Math 5143 - Lecture 13

Root space decomposition L Let L be a nonzero, finite dim semisimple Lie alg.

A subalgepra $H \subseteq L$ is toral if every $x \in H$ is semisimple. Any total subalgebra is abelign
Choose a maximal tonal subalgebra $H \subseteq L$.
For this maximal terai subalgebra $H S L$, the corresponding root space decomposition is $L=H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$ where Φ is a finite subset of $H^{*}, L_{\alpha} \stackrel{\Phi}{\underline{d d t}}=\{X \in L \mid[h, x]=\alpha(h) \times \forall h \in H\}$ $O \nsubseteq \Phi$ since $H=L_{0}$. Existence of this decamp. is clear from (1) Call $L \alpha$ a root space and $\alpha \in \Phi$ a root

Prop (a) If $\alpha, \beta \in \Phi$ then $\beta\left(H_{\alpha}\right) \in \mathbb{Z}$ call this a Cortaniniteger and $\beta-\beta\left(\mathbb{H}_{\alpha}\right) \alpha \in \Phi$
(b) If $\alpha, \beta \in \Phi$, and $\alpha+\beta \in \Phi$, then $\left[L_{\alpha}, L_{\beta}\right]=L_{\alpha+\beta}$
(c) If $\alpha, \beta \in \Phi$ and $\alpha+\beta \neq 0$ then there are integers $r, q \geq 0$ such that

$$
\begin{aligned}
& r_{1} q \geq 0 \text { such that } \\
& (\beta+\mathbb{Z} \alpha) \cap \Phi=\{\beta+i \alpha \mid i \in \mathbb{Z},-r \leq i \leq q\}
\end{aligned}
$$

"no gaps in the α-root string through β " Also, it holds that $\beta\left(H_{\alpha}\right)=r-q$
$(\partial) L$ is generated by the root spaces $L_{\alpha}(\alpha \in \Phi)$ as a Lie algebra.
Pf will show that (c) holds. Other properties are straightforward.

Pf Set $K=\sum_{i \in \mathbb{Z}} \underbrace{\operatorname{\beta +i\alpha }}_{\text {zero foal but finely many } i \in \mathbb{Z}}$ where $\alpha, \beta \in \Phi$ with $\alpha+\beta \neq 0$
No multiple of α except $\pm \alpha$ is a root, so we have $\beta+i \alpha \neq 0 \forall i \in \mathbb{Z}$. K is a submodule of $S_{\alpha}=S l_{2}(\pi)$ and exch $L_{\beta+i \alpha}$ is either zero if $\beta+i \alpha \phi \Phi$ or 1 -dimensional if $\beta+i \alpha \in \Phi$ in which (case $(\beta+i \alpha)\left(H_{\alpha}\right)=\beta\left(\|_{\alpha}\right)+2 i$ (recall that def of H_{α} giver $\alpha\left(H_{\alpha}\right)=2$)
In latter case, $\beta\left(H_{\alpha}\right)+2 i$ is the weight of H_{α} on L_{β} tia. Because all of there weights differ by an even integer, exactly one of the numbers 0 or 1 em occur as a weight, so K is on irreducible S_{α}-module Thus it r, i are maximal with β-r $\alpha \in \Phi, \beta+q \alpha \in \Phi$

We have our root space decomp $L=H \oplus \oplus L_{\alpha}$ $\alpha \in \Phi \subseteq H^{*} \backslash$ and $\left.K\right|_{H \times H}$ is nondesenerate, and we define t $t_{\alpha} \in A$ for $\alpha \in H^{*}$ to have $x\left(t_{\alpha, h}\right)=\alpha(h) \forall h \in H$.
We now further define $(\alpha, \beta)^{\text {deft }}=x\left(t_{\alpha}, t_{\beta}\right)$ for $\alpha, \beta \in H^{*}$.
Let $E_{\mathbb{Q}}=\mathbb{Q}-\operatorname{span}\{\alpha \in \Phi\}_{\text {; }}$ and $E=\mathbb{R} \mathbb{Q}_{\mathbb{Q}} \in_{\mathbb{Q}}$
One can show that:
\rightarrow means $(\alpha, \alpha)>0$ for $0 \neq \alpha \in A^{*}$
Thin $(0, \cdot)$ restricts to a positive definite form on E with $(\alpha, \beta) \in \mathbb{Q} \forall \alpha, \beta \in \Phi$. Additionally:
(1) Φ spans E
(2) If $\alpha \in \Phi$ then $\mathbb{R} \alpha \cap \Phi=\{-\alpha, \alpha\}$
(3) If $\alpha, \beta \in \Phi$ then $\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha \in \Phi$
(4) $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \quad \forall \alpha, \beta \in \Phi$

Ea If $L=s l_{n}(F)$ and $A=($ diagonal matrices in $L)$ then $\Phi=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i, j \leq n, i \neq j\right\}$
where $\varepsilon_{i}: A \rightarrow F$

$$
D \mapsto O_{i i} \text { (diagencel entry in row i) }
$$

As noted earlier, we have $t_{E_{i}-\varepsilon_{j}}=\frac{1}{4}\left(E_{i i}-E_{j j}\right)$ and $\left(\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{k}-\varepsilon_{l}\right) \stackrel{d \theta}{=} k\left(t \varepsilon_{i}-c_{j}, t_{\varepsilon_{k}}-\varepsilon_{l}\right)$

$$
=\frac{1}{4}\left\langle\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{k}-\varepsilon_{l}\right\rangle
$$

Properties of root space decamp of L modwate the axiomatic definition of a root ssstem (of which Φ is anexomple)

Let \in be a finite dim real vector space ($\cong \mathbb{R}^{n}$, same n) with a symmetric, positive definite bilinear form (\cdot, \cdot)

$$
(\alpha, \beta)=(\beta, \alpha) \quad(\alpha, \alpha)>0 \text { if } 0 \neq \alpha \in E
$$

Leg. standard inner production
[Recall that $\|\alpha\|=\sqrt{(\alpha, \alpha)}$ and $(\alpha, \beta)=\|\alpha\|\|\beta\| \cos \theta$ where θ is angle between α and β.

If $\operatorname{c\in R} \mathbb{R}^{1}$ such that $\beta-c \alpha \in A_{\alpha}$, then $r_{\alpha}(\beta)=\beta-2\left(\alpha\right.$. But $\beta-\cot \theta H_{\alpha}=(\beta-(\alpha, \alpha)=0$ $\Rightarrow(\beta, \alpha)=c(\alpha, \alpha) \Rightarrow C=(\beta, \alpha) /(\alpha, \alpha)$.

Thus the reflection $v_{\alpha}: \in * \epsilon$ belongs to $G L(E)$ and has formula $\left[\begin{array}{l}r_{\alpha}(\beta)=\beta-\langle\beta, \alpha\rangle \alpha \\ r_{\alpha}^{-1}=r_{\alpha} \\ r_{c \alpha}=r_{\alpha} \text { if } 0 \neq c \in \mathbb{R}^{2} \\ \left(r_{\alpha}(\beta), r_{\alpha}(\gamma)\right)=(\beta, \gamma)\end{array} \begin{array}{l}\text { where }\langle\beta, \alpha\rangle \stackrel{\text { def }}{=} \frac{2(\beta, \alpha)}{(\alpha, \alpha)}\end{array}\right.$
Def A subset $\Phi \subseteq C$ is root system if
(R) $|\Phi|<\infty$ and $0 \notin \Phi$ and Φ spans E
(B2) If $\alpha \in \Phi$ then $\mathbb{R} \alpha \cap \Phi=[\pm \alpha]$
(13) If $\alpha \in \Phi$ then $r_{\alpha}(\beta) \in \Phi \forall \beta \in \Phi$
(R4) If $\alpha, \beta \in \Phi$ then $(\beta, \alpha\rangle \in \mathbb{Z}$
The Werlgraup ("vial") of Φ is $w=\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle \subseteq G L(E)$

Since Φ is finite, and spans $\epsilon_{\text {, }}$ and since each r_{α} defines a permutation of Φ, it follow r that W is isomorphic to a subgroup of the symmetric group of all permutations of \$. Thus the Weal group has $|\omega|<\infty$.

Quick intuitive idea for root system:
suppose W is any finite subgrap of E generated by reflection r_{α} Consider the set lines \mathbb{R}_{α} for $\alpha \neq 0$ with $r_{\alpha} \in W$.
Replace each of these lines by a pair of vectors α and $-\alpha$

(Morally) the result is a rod system with well group W, and any root system arises like this

Examples of root systems when $E=\mathbb{R}^{2}$ with standard inner product
Φ

In this example, α and β could have different lengths

$$
\begin{array}{rlrl}
r_{\alpha}: & \alpha \mapsto-\alpha & r_{\beta} \text { fixes } \pm \alpha \\
& -\alpha \mapsto \alpha & & \text { negates } \pm \beta \\
& \beta \mapsto \beta & & \\
& -\beta \mapsto-\beta & & W=\left\langle r_{\alpha}, r_{\beta}\right\rangle \\
r_{\mu} r_{\beta}=r_{\beta} r_{\alpha} & & \cong S_{2} \times S_{2} \cong \mathbb{I}_{2} \times \mathbb{Z}_{2}
\end{array}
$$

6 roots, diagonals of a regular hexagon

$$
\begin{gathered}
(\alpha, \beta)=\|\alpha\|\|\beta\| \cos \frac{2 \pi}{3}=\frac{-\|\beta\|^{2}}{2} \\
\Rightarrow\langle\alpha, \beta\rangle=\frac{2(\alpha, \beta)}{(\beta, \beta)}=-1, \text { similarly for }
\end{gathered}
$$

8 roots, $\|\beta\|=\sqrt{2}\|\alpha\|$

$$
\begin{gathered}
\|\alpha+\beta\|=\|\alpha\| \\
\langle\alpha, \beta\rangle=\frac{2\|\alpha\|\| \| \| \cos \left(\frac{3 \pi}{2}\right)}{\|\beta\|^{2}}=\sqrt{2} \cdot \frac{-1}{\sqrt{2}}--1
\end{gathered}
$$

likewise with other inner products $\langle i$,

$$
\begin{gathered}
r_{\alpha}: \pm \beta \leftrightarrow \pm(2 \alpha+\beta) \\
\alpha \leftrightarrow-\alpha \\
\pm(\alpha+\beta) \text { is fixed }
\end{gathered}
$$

$$
\begin{gathered}
r_{\beta}: \pm \alpha \leftrightarrow \pm(\alpha+\beta) \\
\beta \leftrightarrow-\beta \\
\pm(2 \alpha+\beta) \text { fixed }
\end{gathered}
$$

Can show the $W=\left\langle r_{\alpha}, r_{\beta}\right\rangle \cong\left\langle\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\right\rangle$ $r_{\alpha} r_{\beta} r_{\alpha} r_{\beta}=i d$ and $|W|=8$

12 roots, 9 set of 6 shout roots that look like $\Phi_{A_{2}}$ and a set of 6 lass roots that also lack like $\Phi_{A_{2}}$

Can show that $W \cong$ dihedral group of order 12
[Note: in these examples, always have $|W|=|\Phi|$]

Pairs of roots The rank of Φ is dime.
Examples above are rank 2. (Only Φ drank 1 is)
Suppose $\alpha, \beta \in \Phi$ and $\beta \neq \pm \alpha$. Then

$$
\left\{\begin{array}{l}
\langle\beta, \alpha\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}=2 \frac{\|\beta \beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z} \\
\langle\beta, \alpha\rangle(\alpha, \beta\rangle=4 \cos ^{2} \theta \in \mathbb{Z}
\end{array}\right.
$$

as $\cos ^{2} \theta \in[a, 1]$, the only possibilities for $\langle\alpha, \beta\rangle,\langle\beta, \alpha\rangle, \theta,\|\beta\|^{2} /\|\alpha\|^{2}, \Phi$ are an filar:

$$
\begin{array}{ccccc}
\langle\alpha, \beta\rangle & \frac{\langle\beta, \alpha\rangle}{0} & \frac{\theta}{0} & \frac{\|\beta\|\left\|^{2} /\right\| \alpha \|^{2}}{?} & \frac{\Phi}{?} \\
1 & 1 & \pi / 3 & 1 & A_{2} \\
-1 & -1 & 2 \pi / 3 & 1 & A_{2} \\
1 & 2 & \pi / 4 & 2 & B_{2} \\
-1 & -2 & 3 \pi / 4 & 2 & B_{2} \\
1 & 3 & \pi / 6 & 3 & G_{2} \\
-1 & -3 & 5 \pi / 6 & 3 & G_{2}
\end{array}
$$

So in fact the four examples g ven account for all partible rank two root systems (ap to isomeophisn)

