Math SI43 - Lecture 14

Math 5143 - Lecture 14

Last time: (abstract) root systems Fix a finite. dim. real vector space E with a bilinear form (-, -) that is symmetric, positive definite [B1 appropriately choosing bases, can identity E with R" with standard inner product, but this may be inconvenient] For $0 \neq \alpha \in E$, let $H_{\alpha} = \{v \in E \mid (v, \alpha) = 0\}$ Then the reflection across Hy is the linear map $r_{\alpha}: E \rightarrow E$ with formula $r_{\alpha}(v) = v - \frac{1}{(\alpha, \alpha)} \alpha$

Def A finde subset $\Phi \subseteq E \setminus \{0\}$ is a root system if (B) E is spanned by Φ (B) $\mathbb{R} \propto \cap E = \{\pm \alpha\}$ for $\alpha \in \Phi$ (B) $\mathbb{R} \propto \cap E = \{\pm \alpha\}$ for $\alpha \in \Phi$ (B) $\mathbb{R} \propto \cap E = \{\pm \alpha\}$ for $\alpha \in \Phi$ (B) $\mathbb{R} \propto \cap E = \{\pm \alpha\}$ for $\alpha \in \Phi$ (C) $\mathbb{R} \otimes \mathbb{R} \propto \mathbb{R} \times \mathbb$

is called the Werl group of $\overline{\Phi}$, often denoted W

Notation: Set $\langle \beta, \alpha \rangle = \frac{2(\beta, \alpha)}{(\alpha, \alpha)}$ for $\alpha, \beta \in \overline{\Phi}$ If $\overline{\Phi} \leq \overline{\epsilon}$ and $\overline{\Phi}' \leq \overline{\epsilon}'$ are not systems, then an isomorphism $\overline{\Phi} - \overline{\Phi}'$ is a linear bijection $f: \overline{\epsilon} - \overline{\epsilon}'$ such that $\langle f(\beta), f(\alpha) \rangle = \langle \beta, \alpha \rangle V_{\alpha, \beta \in \overline{\Phi}}$. and $f(\overline{\Phi}) = \overline{\Phi}'$

Motivation: Suppose L is a semisimple Lie algebra, over C, finite din and nonzero. Choose a maximal toral subalgebra H SL and let H* = { linear maps H -> C? (all elements are semisimple) (if L is classical, can take H to be subalgebra of diagonal matrices in L) For each x EH* define Lx = { X EL | [h, X] = x(h) X Y h EH ?. Set $\Phi = \{ \alpha \in H^* \setminus 0 \mid L_{\alpha} \neq 0 \}$, We showed $H = L_0$ is abelian. So we have a decomposition L = HO Daco La Here, I is a root system in $E = \mathbb{R} - \mathbb{E} \left\{ \alpha \in \Phi \right\}$, where the relovant form (:,) is the killing form of L, restricted to H, and then transferred to H* by nondegeneracy. Also: [La, LR) = Late Va, RE]

Prop. Let $\overline{\Phi}$ be a root system with Weyl group W. If $\sigma \in GL(E)$ has $\sigma(\overline{\Phi}) = \overline{\Phi}$ then $\sigma r_{\alpha} \sigma' = r_{\sigma(\alpha)}$ and $\langle \beta, \alpha \rangle = \langle \sigma(\beta), \sigma(\alpha) \rangle \forall \alpha, \beta \in \overline{\Phi}$.

Pf Compute $\sigma r_{\alpha} \sigma' (\sigma(\beta)) = \sigma r_{\alpha}(\beta) = \sigma(\beta) - \langle \beta, \alpha \rangle \sigma(\alpha)$. Clearly oras' preserves I and send o(x) > - o(x). Also oras' fixes the hyperplane o(Ha) where Ha = [veel(v,a)=0] A priori, we don't know that $\sigma(H_d) = H\sigma(a)$. If we knew this then it would be clear by comparing formulas that $\sigma r_{\alpha} \sigma' = r_{\sigma(\alpha)}$ and also < B, x7 = < o(B), s(x)> yx, PE & So just need to show: Lemma If $\sigma \in GL(E)$ has $\sigma(\overline{e}) = \overline{e}$ and σ fixes a hyperplane $H \leq E$ while sending some $0 \neq x \in E$ to $-\infty$, then H = Ha and $\sigma = \sigma_{\alpha}$. this element must have a EH

P(idea (compare with text book)
Define
$$T = \sigma r_{\alpha}$$
. Then $T(\alpha) = \alpha$, $T(\overline{\Phi}) = \overline{\Phi}$, $T(\overline{h}, er A pt-wise$
Choose a basis $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n-1}$ for H . Set $V_{n} = \alpha$.
Since $\alpha \notin H$, $V_{1}, V_{2}, ..., V_{n}$ is a basis for E . But the
matrix of T in this basis is the identity matrix, so $T = I$. D
Lemma Let $\alpha_{1}\beta \in \overline{\Phi}$ be non-proportional (so $\alpha \notin \pm \beta$)
(a) If $(\alpha_{1}\beta) > 0$ then $\alpha - \beta \in \overline{\Phi}$ (b) If $(\alpha_{1}\beta) < 0$ then $\alpha + \beta \in \overline{\Phi}$.
Pf (b) follows from (a), swapping β and $-\beta$. for (a): $(\alpha_{1}\beta) > 0 \Rightarrow \langle \alpha_{1}\beta \rangle > 0$,
the acute angle between α and β must be $T/3$, T/u , or $T/6$ (by conceeing the 4 root
since $\alpha_{1}\beta$ not orthogonal) and must have $\langle \alpha_{1}\beta \gamma = 1$ or $\langle \beta_{1}\alpha \gamma = 1$.
Suffering in β_{n}^{2} .

(

For a, BEE, with B = ta, the a-string through B is the set of roots [B+iox] i EZ] n J. Y this sequence is finite but has no gaps" Prop. There are integers 2, r 20 such that the a-string through B is exactly {Btix | -r < i < 2 }. Pf If there were any gaps in the string, then we could find P.SEZ with -r < p < 5 < 2 where B+pd, B+sd & I but Prev lemma implies (B+pa, x) >0 > (B+sa, a) \Rightarrow ((s-p)a,a) = |s-p|(a,a) <0, impossible as (-,-) is possible intell

Cor. The integers r, 2 20 such that the d-string through B is $[\beta + i\alpha] - r \le i \le q]$ satisfy $r - q = <\beta_{,\alpha} \\ \in [0, \pm 1, \pm 2, \pm 7]$ So every a -string has at most 4 elements. and in fact, reverses Pf. The reflection ra preserve the d-string through B since r_d (B+ia) = B-((B, a) +i) a, Therefore 67 must have $r_{\alpha}(\beta + 2\alpha) = \beta - r_{\alpha}$. But $r_{\alpha}(\beta + q\alpha) = \beta - \langle \beta \rangle \langle \alpha \rangle - q \langle s \rangle \langle \beta \rangle \langle \alpha \rangle = r - q \cdot D$