
MATH 2121 — Linear algebra (Fall 2022) Practice Problems — Week 11 (due 23 November)

Instructions: Choose 2 problems and write down detailed solutions, showing all necessary work. You
can earn up to 8 extra credit points by correctly solving additional problems.1

Feel free to discuss problems with other students but write up your own solutions. If your solutions
appear to be copied from somewhere else, you will automatically receive zero credit.

To get full credit for the offline homework, you just need to make a good-faith attempt on two problems.
The bar for receiving extra credit points is higher: your solutions need to be close to completely correct.

Show all steps and provide justification for all answers.

1. Let A =


1 2 1
1 0 0
0 1 2
−1 1 1

 and b =


2
6
5
5

.

Find the orthogonal projection of b onto the orthogonal complement of the column space of A.

Show all the steps in your derivation to receive credit.

2. Find all least-squares solutions to the linear equation Ax = b where

A =


1 1 0
1 1 0
0 1 1
0 1 0
1 1 1
1 0 1

 and b =


2
0
2
2
2
1

 .

Show all the steps in your derivation to receive credit.

3. Suppose A =

 1 3
0 −1
2 2

 and b =

 2
1
h

.

(a) For which values of h ∈ R does Ax = b have an exact solution?

For such h, find all exact solutions to Ax = b.

(b) For which values of h ∈ R does Ax = b have a least-squares solution?

For such h, find all least-squares solutions to Ax = b.

Show all the steps in your derivation to receive credit.

4. Suppose b ∈ Rn is a list of numeric data.

There exists a matrix A such that the mean of b is the unique least-squares solution x̂ to Ax = b
and the (uncorrected sample) standard deviation of b is 1√

n
‖Ax̂− b‖.

What is A?

Explain your answer (which should depend on n but not on b).

5. Suppose A =

 3 −6 0
−6 0 6

0 6 −3

.

Find an orthogonal matrix U and a diagonal matrix D such that A = UDU>.

Show all the steps in your derivation to receive credit.

1 There will be ∼11 weeks of assignments, each with ∼10 practice problems, so you can earn up to ∼88 equally weighted
extra credit points. The maximum amount of extra credit you can earn is 5% of your total grade for the semester.
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6. Suppose A = A> is a symmetric n× n matrix with all real entries.

(a) Explain why v>Av > 0 for all nonzero v ∈ Rn if A has all positive eigenvalues.

(b) Explain why v>Av = 0 for some nonzero v ∈ Rn if A has zero as an eigenvalue.

(c) Explain why v>Av < 0 for some v ∈ Rn if A has a negative eigenvalue.

This shows that v>Av > 0 for all nonzero v ∈ Rn if and only if A has all positive eigenvalues.

A symmetric matrix with this property is called positive definite.

This also shows that v>Av ≥ 0 for all v ∈ Rn if and only if A has all nonnegative eigenvalues.

A symmetric matrix with this property is called positive semidefinite.

7. Suppose A = A> is a symmetric n× n matrix with all real entries.

Explain why A = B>B for some n× n matrix B (possibly with complex entries).

Compute a value for B when A =

 3 −6 0
−6 0 6

0 6 −3

.

8. Suppose A = A> is a positive semidefinite symmetric n× n matrix with all real entries.

Explain how to find a positive semidefinite symmetric n×n matrix B with all real entries such that

A = B2. Compute B when A =

 40 −28 −26
−28 52 2
−26 2 25

.

*9. Find the values of x, y ∈ R that minimize the distance between the vectors

 x
x
x

 and

 y
3y
−1

.

Show all the steps in your derivation to receive credit.

*10. Suppose a1 < a2 < a3 are real numbers and b1, b2, b3 ∈ R.

Explain why the points (x, y) = (a1, b1), (a2, b2), (a3, b3) are all on the same line if and only if

a1(b3 − b2) + a2(b1 − b3) + a3(b2 − b1) = 0.

(One approach: consider the line of best fit through the three points.)
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