Math 5143 - Lecture #3

Review from last time functions,
Notation: whenever f and g are things we
can compose or multiply, we define

$$[f,g] \stackrel{def}{=} fg-gf$$

Choose IF to be an arbitrary field (or just set F=C)
Def. A Lie algebra is an IF-vector space L with
an alternating bilinear form $[\cdot, \cdot]: L \times L \rightarrow L$ added - added

where for any vector space V, we write gl(v)for the set of all linear maps $V \rightarrow V$. Remark The Jacobi identity ad[x,y] = [adx,ady]is equivalent to [x, (y,z]] + [y, [z,x]] + [z, (xy)] = 0 $V x, Y, z \in L$.

$$ad: L \rightarrow gl(L)$$

This definition emphasizes the importance of the adjoint represention of L, which is the map

Def A morphism of Lie algebras
is a linear map
$$\phi: L_1 \rightarrow L_2$$
 such that
 $\phi([x_1Y]) = [\phi(x), \phi(y)]$ for all $x, y \in L_1$.
Morphisms can be injective, surjective, or bijective
 $\Leftrightarrow \ker \phi^{\pm d}[x_{1L_1}|\phi(x)=o]$
is zero

Favorile example: $ad: L \rightarrow gl(L)$ is Lie algebra morphism. Here gl(L) is a Lie algebra with bracket [X,Y] = XY - YX. If A is and associative algebra than we can view A as a Lie algebra in the same way, with bracket [X,Y] = XY - YX. If V is a ff-vector space with din V=n < 00 the choosing a basis for V defines a Lie algebra is on orphism gliv) - glin (F) det [han matrices] A constructive way to think about finite-dim Lie algebrar is as subalgebrar of gln(FF), i.e. as subspaces closed under the Lie bracket. This loses no information: Thin (Ado, et al.) Every Lie algebra L with dim L < 00 is isomorphic to a Lie rubalgebra of gln(IF) for some n.

Basic terminology Suppose L is a Lie algebra O If H,K EL are subspaces, then [H,K] = subspace spanned by {[x,y]: x 6H, Y EK} (Lie) subalgebra is a subspace KSL with [k,k] <k (2) An ideal $I \leq L$ is a subspace with $[L_{I}] = [I_{I}L] \leq I$ Any ideal is also a subalgebra. this holds as $[X_{I}Y] = -[Y_{I}X]$ 3 The center of L is the ideal Z(L) = [XEL] [X,Y]=0 YYEL] $\Theta \ L \ is \ abelian \ if \ Z(L) = L \ or \ if \ [L,L] = O \ (equivalent) propertier)$ $(means \ [X,Y] = O \ \forall X,Y(L)$ GLissimple if Lisnot abelian and has no nonzero ideal guidient vector space except Litself GIFIGLis an ideal then L/I=[x+I]xEL] is a Lie algebra for the bracket [X+I, Y+I] = [X,Y]+I for X,YEL

(1) A representation of L is a morphrism, (1: L-+ gl(v)) for some vector spece V (3) The normalizer and centralizer of a subspace KSL are the sets NL(k) = { XEL (adx)(k) ≤ k] and $C_{L}(k) = \{ X \in L \mid (ad X)(k) = 0 \}$ largest subalgebra of L containg K as an ideal Normalizer is an ideal of NK(1): if YENL(K), XECL(K), ZEK Centralizer is then $\operatorname{d}[Y,X](z) = (\operatorname{adYad} X)(z) - (\operatorname{adXad} Y)(z) = 0$ =[Y,Z] (K ** X end of review ***

Solvable Lie algebras
$$Pefine \left\{ L^{(n)} = L \\ L^{(n+1)} = \left[L^{(n)} L^{(n)} \right] \right\}$$

Recall, if $I, J \leq L$ then $[I, J]$ is the span of $\{I_{A,Y}\} | X \in J \\ Y \in J$
L is solvable if $L^{(n)} = 0$ for some $n \gg 0$.
Ex If $t_n(F) = upper - \Delta$ matrices
 $\pi_n(F) = \pi trictly upper - \Delta$ matrices
then one can check that $t_n(F)^{(1)} = \pi_n(F)$
 $t_n(F)^{(n)} = 0$ if $2^{k-1} \geq n-1$ so $L_n(F)$ is solvable.

Prop Lise Lie algebra. If Lis polvable then So are all subalgebras and honomorphic images of L Pf If K < L than $K^{(n)} \leq L^{(n)}$ and $\varphi(L)^{(n)} = \varphi(L^{(n)})$ if φ is a margh-im. D

Prop If ISL is solvable ideal and LIJ is solvable then L is solvable.

pf In this case $L^{(n)} \leq I$ for some n>>0 and $I^{(m)} = 0$ for some n>>0 so $L^{(m+1)} = 0$. D Prop If I, J S L are both solvable ideals then so is I+J.

Pf (I+J) J = I/INJ is solvable, as is J D homomorphic image of I

Cor. If Jim L < 00 then L has a unique maximal solvable ideal (which is equal to L iff L is solvable) of IF S is a maximal solvable ideal of L and I < L is any solvable ideal then S+I is solvable and contains S, so must be equal to S. Thus if I is [maximal] then S = S+I = ID ** * Assume Jim(L) < 00 *** We denote the unique maximal solvable ideal of a Lie algebra L by Rad(L), call it the radical Def L is semisimple if Rad(L) =0 that is, it I has no nonzerro solvable ideals. (later will see that remisimple () direct sum of simple") Fact If Lis simple then L is semisimple Fact L (Rad (L) is semisimple Pf If L is simple then Pf preimage of any nonzero ideal Of [L, L] = L SO L is not polyable in L(Rod(L) is an ideal I SL So RadWill a proper ideal so Containing Rad(L) SO is not solvable. So Rad(L) is a proper ideal so by propositions, I/Rad(L) is not solvable. Mult be zero. D

Nilpotent Lie algebras

L is nilpotent if
$$L^{n} = 0$$
 for some $n \Rightarrow > 0$
where $L^{0} = L^{(0)} = L$, $L^{1} = L^{(1)} = [L, L]$
 $L^{2} = [L, [L, L]] \supseteq L^{(2)}$
 $L^{3} = [L, [L, [L, [L]]]$, ...,
 $L^{nH} = [L, L^{n}]$
nilpotent \implies solvable.
"strictly upper- Δ ,
matrix"

Prop If L is nilpotent therso are all of its subabelongs and homomorphic images. PF IF K EL then K" E L" and if $\phi: L \rightarrow k$ is a morphism than $\phi(L)^{n} = \phi(L^{n})$ Prop If L/Z(L) is nilpotent then L is nilpotent (ender Pf In this case, L" = Z(L) for some n>0 and then Lnth S [L, Z(L)] = 0. D Prop If L is nilpotent and L +0 then Z(L) +0 Pf If L" to and Lnt =0 then 0 the 2 (L). D

Prop L is nilpotent if and only if there is some
$$n \gg 0$$

such that $ad_X, ad_X_2 \dots ad_X_n = 0$ (as a map L+L)
for all $X_{1,1}X_{2,...,}X_n \in L$ to concatenation for means forg
 Pf Lⁿ is spanned by the form $(ad_X, ad_X_2 \dots ad_X_n)(Y)$
 $= [X_{1,1}[X_{2,1}(X_{3,...,}(X_{n,1}Y)...]]]$ for $X_{1,1}Y \in L$. []
we say that $X \in L$ is ad-nilpotent if ad_X is a
nilpotent linear transformation L-3L, i.e. $(ad_X)^n = 0$ for some n
(ar If L is nilpotent then every $X \in L$ is ad-nilpotent
 Pf Take $X_1 = X_2 = \dots = X_n = X$ in prop. above. []

Engel's thn: Assume Lis Lie algebra with dim L200. Then L is nilpotent if (and only if) every element XEL is ad-hilpotent.

In other words, L is nilpotent if and only if the image ad L = gl(L) is a set of nilpetent transformation Lemma 1 If $x \in gl(v)$ is nilpotent $(x^n = 0 \text{ for } n >> 0)$ then ad X is nilpotent (as an element of gl(gl(v))) Pf Let $J_x(Y) = XY$ and $P_x(Y) = YX$. Then is and P, are commuting nilpotent elems of gl(gl(v)) Since $\lambda_{\lambda} \rho_{\lambda}(Y) = \rho_{\lambda} \lambda_{\lambda}(Y) = \chi Y \lambda$. If $\chi^{n} = 0$ then $\rho_{\lambda}^{n} = \lambda_{\lambda}^{n} = 0$ Since $\lambda_{\lambda} \rho_{\lambda}(Y) = \rho_{\lambda} \lambda_{\lambda}(Y) = \chi Y \lambda$. If $\chi^{n} = (\lambda_{\lambda} - \rho_{\lambda})^{2n} =$

Thm Suppose L S gl(V) is a Lie subalgebra and 0 = dim V < 00, Arsume that every XEL is nilpotent (so Xⁿ = 0 for some ~>0 depending on X). Then there exists 0 = v ∈ V with Xv = O for all XEL. Pf. Any hilpotent linear transformation X has an eigenvector with eigenvalue zoro (take any nonzero column of X to if Xⁿ⁺¹=0) If din L SI then can just take veV to be any O-eigenvector of some 0 \$XEL. Suppose d in L>1 and Ict KSL. be a maximal proper Lie subalgebra. By induction (with add and L/K replacing L and V) there is a vector XEL-K with LYIXJEK for all YEK. { there is non-zero element (ady)(X+K)=0+K YYEK

This means that $K \subseteq N_L(K)$ because $N_L(k) \ni X \notin K$. Since KSL is a maximal subalgebra, we must have $L = N_L(k)$ so $K \leq L$ is actually an ideal. Since K is an ideal, the direct run KOFZ is a Lie subalgebra of L for and ZEL-K. Therefore we must have L = KBIFZ for any ZEL-K and dim L = dim K+1. By induction on dim L, the subspace W={vEV| Yv=0 VYEK} is nonzero and we have LW Sw since if XEL, YEK, we withen Any ZEL-K acts as a nilpotent linear map W->W $Y X_{w} = X Y_{w} - [X_{i}Y]_{w} = 0.$ so has a O-eigenvector O=veW with Zv=O This vector is then a O-eigenvector for every element XEKOFFZ=L.D

Assume every XEL is ad-nilpotent. (with dim L<00) Then ad L S gl(L) satisfies conditions of prev thm, So exists $0 \neq X \in L$ with (adY)(X) = [Y,X] = 0 for which means that Z(L) 70. But now L[Z(L) has smaller dimension with all elements still ad-nilpotent, so by induction L/Z(L); s nilpotent. Hence by earlier lemma, L is also nilpotent. D

Proof of Engel's flow: if adx is nilpotent to XEL then Lis nilpotent, assuming Jim L 200

Cor If dimV=n<00 and L≤gl(v) consists of all nilpotent elems then there exists a flog of vector spaces $0 = v_0 \in v_1 \subseteq v_2 \subseteq \dots \subseteq v_h = V$ such that $XV_i \subseteq V_{i-1}$ for all i and all $X \in L_i$ Equivalently, there exists a basis of V relative to which the matrices of all elements $X \in L$ are strictly upper- Δ . Pf Set V = IFV where O = ve V has Lv = O Therapply induction to image of L in gl(V/V1). D

Cor If dimles and L is nilpetent and KSL is a nonzero ideal then Z(L) NK +0. Pf Lactron K by adjoint representation so theorem above implies that there exits $0 \neq x \in k \quad \text{with} \quad (a \neq y)(x) = [y, x] = 0 \quad \forall Y \in L,$ i.e. X is an nonzero element of Z(L) NK. d