Due on Thursday, March 17.

Except when mentioned otherwise, all Lie algebras and vector spaces below are defined over an algebraically closed field \mathbb{F} of characteristic zero.

1. Let A be a finite-dimensional \mathbb{F} -algebra. Recall that Der A is defined to be the set of linear maps $\delta : A \to A$ satisfying $\delta([X,Y]) = [X,\delta(Y)] + [\delta(X),Y]$ for $X, Y \in A$, where [X,Y] = XY - YX.

Each $X \in \text{Der } A$ is a linear map $A \to A$ so has a unique Jordan decomposition $X = X_s + X_n$.

Here X_s and X_n are also linear maps $A \to A$ satisfying some properties.

Prove that actually $X_s \in \text{Der } A$ and $X_n \in \text{Der } A$.

(Fill in the details to the proof of Lemma 4.2B in textbook.)

Conclude that if L is a semisimple Lie algebra of finite dimension then for each $X \in L$ there are unique elements $X_s, X_n \in L$ with $\operatorname{ad}(X_s) = (\operatorname{ad} X)_s$ and $\operatorname{ad}(X_n) = (\operatorname{ad} X)_n$.

2. Let *m* be a nonnegative integer and let V(m) be a vector space with basis $v_0, v_1, v_2, \ldots, v_m$. Define $Hv_i = (m-2i)v_i$ and $Yv_i = (i+1)v_{i+1}$ and $Xv_i = (m-i+1)v_{i-1}$ where $v_{-1} = v_{m+1} = 0$. Show that these formulas extend to a module structure for the Lie algebra $\mathfrak{sl}_2(\mathbb{F})$ where

$$H = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad \text{and} \quad X = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

To check this, verify that the matrices describing the action of H, Y, and X on V(m) satisfy the same Lie bracket equations as H, Y, and X do.

- 3. $M = \mathfrak{sl}_3(\mathbb{F})$ contains a copy of $\mathfrak{sl}_2(\mathbb{F})$ in its upper left 2×2 position. We can view M as an $\mathfrak{sl}_2(\mathbb{F})$ -module via the adjoint representation. Decompose M into irreducible $\mathfrak{sl}_2(\mathbb{F})$ -modules and show that $M \cong V(0) \oplus V(1) \oplus V(1) \oplus V(2)$ as $\mathfrak{sl}_2(\mathbb{F})$ -modules.
- 4. Suppose (just for this exercise) that \mathbb{F} has characteristic p > 0. What numbers can occur as p? Show that the $\mathfrak{sl}_2(\mathbb{F})$ -module V(m) in Exercise 1 is irreducible if m < p, but reducible when m = p.
- 5. Let $\lambda \in \mathbb{F}$ be an arbitrary scalar. Let $M(\lambda)$ be a vector space with a countably infinite basis v_0, v_1, v_2, \ldots . Define $Hv_i = (\lambda 2i)v_i$ and $Yv_i = (i+1)v_{i+1}$ and $Xv_i = (\lambda i + 1)v_{i-1}$ where $v_{-1} = 0$. Your solution to Exercise 1 should easily extend to an argument that that these formulas make $M(\lambda)$ into an $\mathfrak{sl}_2(\mathbb{F})$ -module. For which values of λ is $M(\lambda)$ irreducible? Prove your answer.
- 6. Assume L is a classical linear Lie algebra of type A_n . Prove that the set H of all diagonal matrices in L is a maximal toral subalgebra.
- 7. Assume L is a classical linear Lie algebra of type A_n . Determine the roots and root spaces corresponding to the root space decomposition of L relative to the maximal toral subalgebra of diagonal matrices H.
- 8. Assume L is a classical linear Lie algebra of type C_n . Prove that the set H of all diagonal matrices in L is a maximal toral subalgebra.
- 9. Assume L is a classical linear Lie algebra of type C_n . Determine the roots and root spaces corresponding to the root space decomposition of L relative to the maximal toral subalgebra of diagonal matrices H.