This assignment is a little longer than usual since the due date is after spring break.

Due on Wednesday, April 12.

Except when mentioned otherwise, all Lie algebras and vector spaces below are finite-dimensional and defined over an algebraically closed field \mathbb{F} of characteristic zero.

1. Compute the basis of $\mathfrak{sl}_n(\mathbb{F})$ which is dual to the standard basis via the Killing form κ .

(This is an upgrade of an earlier exercise which considered the case n = 2.)

Use this to compute t_{α} and $h_{\alpha} := 2t_{\alpha}/\kappa(t_{\alpha}, t_{\alpha})$ for each $\alpha \in \Phi$, relative to the root space decomposition in which $H \subset \mathfrak{sl}_n(\mathbb{F})$ is the maximal toral subalgebra of traceless diagonal matrices.

Recall that $t_{\alpha} \in H$ for $\alpha \in H^*$ is the unique element with $\kappa(t_{\alpha}, h) = \alpha(h)$ for all $h \in H$.

2. Let L be a semisimple Lie algebra with a maximal toral subalgebra H.

Prove that if $h \in H$ then the centralizer $C_L(h) := \{X \in L : [X,h] = 0\}$ is a reductive Lie algebra. Prove that there are elements $h \in H$ with $C_L(h) = H$.

For which $h \in H$ does this hold if $L = \mathfrak{sl}_n(\mathbb{F})$ and H is the subalgebra of traceless diagonal matrices?

If $\Phi \subset E$ and $\Phi' \subset E'$ are root systems, then an isomorphism $\Phi \to \Phi'$ is a linear bijection $f : E \to E'$ with $f(\Phi) = \Phi'$ and $\langle f(\beta), f(\alpha) \rangle = \langle \beta, \alpha \rangle$ for all $\alpha, \beta \in \Phi$, where $\langle \beta, \alpha \rangle = 2(\beta, \alpha)/(\alpha, \alpha)$. The map f does not need to be an isometry with respect to the forms (\cdot, \cdot) on E and E'.

- 3. Prove that every three dimensional semisimple Lie algebra has the same root system as $\mathfrak{sl}_2(\mathbb{F})$ up to isomorphism, and so is isomorphic to $\mathfrak{sl}_2(\mathbb{F})$.
- 4. Prove that no four, five, or seven dimensional semisimple Lie algebras exist.

Below, let Φ be a root system with ambient space E, associated form (\cdot, \cdot) , and Weyl group W.

5. Define $\Phi^{\vee} = \{ \alpha^{\vee} : \alpha \in \Phi \}$ where $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$.

Check that $\langle \alpha^{\vee}, \beta^{\vee} \rangle = \langle \beta, \alpha \rangle$ for $\alpha, \beta \in \Phi$.

Prove that Φ^{\vee} is a root system (in the same vector space) whose Weyl group is isomorphic to W.

Draw a picture of Φ^{\vee} versus Φ when Φ has type A_1, A_2, B_2 , and G_2 .

- 6. Let Φ' be a nonempty subset of Φ with $-\Phi' = \Phi'$, such that if $\alpha, \beta \in \Phi'$ and $\alpha + \beta \in \Phi$ then $\alpha + \beta \in \Phi'$. Prove that Φ' is a root system in the subspace of E that it spans.
- 7. An *automorphism* of Φ is an isomorphism of root systems from Φ to itself.

Prove that W is a normal subgroup of the group $Aut(\Phi)$ of all automorphisms of Φ .

- 8. Show by example that it can happen that $\alpha \beta \in \Phi$ for $\alpha, \beta \in \Phi$ with $(\alpha, \beta) \leq 0$.
- 9. For $\gamma \in E$ let $P_{\gamma} = \{v \in E : (v, \gamma) > 0\}$. Prove for any finite set of linearly independent vectors $\gamma_1, \gamma_2, \ldots, \gamma_k \in E$ that the intersection $\bigcap_{i=1}^k P_{\gamma_i}$ is nonempty.
- 10. Fix a simple system Δ for Φ and define $\Phi^{\pm} \subset \Phi$ accordingly. Prove that there is a unique element $w_0 \in W$ with $w_0(\Phi^+) = \Phi^-$. Prove that any reduced expression for w_0 must involve every simple reflection r_{α} for $\alpha \in \Delta$.
- 11. Prove that if Φ is irreducible then so is Φ^{\vee} .
- 12. Prove that if $0 \neq \alpha \in E$ and the reflection r_{α} belongs to W, then $r_{\alpha} = r_{\beta}$ for some $\beta \in \Phi$.