Math 5143 - Lecture 14

Math 5143 - Lecture 14
Last time: (abstract) root systems
Fix a finite dim real vector space E
with a bilinear form $(-, \cdot)$ that is symmetric, positive definite
[By appropriately choosing base, can identity E with \mathbb{R}^{n} with standard inner product, but this may be inconvenient]
For $0 \neq \alpha \in E$, let $H_{\alpha}=\{v \in E \mid(v, \alpha)=0\}$.
Then the reflection a cross H_{α} is the linear map
$r_{\alpha}: E \rightarrow E$ with formula $r_{\alpha}(v)=v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha$

Def A finite subset $\Phi \subseteq E \backslash\{0\}$ is a root system if
(RI) E is spanned by Φ
(BB) $r_{\alpha}(\Phi)=\Phi \forall \alpha \in \Phi$
(22) $\mathbb{R} \alpha \cap E=\{ \pm \alpha\}$ for $\alpha \in \Phi$ (RS) $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z} \forall \alpha, \beta \in \Phi$

The elems of Φ are called roots
The subgrap of GL(E) generated by $\left\{r_{\alpha} \mid \alpha \in \Phi\right\}$
is called the well group of Φ, often denoted W
Notation: Set $\langle\beta, \alpha\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ for $\alpha, \beta \in \Phi$
If $\Phi \leq E$ and $\Phi^{\prime} \leq \epsilon^{\prime}$ are root systems, then an isomorphism $\Phi \rightarrow \Phi^{\prime}$ is a linear bijection $f: E \rightarrow E^{\prime}$ such that $\langle f(\beta), f(\alpha)\rangle=\langle\beta, \alpha\rangle \psi_{\alpha, \beta \in \Phi}$. and $f(\Phi)=\Phi^{\prime}$

Motivation: Suppose L is a semisimple Lie algebra, over \mathbb{C}, finite dim and nonzero. Choose a maximal toral subalgebra $H \subseteq L$ and let $H^{*}=\{\operatorname{linear}$ maps $H \rightarrow \mathbb{C}\}$,
ζ (all elements are semisimplo)
(if L is classical, con take A to be subalgebria of diagonal matrices in L)
For each $\alpha \in H^{*}$ define $L_{\alpha}=\{X \in L \mid[h, X]=\alpha(h) X \forall h \in H\}$.
Set $\Phi=\left\{\alpha \in H^{*} \backslash 0 \mid L_{\alpha} \neq 0\right\}$, We showed $H=L_{0}$ is abelian.
So we hove a decomposition $L=H \Theta \bigoplus_{\alpha \in \Phi} L_{\alpha}$
Here, Φ is a root system in $E=\mathbb{R}-\operatorname{span}\{\alpha \in \Phi\}$, where the relevant form (\because)) is the Killing form of $L_{\text {, }}$ restricted to H, and then transferred to H^{*} by nondeganeracy.
Also: $\left[l_{\alpha,} L_{\beta}\right) \subseteq L_{\alpha+\beta} \quad \forall \alpha, \beta \in \Phi$

Up to isomorphism, there are 4 roctsystems in \mathbb{R}^{2} :

$\Phi_{A_{1} \times A_{1}}$
$\square^{\alpha-1}{ }^{2}$

$\Phi_{A_{2}}$

α-rings had size $\quad 3 \alpha+2 \beta \quad \alpha$-raving has size 4

Prop. Let Φ be a root system with Weal gran W.
If $\sigma \in G L(\epsilon)$ has $\sigma(\Phi)=\Phi$ then $\sigma r_{\alpha} \sigma^{-1}=r_{\sigma(a)}$ and $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle \forall \alpha, \beta \in \Phi$.

Pf Compute $\sigma r_{\alpha} \sigma^{-1}(\sigma(\beta))=\sigma r_{\alpha}(\beta)=\sigma(\beta)-\langle\beta, \alpha\rangle \sigma(\alpha)$. clearly $\sigma r_{\alpha} \sigma^{-1}$ preserver Φ and sends $\sigma(\alpha) \mapsto-\sigma(\alpha)$.
Also $\sigma r_{\alpha} \sigma^{-1}$ fixes the hyperplane $\sigma\left(H_{\alpha}\right)$ where $H_{\alpha}=[v \in \in(v, \alpha)=0]$
A prior, we don't know that $\sigma\left(H_{\alpha}\right)=H_{\sigma}(\alpha)$. If we knew this then it would be clear by comparing formulas that $\sigma r_{\alpha} \sigma^{-1}=r_{\sigma(\alpha)}$ and also $\langle\beta, \alpha\rangle=\langle\sigma(\beta), \sigma(\alpha)\rangle \forall \alpha, \beta \in \Phi$. So just need to show: Lumina If $\sigma \in G(\in)$ has $\sigma(\mathbb{C})=\Phi$ and σ fixes a hyperplane $H \leq E$ while sending some $0 \neq \alpha \in E$ to $-\alpha$, then $H=H_{\alpha}$ and $\sigma=\sigma_{\alpha}$. this olement must have $\alpha \notin H$

Pf idea (compare with text book)
Define $\tau=\sigma r_{\alpha}$. Then $\left.\tau(\alpha)=\alpha, \tau \mid \Phi\right)=\Phi, \tau$ fires $A_{\text {pt -wise }}$
Choose a basis $v_{1}, v_{2}, \ldots, v_{n-1}$ for H. Set $v_{n}=\alpha$.
Since $\alpha \notin H, v_{1}, v_{2}, \ldots, v_{n}$ is a basis for E. But the matrix of τ in this basis is the identity matrix, so $\tau=1$. τ
Lemma Let $\alpha, \beta \in \Phi$ be narproportimal (so $\alpha \neq \pm \beta$)
(a) If $(\alpha, \beta)>0$ then $\alpha-\beta \in \Phi(b)$ If $(\alpha, \beta)<0$ then $\alpha+\beta \in \Phi$.

Pf (b) follows from (a), swapping β and - β. for (a): $(\alpha, \beta)\rangle 0 \Rightarrow\langle\alpha, \beta\rangle>0$. The acute angle between α and β mast be $\pi / 3, \pi / 4$, or $\pi / 6$ (by considering the 4 root (since α, β not orthogonal) and must have $\langle\alpha, \beta\rangle=1$ or $\langle\beta, \alpha\rangle=1$. sisters in \mathbb{R}^{2}) If $\langle\alpha, \beta\rangle=1$ then $\alpha-\beta=\sigma_{\beta}(\alpha) \in \Phi$. If $\langle\beta, \alpha\rangle=1$ then $\alpha-\beta=-\sigma_{\alpha}(\beta) \in \Phi$.

For $\alpha, \beta \in \Phi$, with $\beta \neq \pm \alpha$, the α-string through β is the set of roots $\{\beta+i \alpha \mid i \in \mathbb{Z}] \cap \Phi$. $Y_{\text {this sequence }}$ finite but has no" gaps"
Prop. There are integers air ≥ 0 such that the α-string through β is exactly $\{\beta+i \alpha \mid-r \leq i \leq q\}$.
Pf If there were any gaps in the string, then we could find $p, s \in \mathbb{Z}$ with $-r \leq p<s \leq q$ where $\beta+p \alpha, \beta+s \alpha \in \Phi$ but

$$
\beta+(p+1) \alpha, \beta+(s-1) \alpha \notin \Phi . \cdots 0_{p \text { sap }}^{0}-\operatorname{comp}_{\text {gap }} s
$$

Prev lemma implied $(\beta+\rho \alpha, \alpha) \geq 0 \geq(\beta+s \alpha, \alpha)$

$$
\Rightarrow((s-p) \alpha, \alpha)=|s-p|(\alpha, \alpha) \leq 0 \text {, impossible as }(-) \text { is pos. definite } D
$$

Cor. The integers $r, q \geq 0$ such that the $\alpha-s$ truing through β is $\{\beta+i \alpha \mid-r \leq i \leq q]$ satisfy $r-q=\langle\beta, \alpha\rangle \in[0, \pm 1, \pm 2, \pm\}]$ So every α-string has at most 4 elements.
$>$ and in fact, reveries
Pf. The reflection r_{α} preserve the α-string through β since $r_{\alpha}(\beta+i \alpha)=\beta-(\underbrace{\langle\beta, \alpha}_{\epsilon_{\mathbb{Z}}})+i) \alpha$. Therefore must have $r_{\alpha}(\beta+q \alpha)=\beta-r \alpha$. But

$$
r_{\alpha}(\beta+q \alpha)=\beta-\langle\beta, \alpha\rangle \alpha-q \alpha \text { so }\langle\beta, \alpha\rangle=r-q \cdot \Delta
$$

