MATH 5143 -Lecture 16

Last time: bases of root systems symmetric, positive
E is a real vector space with a definite, bilinear for $(\cdot-)$ A nonempty finite subset $\Phi \subseteq E \backslash\{0\}$ is a root system if (a) $\mathbb{R} \alpha \cap \Phi=\{ \pm \alpha\rceil \forall \alpha \in \Phi$
(b) $r_{\alpha}(\Phi)=\Phi \quad \forall \alpha \in \Phi$ where $r_{\alpha}: x \mapsto x-\frac{2(\alpha, \alpha)}{(\alpha, \alpha)} \alpha$
(C) $2(\beta, \alpha) /(\alpha, \alpha) \in \mathbb{Z} \quad \forall \alpha, \beta \in \Phi$
(d) E is spanned by Φ

The weyl group of Φ is then $W^{\text {def }}=\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle$ $\subseteq G L(E)$

For $0 \neq \alpha \in E$ let $H_{\alpha}=\{x \in E \mid(x, \alpha)=0\}$ If Φ is any finite set in $E \backslash[0]$ then

So it is possible to choose some $\gamma \in E \backslash \bigcup_{\alpha \in \Phi} A^{A_{\alpha}}$.
For this γ we have $(\gamma, \alpha) \neq 0 \forall \alpha \in \Phi$ so can set $\Phi^{+}(\gamma) \stackrel{\operatorname{def}}{=}\{\alpha \in \Phi \mid(\gamma, \alpha)>0]$ and $\Phi^{-}(\gamma) \stackrel{\text { def }}{=}-\Phi^{+}(\gamma)$ Define $\Delta(y)=\left\{\alpha \in \Phi^{+}(\gamma) \left\lvert\, \begin{array}{l}\text { there are ne olenents } \beta_{1}, \beta_{2} \in \Phi^{\prime}(x) \\ \text { with } \alpha=\beta_{1}+\beta_{2}\end{array}\right.\right\}$

The If Φ is a root system then the set $\Delta(\gamma)$ is a base (or simple system) for Φ, meaning that

and that $\Delta(y)$ is a basis for E. Movewer, evert base of Φ arises from this construction as $\Delta(\gamma)$ for some $\gamma \in E \backslash \bigcup_{\alpha \in \Phi} A \alpha$.
Given a base $\Delta \leq \Phi$, (all each $\alpha \in \Delta$ a simple root and each $\alpha \in \Phi^{+/-}$a positive/ negative root.

Fix a base Δ for Φ from now on. Some facts:
(1) If $\alpha \in \Delta$ then $r_{\alpha}(\alpha)=-\alpha$ and $r_{\alpha}\left(\Phi^{+} \backslash[\alpha]\right)=\Phi^{+} \mid[\alpha]$
$\begin{aligned} \text { (2) } W \stackrel{\text { def }}{=}\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle & =\left\langle r_{\alpha} \mid \alpha \in \Phi^{+}\right\rangle \\ \underset{\uparrow}{\text { cobias since }} & =\left\langle r_{\alpha} \mid \alpha \in \Delta\right\rangle \\ \Phi=\Phi^{+} \Delta \Phi & \begin{array}{l}\text { nontrivial } \\ \text { as } r_{\alpha}=r_{-\alpha}\end{array} \quad \text { and useful }\end{aligned}$
(3) If $\beta \in \Phi$ then there is some base of Φ containing β and there is some $\omega \in W$ with $\omega(\beta) \in \Delta$.
(4) If Δ^{\prime} is another base, then there is a unique $\omega \in W$ with $\omega(\Delta)=\Delta^{\prime}$.

Claim For a root system Φ with base Δ, the following are equivalent:
(a) we con write $\Phi=\Phi_{1} \cup \Phi_{2}$ for some nonempty disjoint subsets Φ_{i} with $(\alpha, \beta)=0 \quad \forall \alpha \in \Phi_{1}$
(b) we can write $\Delta=\Delta_{1} \cup \Delta_{2}$ for some nonempty disjoint sets Δ_{i} with $(\alpha, \beta)=0 \quad \forall \alpha \in \Delta_{1}$ $\theta \in \Delta_{2}$
$[\Phi$ is reducible in these cases $]$
Clearly if these properties hold, and $E_{i} \xlongequal{\text { def }} \mathbb{R}-\operatorname{span}\left[\alpha \in \Delta_{i}\right]$. then (i) restricts to a positive definite form on each E_{i} and $E=E_{1} \oplus E_{2}$ and each Φ_{i} is a rock system in E_{i} with Δ_{i} as a base

Proof of claim (a) \Rightarrow (b) since we can just gel $\Delta_{i}=\Delta \cap \Phi_{i}$ for $:=1,2$. The harder direction is to show that (b) 3@. For this, given $\Delta=\Delta_{1} \nu \Delta_{2}$ let $\Phi_{i}^{+}=Z_{z 0}^{-s p a n}\left[\alpha \in \Delta_{i}\right] \cap \Phi$ Let $\Phi_{i}^{-}=-\Phi_{i}^{+}$and $\Phi_{i}=\Phi_{i}^{+} \Delta \Phi_{i}^{-}$
Then $\Phi_{1} \perp \Phi_{2}$ since $\Delta_{1} \perp \Delta_{2}$. Why does $\Phi=\Phi_{1} \cup \Phi_{2}$? Suffices to show $\Phi^{++} \stackrel{\text { deft }}{=} \mathbb{T}_{\geq 0}-$ span $[\alpha \in \Delta] \cap \Phi$ is $\Phi_{1}^{+} \Delta \Phi_{2}^{+}$
This holds since if $\alpha \in \Phi_{1}^{+}$and $\beta \in \Phi_{2}^{+}$then $r_{\alpha}(\alpha+\beta)=-\alpha+r_{\alpha}(\beta)$

All of this extents from two to k factors as follows:
Prop There is a maximal partition $\Delta=\Delta_{1} \Delta \Delta_{2} \Delta \ldots \Delta \Delta_{k}$ into nonempty pairwise disjoint and orthogonal subsets, which is unique up to permutation of indices, and if $E_{i}=\mathbb{d o f}$-reni $\left[\alpha \in \Delta_{i}\right]$ $a_{\text {m }} \Phi_{i} \stackrel{\text { def }}{=} \Phi \cap \epsilon_{i}$ then $\epsilon=\varepsilon_{1} \oplus \epsilon_{2} \oplus \ldots \epsilon_{k}$ and each Φ_{i} is is a root system in C_{i} with base Δ_{i} and $\Phi=\Phi, \Delta \Phi_{2} \omega \cdots \Phi_{k}$
we call the root systems Φ_{i} the irreducible components of Φ. The prop. show that Φ is det'd up to \cong by these components Note: Φ is irrouccible of $k=1$ in the prep.
Pf. The ant part the is not dor is clam that $\Phi=\Phi, \Delta \Phi_{2} U . \Delta \Phi_{k}$. To shaw trios, consider some VE Φ. Then there is $w \in W$ with $w(r) \in \Delta$, so τ is in W-orbit of anelement of some Δ_{i}. But orthosemilit $+W=\left\langle r_{a} \mid \alpha \in \Delta\right\rangle$

Invariants of root systems: the Cortan matrix, Fix an adoring $\alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{l}$ the Coxeter graph, and the Dynkin diagram of Φ. of the simple roots in our fixed base $\Delta \leq \Phi$.
Def (with respect to this ordering) the Cartan matrix of Φ is the $\ell \times \ell$ matrix $\left[\left\langle\alpha_{i}, \alpha_{j}\right\rangle\right]_{1 \leq i, j \leq \ell}$ where $\langle\alpha, \beta\rangle \stackrel{\operatorname{det}}{=} 2(\alpha, \beta) /(\beta, \beta) \in \mathbb{Z}$.
Ex. Cartan matrices for root systems in \mathbb{R}^{2}.

Carton matrix is $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ as $\left(\alpha_{1}, \alpha_{2}\right)=0$
$\Phi_{A_{2}}$

Then $\left(\alpha_{1}, \alpha_{2}\right)=\left\|\alpha_{1}\right\| \alpha_{2} \| \cos (2 \pi / 3)$ and $\left\|\alpha_{1}\right\|=\left\|\alpha_{2}\right\|$ so we have

$$
\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\left\langle\alpha_{2}, \alpha_{1}\right\rangle=2 \cos (2 \pi / 3)=-1
$$

Partan matrix e $=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
$\Phi_{b_{2}}$

$$
\begin{aligned}
& \left(\alpha_{1}, \alpha_{1}\right)=1 \\
& \left(\alpha_{2}, \alpha_{2}\right)=2 \\
& \left(\alpha_{1}, \alpha_{2}\right)=\sqrt{1} \sqrt{2} \cdot \cos \frac{3 \pi}{2}=-1
\end{aligned}
$$

Φ^{+}Cartan matrix $=\left[\begin{array}{cc}2 & -1 \\ -2 & 2\end{array}\right]$ as $\langle\alpha, \beta\rangle=\frac{2(\alpha, \beta)}{(\beta, \beta)}$

Carton matrix works out to $\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$

Prop. The carton matrix (up to reordering of rous/cols) determes Φ (up to isomorphic). More precisely, it there is another root sister $\Phi^{\prime} \subseteq \epsilon^{\prime}$ with ordered bur Δ^{\prime} and there is a bijection $f: \Delta \rightarrow \Delta^{\prime}$ such that

$$
\langle\alpha, \beta\rangle=\langle f(\alpha), f(\beta)\rangle \quad \forall \alpha, \beta \in \Delta
$$

then the unique linear map $\epsilon \rightarrow \epsilon^{\prime}$ extending f is a root sy stem isomorphic $\Phi \stackrel{\sim}{ \pm}$. In particular, the linear extension of f has $\langle\alpha, \beta\rangle=\langle f(\alpha), f(\beta)\rangle \forall \alpha, \beta \subset \Phi$.

Pf The linear extension $f: \epsilon+\epsilon^{\prime}$ is invertible since Δ, Δ^{\prime} 're bases. For $\alpha \in \Delta$, it holds that $r_{f(\alpha)}=f \circ r_{\alpha} \circ f^{-1}$. Hence the weyl group W^{\prime} of Φ is exactly

$$
\left\{f \circ w \circ f^{-1} \mid w \in W\right\} .
$$

Each $\beta \in \Phi$ has $\beta=w(\alpha)$ for some $w \in W, \alpha \in \Delta$.

Similar argument shows that $f^{-1}(\beta) \in \Phi \forall \beta \in \Phi^{\prime}$ so we can conclude that f is a bijection $\Phi \rightarrow \Phi^{\prime}$.

Finally observe for $\alpha, \beta \in \Phi$ that

$$
\begin{aligned}
\operatorname{def}^{r_{f(\alpha)}(f(\beta))}= & f \circ r_{\alpha} \circ f^{-1}(f(\beta))=f\left(r_{\alpha}(\beta)\right) \\
=f(\beta)-\langle f(\beta), f(\alpha)) f(\alpha) & =f(\beta)-\langle\beta, \alpha\rangle f(\alpha)
\end{aligned}
$$

So we milt have $\langle\beta, \alpha\rangle=\langle f(\beta, f(\alpha)\rangle$.

$$
\left[\begin{array}{l}
\text { Chedeing that } r_{f(\alpha)}=f \circ r_{\alpha} \circ f^{-1} \text { for any } \alpha \in \Phi \\
\text { follows from case when } \alpha \in \Delta \rightarrow \text { exercise. }
\end{array}\right]
$$

Coxeter graph of a root system Φ with base Δ : this is the undirected graph with vertices labeled by the elements of Δ and with exactly $\langle\alpha, \beta\rangle\langle\beta, \alpha\rangle=\frac{4(\alpha, \beta)^{2}}{(\alpha, \alpha)(\beta, \beta)}$ edges between vertices α and β. $\uparrow($ is in $\mathbb{Z} \geq 0)$

Examples of coseter graphs for $\Phi \subseteq \mathbb{R}^{2}$:
$\Phi_{A_{1} \times A_{1}}: \quad \dot{\alpha}_{1} \quad \dot{\alpha}_{2} \quad \Phi_{A_{2}}: \quad \alpha_{\alpha_{1}} \quad \alpha_{1}$
$\Phi_{B_{2}}: \quad \Phi_{\alpha_{1}}: \alpha_{\alpha_{2}}$
the \# of edges between α_{i} and α_{j} is the product of entries (i, j) and (j, i) of carton matrix.
If all roots have same length (eg for $\Phi_{A_{2}}$) then $\langle\alpha, \beta\rangle=\langle\beta, \alpha\rangle$ If roots have different lengths then we need a kittle extra information to recover the Carton matrix from the Coveter graph.

Define the Dynkin diagram of Φ by taking the coxeter diagram and adding an arrow from longer root to shorter root to each double or triple edge.
$\Phi_{A_{1} \times A_{1}}$ and $\Phi_{A_{2}}:$ Coulter graph $=0$ ynkin diagram

Oynkin diagram detomines the cortan matrix
\Rightarrow Cor. The Dynkin Diagram of Φ determines Φ up to \cong Moreover, the irreducible components of Φ correspond to the Connected components of the Dynkin diagram, and so Φ is introducible iff the Oynkin diagram is connected.

Next: classitiotion results and constructions

