $\operatorname{proj}_{W_{i}}(y)=\frac{y \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}+\frac{y \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}+\cdots+\frac{y \bullet v_{i}}{v_{i} \bullet v_{i}} v_{i}$.
We want to show that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each i.
If we assume that this is true for any particular value of i, then the formula $v_{i+1}=x_{i+1}-\operatorname{proj}_{W_{i}}\left(x_{i+1}\right)$ automatically holds, which means that $v_{i+1} \in W_{i}^{\perp}$ so $v_{1}, v_{2}, \ldots, v_{i}, v_{i+1}$ is also an orthogonal set, and therefore an orthogonal basis for W_{i+1}.
The single vector $v_{1}=x_{1}$ is necessarily an orthogonal basis for $W_{1}=\mathbb{R}-\operatorname{span}\left\{v_{1}\right\}$.
Therefore v_{1}, v_{2} is an orthogonal basis for W_{2}, which means that v_{1}, v_{2}, v_{3} is an orthogonal basis for W_{3}; continuing in this way, we deduce that $v_{1}, v_{2}, \ldots, v_{i}$ is an orthogonal basis for W_{i} for each $i=1,2, \ldots, p$. In particular $v_{1}, v_{2}, \ldots, v_{p}$ is an orthogonal basis for $W_{p}=W$.

Remark. To find an orthonormal basis for a subspace W, first find an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$. Then replace each vector v_{i} by $u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}$. The vectors $u_{1}, u_{2}, \ldots, u_{p}$ will then be an orthonormal basis.
Example. Suppose $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.
These vectors are linearly independent and so are a basis for the subspace $W=\mathbb{R}$-span $\left\{x_{1}, x_{2}, x_{3}\right\}$.
To compute an orthogonal basis for W, we carry out the Gram-Schmit process as follows:

- We set $v_{1}=x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. Then $v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.
- Finally let $v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]-\frac{2}{3}\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]=\left[\begin{array}{r}0 \\ -2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$.

The vectors $v_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{r}-3 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right], v_{3}=\left[\begin{array}{r}0 \\ -2 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$ are then an orthogonal basis for W.

5 Vocabulary

Keywords from today's lecture:

1. Orthonormal vectors.

Two vectors $u, v \in \mathbb{R}^{n}$ are orthogonal if $u \bullet v=0$.
A set of vectors in \mathbb{R}^{n} is orthogonal if any two of the vectors are orthogonal.
A set of vectors in \mathbb{R}^{n} is orthonormal if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis $e_{1}, e_{2}, \ldots, e_{n}$ of \mathbb{R}^{n} is orthonormal.
2. Orthogonal projection of a vector $y \in \mathbb{R}^{n}$ onto a subspace $W \subseteq \mathbb{R}^{n}$.

The unique vector $\operatorname{proj}_{W}(y) \in W$ such that $y-\operatorname{proj}_{W}(y)$ is orthogonal to every element of W.
If $u_{1}, u_{2}, \ldots, u_{p}$ is an orthonormal basis for W then

$$
\operatorname{proj}_{W}(y)=\left(y \bullet u_{1}\right) u_{1}+\left(y \bullet u_{2}\right) u_{2}+\cdots+\left(y \bullet u_{p}\right) u_{p} .
$$

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would be "orthonormal matrix," but this term is not commonly used.
Equivalently, a matrix U is orthogonal if and only if U is invertible and $U^{-1}=U^{T}$.
Example: every rotation matrix $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.

4. Gram-Schmidt process.

A specific algorithm whose input is an arbitrary basis $x_{1}, x_{2}, \ldots, x_{p}$ for a subspace of \mathbb{R}^{n} and whose output is an orthogonal basis $v_{1}, v_{2}, \ldots, v_{p}$ for the same subspace. Explicitly:

$$
\begin{aligned}
& v_{1}=x_{1} . \\
& v_{2}=x_{2}-\frac{x_{2} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1} . \\
& v_{3}=x_{3}-\frac{x_{3} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{3} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2} . \\
& v_{4}=x_{4}-\frac{x_{4} \bullet v_{1}}{v_{1} \bullet v_{1}} v_{1}-\frac{x_{4} \bullet v_{2}}{v_{2} \bullet v_{2}} v_{2}-\frac{x_{4} \bullet v_{3}}{v_{3} \bullet v_{3}} v_{3} . \\
& \vdots \\
& v_{p}=x_{p}-\frac{x_{p} \bullet v_{1}}{v_{1} \bullet v_{1}}-\frac{x_{p} \bullet v_{2}}{v_{2} \bullet v_{2}}-\cdots-\frac{x_{p} \bullet v_{p-1}}{v_{p-1} \bullet v_{p-1}} v_{p-1} .
\end{aligned}
$$

