MATH 5143-Lecture \#q

Math 5143 - Lecture 5
Last time: representations for (semisimple) Lie algebras
L is a Lie algebra of finite dimension over an alg.closod field F of char. zero.

An L-repn is a Lie algebra morphism $\phi: L \rightarrow g l(v)$ (for some vector space V, which could have $\operatorname{dim} V=\infty$)

An L-module is a vector space V with a bilinear mullipipication $\begin{aligned} & L x \vee \rightarrow V \\ & (x, v) \mapsto X v \text { or } x \cdot v\end{aligned}$

$$
[X, Y] v=X(Y v)-Y\left(X_{v}\right) \quad \forall X, Y \in L, v \in V
$$

Assume L is semisimple $\Leftrightarrow(L$ has no solvable ideals) Recall: this means that $L \cong L_{1}$ © $4 L_{2}$ © \ldots © $\left(L_{n}\right.$ where each L_{i} is a simple ideal. Thus $Z(L)=0$ where $z(L)=\{x \in L \mid a d x=0\}$. non-abelian, with no nonzero proper ideals

Weyl's theorem Every finite-dimensionol L-module is completely reducible. Also if $\phi: L \rightarrow g l(v)$ is any (finitidim. L-re ph) then $\phi(L) \subseteq s l(V) \subset g l(v)$.
con If $\operatorname{dim} V=1$ and $\phi: L+g \ell(v)$ then $\phi(L)=0$ since $s l(V)=0$ if $\operatorname{dim} V=1$.

As we assume L is semisimple, we have $Z(1)=0$ and the adjoint reps ad: $L \rightarrow g e(L)$ is faithful.
Define the abstract Jordan decomposition of $x \in L$
to be $x=x_{s}+x_{n}$ where $x_{r}, x_{n} \in L$ are the unique elements with $\operatorname{ad}\left(x_{r}\right)=(a d x)_{s}$ and

$$
\operatorname{ad}\left(x_{n}\right)=(\operatorname{ad} x)_{n}
$$

This definition is ambignans if it already holds that LSgl(v) for some V.
this is defined using Jordan decomposition of elements of $g l(V)$ (here $V=L$)

Thin If $L \leq g \ell(v)$ then the components x_{s} and x_{n} of the usual Jordan decomposition of $X \in L$ are both contained in L, and they coincide with the components of the abstract Jordan decomposition of X.
[second claim is a consequence of first, via the properties defining both decompositions
First claim is nontrivial because although we know x_{s} and x_{n} are polynomials in x, L is not a subalgebra of $g(v)$.]

Pf sketch V is an L-module since $L \subseteq g l(v)$
For each L-submodule $W \subseteq V$ define

$$
L_{w}=\left\{y \in g l(v) \mid Y w \subseteq w \text { and } \text { trace }_{w}(y)=0\right\}
$$

Since $L=[L, L]$, we hove $L \subseteq L_{w}$.
Define $L^{\prime}=\bigcap_{W \text { submodute } v}^{L w} \cap N_{g e(v)}(L)$
let X_{r}, x_{n} be comporenent of Jordan $\}$
r decamp of x, there are in gel (v)
Fid $x \in L$. Since x_{s} and x_{n} are

$$
\{Y \in g(v) \mid[Y, L] \leq L\}
$$

polynomials in L, and as $(\operatorname{ad} x)(L) \subseteq L$, we hove $x_{s}, X_{n} \in N_{\text {gers }}(L)$ Also $x_{s}, x_{n} \in L_{w}$ for all W. So it suffices to shaw $L=L^{\prime}$.

Showing that $L=L$ 'is a consequence of Weal's theorem mo (see textbook)

The If L is semasimple and $\phi: L \rightarrow g l(V)$ is an
L-repn with $d m_{n} V<\infty$, then for any $x \in l$ with abstract Jordan decomposition $x=x_{5}+x_{n}$ the usual Jordan de comp of $\phi(x)$ is $\phi(x)=\phi\left(x_{f}\right)+\phi\left(x_{n}\right)$ [we saw this earlier for $\phi=$ ad]

Pf sketch of the. We already know this holds if $\phi=$ id [base case]
For general ϕ, observe that $\phi(L)$ has a basis of eigenvectors for ad $\phi\left(x_{s}\right)$ since L does for $\operatorname{ad}\left(X_{s}\right)$. (In particular we have $\operatorname{ad} \phi\left(x_{s}\right)(\phi(y))=\left[\phi\left(x_{s}\right), \phi(y)\right]=\phi\left(\left[x_{s}, y\right)=\phi\left(\left(\operatorname{lad} x_{j}\right)(y)\right)\right]$
Therefore ad $\phi\left(x_{s}\right)$ is semisimple. Likewise ad $\phi\left(x_{n}\right)$ is nilpotent. Bul $\phi(L)$ is semisimple so bare care $\Rightarrow \phi(x)_{s}=\phi\left(x_{r}\right)$ and $\phi(x)_{n}=\phi\left(x_{n}\right)$ (this is because we also have $\left.\left[\phi\left(x_{x}\right), \phi\left(x_{n}\right)\right]=\phi\left[\left(x_{5}, x_{n}\right)\right]\right)=0$

Next: representations of $s l_{2}(\mathbb{F})=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: \begin{array}{c}\text { abed } \in \mathbb{F} \\ a+d=0\end{array}\right\}$
Let $X=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], H=\left[\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right], Y=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
Then $S \ell_{2}(\mathbb{F})=\mathbb{F}$-span $\{X, H, Y]$ and $[H, X]=2 X$

| Consider an arbitrary $s l_{2}(I I)$-module V |
| :---: | \(\begin{aligned} \& {[H, Y]=-2 Y} \\

\& {[X, Y]=H}\end{aligned}\) of finite dimension. Since H is
semismple \equiv (diagonalizable in adjoint repn) , the thru just proved says that V must have a basis of eigenvectors for H.
This property relies on IF being algebraically closed, 30 that all eigenvalues for H are present.

Key takeaway: we may de compose

$$
V=\bigoplus_{\substack{\text { eigenmines } \\ \lambda \text { for } H}} V_{\lambda} \text { where } V_{t}=\{v \in V \mid H v=\lambda v\}
$$

Mote that our def of V_{λ} makes sense oven when t is not an eigenvalue for A, but in that case $V_{\lambda}=0$.
we refer to the eigenvalues of H as weights and the nonzero subspaces V_{A} as weight spaces $\left.\quad \subset \begin{array}{l}X=[8077, \\ Y=[007\end{array}\right]$
Lemme If vie V_{1} and $X_{v} \in V_{1+2}$ and $Y_{v} \in V_{\lambda-2}$ Pf $H X_{v}=\underbrace{[A, x]}_{=2 x}]_{v}+X H_{v}=2 X_{v}+X \lambda_{v}=(A+2)_{v}$ Argument to show $=2 x$ MV $=(-1-2) Y_{v}$ is similar. D

Assume air $s l_{2}(F)$-module V has $0<d m V<\infty$. There must exist at least one $\lambda \in \mathbb{F}$ with $V_{\lambda} \neq 0=V_{\lambda+2}$ For this $\lambda_{\text {, }}$ we have $X_{v}=0$ for all vel V_{t}

We call the elements of this V_{λ} maximal weight rectors of V with weight 7 .
Lemme Assume V is irreducible $\mathrm{Sl}_{2}(\mathbb{F})$-module.
Choose a maximal weight vector $v_{0} \in V_{\lambda}$
Define $v_{-1}=0$ and $v_{k}=\frac{1}{k!} y^{k} v_{0}$ fo $k \geqslant 0$. Then:
(a) $H v_{i}=(A-2 i) v_{i} \quad p f:$ apply prev. lemma since $v_{i} \in V_{A-2 i}$
(b) $Y_{v_{i}}=(i+1) v_{i}+1 \quad p^{2}:$ by definition
(c) $X v_{i}=(t-i+1) V_{i-1} p f:$ by induction using formula tor Lie brodeters + (a) (ib)

Continue to assume V is isreducilde, $\operatorname{din} V<\infty$.
Since the nonzero v_{k} 's are A-eigenvectors with distinct eigenvalues, they are linearly independent
There exits a smallest m with $v_{m} \neq 0=v_{m+1}=v_{m+2}=\cdots$.
Then must have $V=\mathbb{F} \cdot \operatorname{span}\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$.
\uparrow ivied. \uparrow is a submadule by prev lemma
hence this is equality
In the basis $v_{0} v_{1} \ldots v_{m}$ for V the matrices of H, X, Y are diagonal, straitly upper- Δ, and strictly $\underbrace{\nearrow}$

Moreover: $0=X 0=X v_{m+1}=(t-m) v_{m}$.
by lemma.
Cor. Thus $\lambda=m \in \mathbb{Z} \geq 0$ and the weight of any
 a nonnegative integer, called the highest weight.

Thm Let V be an irreducible $s l_{2}(\mathbb{F})$-repp. with $\operatorname{dim} V=m+1<\infty$.
$\left[(0)\right.$ Then $V=V_{-m} \oplus V_{-m / 2} \oplus V_{-m+4} \oplus \ldots \oplus V_{m-2} \oplus V_{m}$ where each $V_{i}=\{v \in V \mid H v=i v\} \neq 0$.
(b) v has a unique highest weight space of weight m
(c) For each $m \geqslant 0$, there exist [exactly one] irreducible $s l_{1}(f)$-module

an set()

Note that if $m=\operatorname{dim} V-1$ is odd then V looks like

$$
v_{-m} \xrightarrow{\varphi} v_{-m+2} \stackrel{Y}{\rightarrow} \ldots \stackrel{Y}{\rightarrow} v_{-2} \xrightarrow{Y} v_{0} \xrightarrow{Y} v_{2} \stackrel{Y}{G} \ldots \stackrel{Y}{+} v_{m-2}^{Y}+v_{m}
$$

while if m is even, V looks like

$$
V_{-m} \stackrel{Y}{\rightarrow} V_{-m+2} \rightarrow V_{-3} \xrightarrow{Y} V_{-1} \stackrel{Y}{\rightarrow} V_{1} \stackrel{Y}{\rightarrow} V_{3} \rightarrow \ldots \xrightarrow{Y} \rightarrow V_{m-2}{ }_{\text {Y }} V_{m}
$$

$\pi^{\text {and }}$ of $\operatorname{dim} 1$
So exactly one of V_{0} or V_{1} is nonzero when V is irreducible.
Cor If V is and finite-dim. $\operatorname{sl}_{2}(\pi)$-module then the eigenvalues for $H \in S R_{2}(\mathbb{T})$ acting on V are integers, and if t is one of these eigemblues then sc is $-\lambda$. Also, if $V_{i}=\{v+V \mid A v=i v\}$ then the number of summand in any irreducible decomposition of V is $\operatorname{dim} V_{0}+\operatorname{dim} V_{1}$ Left : se ziT) is semsiumple, so we jut apply well is theorem.T

