MATH 5143 - Lecture 17

Some constructions $\downarrow$ so inherits nodes. form from $\mathbb{R}^{n+1}$
Prop Let $E=\left\{v \in \mathbb{R}^{n+1} \mid v_{1}+v_{2}+v_{3}+\cdots+v_{n+1}=0\right\rceil \cong \mathbb{R}^{n}$
Write $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n+1}$ for standard boris of $\mathbb{R}^{n+1}$.
Define $\Phi_{A_{n}}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i, j \leq n, i \neq j\right\}$
Then $\Phi_{A_{n}}$ is a rootsystom with bose $\Delta_{A_{n}}=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid=1=11_{1}, \ldots, i^{n}\right\}$ and Deakin diagram $\underset{\substack{0 \\ \varepsilon_{1}-\varepsilon_{2} \\ \bullet}}{\bullet}$
Also, $r_{\varepsilon_{i}-\varepsilon_{i+1}}\left(\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]\right)=\left[\begin{array}{c}n \\ \vdots \\ v_{n}\end{array}\right]-\left(v_{i}-v_{i+1}\right)\left(\varepsilon_{i}-\varepsilon_{i+1}\right)=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{i+1} \\ \vdots \\ \vdots \\ v_{n}\end{array}\right]$ so it follows that weyl group $W_{A_{n}} \cong S_{n+1}$ (symmetric

Pf All straight forward calculations .D grape of $1,2, \ldots, n+1$ )

Prop Let $\Phi_{B_{n}} \subseteq \mathbb{R}^{n}$ be set of $2 n+4\binom{n}{2}$ vectors

$$
\left\{ \pm \varepsilon_{i} \mid i=1,2, \cdots, n\right] \sqcup\left[ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right\} \text {. }
$$

Then $\Phi_{8_{n}}$ is a root system with base

$$
\Delta_{b_{n}}=\left\{\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, \varepsilon_{n}\right]
$$

and Danker diagram $\square$
The well grape $W_{B_{n}} \cong$ (signed $n \times n$ permutation matrices)
Prop Let $\Phi_{C_{n}}=\left\{ \pm 2 \varepsilon_{i} \mid i=1,2, \ldots, n\right] \Delta\left[ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right]$.
Then $\Phi_{C_{n}}$ is a root system with base $\Delta_{C_{n}}=\left\{\varepsilon_{1}-\varepsilon_{2}, \ldots, \varepsilon_{n-1}-\varepsilon_{n}, 2 \varepsilon_{i}\right]$ and Dyakin diagran $\underset{\varepsilon_{1}-\varepsilon_{2} \varepsilon_{2}-\varepsilon_{7}}{0 \cdots \cdots \varepsilon_{m-1}-\varepsilon_{n} 2 \varepsilon_{n}}$ Also: $W_{C_{n}}=W_{B_{n}}$.

Prop Finally let $\Phi_{0_{n}} \subseteq \mathbb{R}^{n}$ be set of $4\binom{n}{2}$ vectors $\left[ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq n\right]$. Then $\Phi_{D_{n}}$ is a root system with bore $\Delta_{O_{n}}=\left[\varepsilon_{1}-\varepsilon_{2}, \varepsilon_{2}-\varepsilon_{3}, \cdots, \varepsilon_{n-1}-\varepsilon_{n}, \varepsilon_{n-1}+\varepsilon_{n}\right]$ and Deakin diagram


The Whey' group $W_{O_{n}}$ is an index two normal subgroup of $W_{B_{n}}=W_{C_{n}} \quad 山$ (subgroup of even signed non permit.) $\underset{\text { matier. }}{\text { even }}$ ) of -1 entries.
$\Phi_{A_{n}}$ is irreducible $\forall h \geqslant 1$ (Ombin diagram is camectes) $\Phi_{B_{1}} \cong \Phi_{A}$ as Dynkindiagrom is just an idled vetted So we only consider $\Phi_{B_{n}}$ for $n \geq 2$

so we only consider $\Phi_{c_{n}}$ for $n \geq 3$. ! .....
$\Phi_{D_{1}} \cong \Phi_{A_{1},} \Phi_{D_{2}} \cong \Phi_{A_{1} \times A_{1}}$ (not irreducith) $\Phi_{D_{3}} \cong \Phi_{A_{3}}$ so we only consider $\Phi_{0_{n}}$ for $n \geqslant 4$.

Thin Suppose $\Phi$ is an irreducible root system. Then the Dynkin diagram of $\Phi$ is either isomonhtic to the Dynkin diagram of $\Phi_{A_{n}}($ Somenen $n=1), \Phi_{B_{n}}(\sin n=2)$ $\Phi_{C_{n}}$ (some $n \geqslant 3$ ), $\Phi_{D_{n}}$ (same $n \geqslant 4$ ), or to one of 5 "exceptional" diagrains:

$G_{2}$
Moreover, each of these exceptional diagrams does arise ar the oynkin diagram of an(rreducible) root by stem.
proof that every irreducible root system has one of these
Dynkin diagrams $\rightarrow$ see the relevant sections of textbook if interested
Constructions for $E_{n}, F_{n}, G_{2}$
$\Phi_{C_{2}}$ : we've already seen

$$
\Phi_{F_{u}} \stackrel{\text { def }}{=}\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leq 4\right\} D\left\{\frac{1}{2}\left(a_{1} \varepsilon_{1}+a_{2} \varepsilon_{1}+a_{2} \varepsilon_{2}+a_{4} \varepsilon_{4}\right)\right\}
$$

$\left(\searrow_{h}\right.$

$$
\sqcup\left[ \pm \varepsilon_{i} \mid 1 \leq i \leq 4\right] \subseteq \mathbb{R}^{4}
$$

has 48 elements, weal group has size 1152. has base $\left\{\varepsilon_{2}-\varepsilon_{3}, \varepsilon_{5}-\varepsilon_{4}, \varepsilon_{4}, \frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{n}\right)\right\}$

Suffices to construct $\Phi_{\epsilon_{g}}$ as $\Phi_{\epsilon_{6},} \Phi_{\epsilon}$ (an then be realized as subsystems. We can construct $\Phi_{E 8} \subseteq \mathbb{R}^{8}$ as the set of 240 vectors of the for

$$
\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j} \mid 1 \leq i<j \leqslant 8\right] \Delta\left\{\begin{array}{r}
\frac{1}{2}\left(a_{1}, \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+a_{8} \varepsilon_{8}\right) \\
a_{1}, a_{2}, \ldots a_{8} \in\{+1) \text { with } \\
a_{1} \cdot a_{2}, a_{3} \cdots a_{8}=+1
\end{array}\right\}
$$

This is a root system with base

$$
\Delta_{E_{8}}=\left\{\frac{1}{2}\left(\varepsilon_{1}-\varepsilon_{2}-\varepsilon_{3}-\varepsilon_{4}-\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right), \varepsilon_{1}+\varepsilon_{2}\right\}
$$

Isomorphism and conjugacy theorems
Recall that it $L$ is a semisimple Lie algebra (over an alg. closed, char. zero field $\mathbb{F}$ ), and $H \subseteq L$ is a maximal tonal subalgebra then there is a finite set $\Phi \subseteq H^{*} \backslash(0]$ with $L=H \oplus \underset{\alpha \in \Phi}{\Phi} L_{\alpha}$ where

$$
L_{\alpha} \stackrel{\operatorname{det}}{=}[x \in L \mid[h, x]=\alpha(h) \times \forall h \in] \neq 0 \text { for } \alpha \in \Phi \text {. }
$$

The set $\Phi$ is a root system in $E=\mathbb{R}_{Q} Q$ Q-pan $\left./ \alpha \in \Phi\right]$ with the bilinear form on $\mathrm{H}^{*}$ dale to the killing fam of L reatndedto H .

Prop If $L$ is simple then $\Phi$ is irreducible Pf If $\Phi=\Phi \Phi_{1} U \Phi_{2}$ were reducible (with $\Phi_{1}, \Phi_{1}$ nomemplu) and $\alpha \in \Phi, \beta \in \Phi_{2}$, then $\alpha+\beta$ is neither in $\Phi_{1}($ since $(\beta, \alpha+\beta)=(\beta, \beta) \neq 0)$ nor in $\Phi_{2}$ (sine $(\alpha, \alpha+\beta)=(\alpha, \alpha) \neq 0)$ so $\alpha+\beta \not \ddagger \Phi$ and it follows that the subalgebre of $L$ generated by $L_{\alpha}$ for $\alpha \in \Phi$, is a proper nonzero ideal. (since $\left[L_{\alpha, L \beta}\right]=0 \quad \forall \alpha \in \Phi_{1}, \beta \in \Phi_{2}$ )

Prop If $L=L_{1} \oplus L_{2} \oplus \cdots \oplus L_{n}$ is the decomposition of $L$ into simple ideals then $A_{i} \stackrel{\text { def }}{\stackrel{ }{A}} \mathrm{HL}_{i}$ is a maximal tonal subalselva of $L_{i}$ and the imrosucible root system $\Phi_{i}$ determined by $H_{i} \leq L_{i}$ may be viewed as a subsystem of $\Phi$ relative to which

$$
\Phi=\Phi_{1} \cup \Phi_{2} \cup-\sqcup \Phi_{n}
$$

is the decomposition of $\Phi$ into irreducible components. Pf see discussion in $\$ 14.1$ of textbook. D

Thrm Suppose $L^{\prime}$ is another semis imple Lie algebra with a maximal tonal subalgebra $H^{\prime}$ and root system $\Phi^{\prime}$. Suppose there exists a root system isomorphism $f: \Phi \rightarrow \Phi$. Extend $f$ to a vector space isomorphism $f: H \xrightarrow{\sim} H^{\prime}$ by setting $f\left(t_{\alpha}\right)=t_{f(\alpha)}^{\prime}$ where for $\alpha \in \Phi, \alpha^{\prime} \in \Phi^{\prime}$, $t_{\alpha} \in H$ and $t_{\alpha^{\prime}}^{\prime} \in H^{\prime}$ are the elements with $\left\{\begin{array}{l}x\left(t_{\alpha, h}\right)=\alpha(h) \\ x\left(f_{\alpha^{\prime}, h^{\prime}}\right)=\alpha^{\prime}\left(h^{\prime}\right)\end{array}\right.$ Choose a base $\Delta \subseteq \Phi$ along with isomorphisms between the 1-dim root spaces $L_{\alpha} \xrightarrow{\sim} L_{f(\alpha)}^{\prime}$ for $\alpha \in \Delta$. Then there is a unique Lie algebra isomorphism $L{ }^{\sim}+L^{\prime}$ extending $f: H \rightarrow H^{\prime}$ and these chosen is amorphism.

This theorem does require some proof $\rightarrow$ see textbook.

Prot in $\oint_{14}$ of textbook does not establish existence of a semisimple Lie algebra corresponding to any Damon diagram. Existence of this is shown in $\oint 18$, we May discuss in a few lectures. (For classical tope $A B C D$, just use the classical algebras $s e_{n}, O_{n}, r p_{n}$ - main issue is about exceptional types)

