MATH 5143 -Lecture \# 21

Representation theory of semisimple Lie algeloras
Every where: L is semisimple Lie algebra over field \mathbb{F} F is alg. closed and char. zero.
$H \subseteq L$ is a fixed Carton subaigebra
$\Phi \subseteq H^{*}$ is the comerpanding root system
$\Delta \leqq \Phi$ is a simplesistem with lems $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$
$W \stackrel{\text { def }}{=}\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle$ is Well group of Φ.
Goal: understand the finite-dimensianal L-modules in particular those which are irreducible.

Suppose V is a finite-dim L module. Then H acts on V as commuting diagonalizable perators, so V can be decomposed into simultaneous eigenspaces for H.
Specifically, we can write $V=\underset{\lambda \in H^{*}}{\oplus} V_{\lambda}$ where $V_{\lambda} \stackrel{\text { def }}{=}\{v \in V \mid h \cdot v=\lambda(h) v \forall h \in H\}$
If $V_{1} \neq 0$ (which can only happen for finteld-many $-\lambda 6 H^{*}$) then we call V_{1} a weight space and λ a weight Ex If $V=L$, Lasting by adjointreph, then weight spaces are just the not spaces L_{α} and the weights are the rots $\alpha \in \Phi$
\leftrightarrows along with H

Ex If $L=s l_{2}(\mathbb{H})=\left\langle x=\left[\begin{array}{ll}0 & 1 \\ 0\end{array}\right], y=\left[\begin{array}{l}0 \\ 10\end{array}\right], h=\left[\begin{array}{ll}10 \\ 0.1\end{array}\right]\right\rangle$ and V is irreducible, then V looks like

$$
V=V_{-m} \oplus V_{-m+2} \oplus \ldots \oplus V_{m-2} \oplus V_{m}
$$

for some integer $m \geq 0$. Each v_{i} is a weight space for the weight $\lambda: h \mapsto i$. Everything is easy here because $H=\mathbb{H}-$ span $\{h]$.

Some pathologies: if dim $=\infty$ then the Sum of the weight spaces $V_{\lambda} \leq V$ mas be a proper subspace, thangh this sum of subspaces is always direct [HW exercise] However:

Lemma Let V be an arbitrary L-module. Then
(a) L_{α} maps V_{λ} into $V_{\lambda+\alpha} \forall \lambda \in H^{*}$ and $\alpha \in \Phi$.
(b) $U \stackrel{\text { def }}{=} \sum_{t \in H^{*}} V_{\lambda}$ is equal to $\underset{\lambda \in H^{*}}{\oplus} V_{\lambda}$ and is an L-submodule of V.
(c) If $\operatorname{dim} V<\infty$ then $U=V$.

Pe we will just check (a), as $\left(\cos (c)\right.$ are exercises. Note for $x \in L_{\alpha}, v \in V_{\lambda}, h \in H$ that $h \cdot x \cdot v=x \cdot h \cdot v+[h, x]=v=(\lambda(h)+\alpha(h)) x \cdot v$ so L_{α} sender V_{1} to V_{1},o.

Standard cyclic montes
A maximal vector of weight $\lambda \in H^{*}$ in an L-module V is a nonzero vector $v^{+} \in V$ with $\left\{\begin{array}{l}X_{v}+=0 \quad \forall \alpha \in \Delta, x \in L_{\alpha} \\ h v^{+}=\lambda(h)^{+} \quad \forall h \in H\end{array}\right.$ [This depends implicitly on choice of simple rats Δ.
It $\operatorname{dim} v=\infty$ then it could happen that there are no such vectors)
But if $\operatorname{dimV}<\infty$ then the Borel subalgebra $B=H \oplus \oplus L_{\alpha}$ $\alpha \in \Phi^{+}$
is solvable and so has a canon eigenvector in V (by Lees the) and this eigenvector provides a max maI vector (because it is killed by all L_{α} for $\alpha \in \Phi^{+}$). Idea: first study L-modules generated by a maximal vector.

Note that any L-module structure an V corresponds to a map $L \rightarrow g l(V)$ which is an algelora, and so extends uniquely to an associative algebra module structure on V relative to U(L).
If $V=U(L) \cdot v^{+}$for a maximal vector v^{+}of weight t, then we say V is standard cyclic of weight t_{1} and we call v^{+}the highest weight vector of V.
Fix $x_{\alpha} \in L_{\alpha}, y_{\alpha} \in L_{-\alpha}$ with $\left[x_{\alpha}, y_{\alpha}\right]=h_{\alpha}$ for each $\alpha \in \Phi^{+}$. write $\lambda>\mu$ for $\lambda, \mu \in H^{*}$ if $\lambda-\mu$ is a sum of positive rods

Thin Let V be a standard cyclic L-module with highest weight vector $v^{+} \in V_{d}$. Write $\Phi^{+}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ and $y_{i} \stackrel{\text { def }}{=} y_{\beta_{i}}$. Then:
(a) V is spammed by the vectors $y_{i}, y_{i 2} \cdots y_{i k} V^{+}$ as $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ ranges over all weakly increasing sequences $1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{k} \leq m$. Also V is the direct sum of its weight spaces
(b) All weights μ for V have the form

$$
\mu=\lambda-\sum_{i=1}^{n} k_{i} \alpha_{i} \text { (where } k_{i} \in \mathbb{Z}_{\geq 0} \text {) }
$$

and therefore $\mu<t$.
(c) For each $\mu \in A^{*}, \operatorname{dim} V_{\mu}<\infty$ and $\operatorname{dim} V_{\lambda}=1$
(d) Each submodule of V is a direct sum of weight spaces
(e) V is an indeconparable L-module with a unique maximal proper submodule whose quotient is ir reducible.
(f) every nonzero homenorphic image of V is alpo standard cyclic of weight λ.

Pf Let $N^{-}=\underset{\alpha \in \Phi^{-}}{L_{\alpha}}$ and $B=A \oplus \bigoplus_{\alpha \in \Phi^{+}} L_{\alpha}$ so $L=N \oplus B$. $\alpha \in \Phi^{-\alpha} \alpha \in \Phi^{+}$
PBW thin implies that $U(L) v^{+}=U\left(N^{-}\right) U(B) v^{+}=U\left(N^{-}\right) \mathbb{F} v^{+}$ since v^{+}is common eigenvector for B. Part (a) follows from PBWthn for N^{-}.

Our lemme above implies that $y_{1} y_{2} \cdots y_{i k} v^{+}$has weight
(*) $\mu=\lambda-\beta_{i}-\beta_{i_{2}}-\ldots-\beta_{i k}$
so part (b) also follows. There are only finitely many vectors in (a) that can give rise a given weight μ vie ($*$) so $\operatorname{dim} V_{\mu}<\infty$, and the only such weight vector of weight t is v^{t} so $\operatorname{dim} V_{\lambda}=1$.
For part (d), let W be a sub module of V and write weN as a sum of vector $v_{i} \in V_{M_{i}}$ for distinct weights μ_{i}.

We want to mow that each v_{i} is in W.
suppose dherwife and chose $w=v_{1}+\ldots+v_{n}$ with n minimal where none of $v_{1}, v_{2}, \ldots, v_{n}$ are in W. (Then $n>1$)
Find $h \in H$ with $\mu_{1}(h) \neq \mu_{2}(h)$. Then $h \cdot w=\Sigma_{i} \mu_{i}(h) v_{i} \in W$ so $\left(h-\mu_{1}(h)\right) w \in W$ but $\left(h-\mu_{1}(h)\right) w$ has the form

$$
\left(\mu_{2}(h)-\mu_{1}(h)\right) v_{2}+\ldots+\left(\mu_{n}(h)-\mu_{1}(h)\right) v_{n} \neq 0
$$

contradicting minimality of n. Hence each $v_{i} \in W$ and (λ) holds.

We cuncluate from (c) and (d) that each proper submodule of V is in sum of weight spaces sher than V_{λ}, so the sum W of all proper submodules is proper, so the quotient v / W must be irreducible. This proves (e), and (f) holds by definition. Con If V is as in the and V is irreducible then v^{+}is the unique maximal weight vector up to res cong. Pf If there were another such vector of weight f^{\prime} then the implies that $\lambda<\lambda^{\prime}$ and $\lambda^{\prime}<\lambda$ so $\lambda=\lambda^{\prime}$.

