Math 5143 -Lecture ${ }^{\#}$

Review from last time
functions, matrices, etc.

Notation: whenever f and g are things we can compose or multiply, we define

$$
[f, g] \stackrel{\text { def }}{=} f g-g f
$$

Choose \mathbb{F} to be an arbitrary field (or just set $\mathbb{F}=\mathbb{C}$)
Def. A Lie algebra is an rector space L with an alternating bilinear form $[\cdots]:, L \times L \rightarrow L$

Satisfying the Jacobi identity $a d[x, Y]=[a d x, a d Y] \forall x, Y \in L$

This definition emphasizes the importance of the adjoint represention of L, which is the map

$$
a d: L \rightarrow g l(L)
$$

where for any vector space V, we write $g l(v)$ for the set of all linear maps $V \rightarrow V$.

Remark The Jacobi identity $\operatorname{ad}[x, y]=[a d x$, a dy $]$ is equivalent to $[x,(y, Z]]+[Y,[z, x)]+[z,[x, y]]=0$ $\forall x, Y, Z \in L$.

Def A morphism of Lie algeloras
is a linear map $\phi: L_{1} \rightarrow L_{2}$ such that

$$
\phi([x, y])=[\phi(x), \phi(y)] \underset{\leftrightarrow}{\text { for }} \text { all } x, y \in L_{2},
$$

morphisms can be injective, surrjective, or bijective

$$
\begin{aligned}
& \Leftrightarrow \text { er } \phi \text { Ddt }\{X \in L, \mid \phi(A)=0\} \\
& \text { is zero }
\end{aligned}
$$

Favorite example: ad: $L \rightarrow g(L)$ is Lie algelora morphim Here $g(L)$ is a Lie algebra with bracket $[x, r]=x y-y x$. If A is any associative algebra then we con view A as a Lie algebra in the same way, with bracket $[x, y]=x-4 x$

If V is a \mathbb{H}-vector space with $\operatorname{dim} V=n<\infty$ the choosing a basis for V defines a Lie algelora is omorphism $g l(v) \rightarrow g l_{n}(\mathbb{F}) \stackrel{\text { def }}{=}\left\{\begin{array}{c}\text { hin matrices } \\ \text { over if }\end{array}\right\}$

A construct we way to think about finte-dim Lie alogbier is as subalgebras of $\mathrm{g} \ell_{n}(F)$, ie as subspaces closed under the Lie bracket. This loses no information:
$T h m$ (Ado, et al.) Every Lie algebra L with $\operatorname{dim} L<\infty$ is isomorphic to a Lie rubalgebra of $g l_{n}(\mathbb{F})$ for some n.

Basic terminology Suppose L is a Lie algebra
(O) If $H, K \subseteq L$ are subspaces, then $[H, K]=$ subspace spanned) by $\{[\alpha, Y]: x \in H, Y \in K\}$
(1) A (Lie) subalgebra is a subspace $K \subseteq L$ with $[K, K] \subseteq K$
(2) An ideal $I \subseteq L$ is a subspace with $[L, I]=[I, L] \subseteq I$ Any ideal is also a subalgebro.
(3) The center of L is the ideal $Z(L)=\{x \in L \mid[x, Y]=0 \quad \forall \mathcal{L} \in\}$
(1) L is abelian if $Z(L)=L$ or if $[L, L]=0$ (equivalent) (means $[X, M]=0 \forall X, Y \in L$)
(5) L is simple if L is not abellam and has no nonzero ideals
(6) If $I \subseteq L$ is an ideal then $L / I=\{x+I \mid x \in L\}$ is a Lee algebra for the bracket $[x+I, y+I]=[x, y]+I$ for $x, y \in L$
(7) A representation of L is a marphrom $\phi: L \rightarrow g l(v)$ for some vector puce V
(3) The normalizer and centralizer of a sub space $K \subseteq L$ are the sets $N_{L}(k)=\{x \in L \mid(a d x)(k) \leq k\}$ and

$$
C_{l}(k)=\{x \in L \mid(\operatorname{ad} x)(k)=0\}
$$

largest
Normalizer is subbalegbre of L containg K as an ideal Centralizer is an ideal of $N_{k}(1)$ if $\varphi \in N_{L}(k), x \in C_{L}(k), z \in k$ then $\operatorname{ad}[y, x](z)=(\underbrace{\operatorname{ady} \operatorname{adx})}_{=0}(z)-(\underbrace{\operatorname{adx} \operatorname{adry}(z)}_{=[y, z] \in K}=0$
木 end of review ***
$\underline{\text { Solvable Lie algebras Define }\left\{\begin{array}{l}L^{(0)}=L \\ L^{(n+1)}=\left[L^{(n)}, L^{(n)}\right]\end{array} ~\right.}$
Recall, if $I, J \subseteq L$ then $[I, J]$ is the spend $[[x, y] \mid x \in I\}$
L is solvable if $L^{(n)}=0$ for same $n \gg 0$.
Ex If $t_{n}(\#)=$ upper $-\Delta$ matrices
$\Pi_{n}(T)=$ strictly upper $-\Delta$ matrices
then one con check that $t_{n}(\mathbb{F})^{(1)}=\Pi_{n}(\mathbb{F})$

$$
\begin{aligned}
& t_{n}(\mathbb{F})\left(\mathbb{N}=T_{n}(\mathbb{F})\right. \\
& t_{n}(\mathbb{F})^{(k)} \subseteq \operatorname{span}\left[E_{i j} \mid j-i \geq 2^{k-1}\right]
\end{aligned}
$$

so $\quad t_{n}(\mathbb{F})^{(k)}=0$ if $2^{(k-1}>n-1$ so $t_{n}(\mathbb{F})$ is solvable.

Prop L is a Lie algebra. If L is solvable then so are all subaloeboras and homomaphic images of L

Pf If $K \leqslant L$ then $K^{(n)} \subseteq L^{(n)}$ and $\phi(L)^{(n)}=\phi\left(L^{(n)}\right)$ if ϕ is a monadism. \square

Prop If $I S L$ is a solvable ideal and $L I I$ is solvable then L is solvable.

Pf In this care $L^{(n)} \subseteq I$ for some $n \gg 0$ and $I^{(m)}=0$ for some $m>0$ so $L^{(m+h)}=0.0$

Prop If $I, J \subseteq L$ are both solvable ideals then so is $I+J$.

$$
\text { Pf }(I+J) / J \cong \text { I } \underbrace{I \cap J}_{\substack{\text { homomapluc } \\ \text { image of } I}} \text { is solvable, as is } J D
$$

Cor. If $\operatorname{dim} L<\infty$ then L has a unique maximal solvable ideal (which is equal to L iff L is solvable)
Pf If S is a maximal solvable ideal of L and $I \subseteq L$ is any solvable ideal then $S+I$ is solvable and Contains S, so must be equal to S. Thus if I is $\left[\begin{array}{l}\text { maximal } \\ \text { solvable }\end{array}\right]$ then $S=S+I=I \Delta$
$* * *$ Assume $\operatorname{dim}(L)<\infty * * *$
We denote the unique maximal solvable ideal of a Lie algebra L by $\operatorname{Rad}(L)$, call it the radical

Def L is semisimple if $\operatorname{Rad}(L)=0$ that is, it L has no nonzero solvable ideals.
(later will see that semisimple \Leftrightarrow "direct sum of simple")
Fact $L / \operatorname{Rad}(L)$ is semisimple Fact If L is simple then L is semisimple Pf preimage of ans nonzero ideal Pf If L is simple then in $L(R o f(L)$ is an ideal $I S L \quad O \neq[L, L]=L$ so L is not solvable contaning Rad (L) so is not solvable so by propositions, I/Rad(L) is not solvable. so Radusis a proper ideal so must be zero. D

Nilpotent Lie algebr as
L is nilpotent if $L^{n}=0$ for sume $n \gg 0$ where $L^{0}=L^{(0)}=L, L^{\prime}=L^{(1)}=[L, L]$

$$
\begin{aligned}
& L^{2}=[L,[L, L]) \supseteq L^{(2)} \\
& L^{3}=[L,[L,[L L])], \cdots, \\
& L^{n+1}=\left[L, L^{n}\right]
\end{aligned}
$$

Prop. If L is nilpotent therso are all of its subabyebores and homomopphic images.

Pf If $K \subseteq L$ then $K^{n} \leq L^{n}$ and it $\phi: L \rightarrow K$ is a morphia then $\phi(L)^{n}=\phi\left(L^{n}\right) \square$

Prop If $L / \underset{\text { center }}{Z(L)}$ is nilpotent then L is nilpotent
Pf In this case, $L^{n} \subseteq Z(L)$ for some $n>0$ and then $L^{n+1} \subseteq[L, Z(L)]=0$. D

Prop If L is nilpotent and $L \neq 0$ then $Z(L) \neq 0$ Pf If $L^{n} \neq 0$ and $L^{n+1}=0$ then $0 \neq L^{n} \leq Z(L)$.

Prop L is nilpotent if and only if there is some $n \gg 0$ such that $a d x_{1}$ ad $x_{2} \ldots$ ad $x_{n}=0($ as a $\operatorname{mop} L+L)$ for all $x_{1}, x_{2}, \ldots, x_{n} \in L$
Pf L^{n} is spanned by elements of the form $\left(\operatorname{ad} x_{1} \operatorname{ad} x_{2} \ldots \operatorname{ad} x_{n}\right)(Y)$

$$
=\left[x_{1},\left[x_{2},\left[x_{3}, \ldots,\left[x_{n}, Y\right] \ldots\right]\right]\right] \text { for } x_{i}, Y \in L .
$$

we say that $x \in L$ is ad-nilpotent if $a d x$ is a nilpotent linear transformation $L \rightarrow L$, i.e. $(a d x)^{n}=0$ for some n
Car If L is nilpotent then every $X \in L$ is ad-nilpotent Pf Take $x_{1}=x_{2}=\cdots=x_{n}=x$ in prop. above. \square

Engels's the: Assume L is L ie algebra with $\operatorname{dim} L<\infty$.
Then L is nilpotent if (and only if) every element $x \in L$ is ad-hilpotent.

In other words, L is nilpotent if and only if the image ad $\leq g \ell(L)$ is a set of nilpetent transformations
Lemma) If $x \in g e(v)$ is nipotent ($x^{n}=0$ for $n \gg 0$) then ad is nilpotent (as an element of $g l(g e(v))$) Pf Let $\lambda_{x}(y)=x y$ and $P_{x}(y)=Y x$.
Then d_{y} and P_{x} are commuting nilpotent celoms of $g(g l(v))$ since $\lambda_{x} P_{x}(y)=P_{x} \lambda_{y}(y)=x y x$. If $x^{n}=0$ then $p_{x}^{n}=\lambda_{x}^{n}=0$

$$
\begin{aligned}
& \text { so } \left.(a d x)^{2 n}=\left(d_{x}-P_{x}\right)^{2 n}=\sum_{k}^{z}\left(L_{k}^{k}\right) A_{x}^{k}\right)_{x}^{2 n-x} \\
& =0 \mathrm{D}
\end{aligned}
$$

The Suppose $L S g l(V)$ is a Lie subalgebore and $0 \neq \operatorname{din} V<\infty$. Assume that ever, $x \in L$ is nilpotent (so $x^{n}=0$ for some $n>0$ depending on x). Then there exists $0 \neq V \in V$ with $X v=0$ for all $x \in L$.
Pf. Any nilpotent linear transformation x has an eigenvector with eigenvalue zero (take any nonzero column of $x^{n} \neq 0$ if $x^{n+1}=0$)
If $\operatorname{dim} L \leq 1$ then can just take $v \in V$ to be any 0 -eigenvector of some $0 \neq X \in L$. Suppose d in $L>1$ and let $K \leq L$. be a maximal proper Lie subalgebra.
By induction (with adM and L / K replacing L and V) there is

This means that $K \not \subset N_{L}(K)$ because $N_{L}(k) \ni X \notin K$. since $K \subseteq L$ is a maximal subalegora, we must have $L=N_{L}(K)$ so $K \subseteq L$ is actually an ideal.

Since K is an ideol, the direct sum $K \oplus \mathbb{H} Z$ is a Lie subalgebra of L for and $Z \in L-K$.
Therefore we must have $L=K \in \mathbb{F} Z$ for any $Z \in L-K$ and $\operatorname{dim} L=\operatorname{dim} K+1$. By induction on $\operatorname{dim} L$, the subspace $W=\left\{v \in V \mid Y_{v}=0 \forall Y \in K\right\}$ is nonzero and we have $L W \subseteq W$ since if $X \in L, Y \in K, W \in W$ then $Y X_{w}=X \underbrace{w}_{=0}-\underbrace{[X, Y]_{w}}_{\in K=0}=0$. Any $z \in L-K$ att as a nipodent linger map $W \rightarrow W$ so has a O - eigmeeter $0 \neq v \in W \quad$ with $Z v=0$

Proof of Engels's thm: : $\left[\begin{array}{l}\text { if ad is nippotent } \forall x \in L \text { then } L \text { is } \\ \text { nilpodent, assuming } \operatorname{dim} L<\infty\end{array}\right]$
Assume every $x \in L$ is ad-nilpolent. (with dimLLos)
Then ad $L \leq g l(L)$ satisfies conditions of prov the .
So exists $0 \neq X \in L$ with $(a d Y)(X)=[Y, X]=0 \forall$ Mel which means that $Z(L) \neq 0$. But now
$L \mid Z(L)$ has smaller dimension with all elements still ad-nilpotent, so by inaction $L / Z(L)$ is nilpotent. Hence by earlier lemma, L is also nilpotent. Δ

Cor If $\operatorname{dim} V=n<\infty$ and $L \leqslant g l(v)$ consists of all nilpotent elems then there exists a flag of vector spaces

$$
0=v_{0} \subseteq V_{1} \subseteq v_{2} \subseteq \ldots \leq v_{n}=V
$$

such that $X V_{i} \subseteq V_{i-1}$ for all i and all $X \in L$. Equivalently, there exits a basis of V relative to which the matrices of all elements $x \in L$ are strictly upper $-\Delta$.
Pf Set $V_{1}=$ Iv where $0 \neq v \in V$ has $L v=0$ Then apply induction to image of L in $g l\left(V / V_{1}\right) . D$

Cor If $\operatorname{dim} L<\infty$ arr L is nilpotent and $K S L$ is a nonzero ideal then $Z(L) \cap K \neq 0$.

Pf L acts on K by adjoint representation so theorem above implies that there exits $0 \neq x \in K$ with $(a d y)(X)=[Y, x]=0 \forall Y \in L$, i.e. x is an nonzero element of $Z(L) \cap K . \square$

