MATH 5143 - Lecture 25

MATH 5143 - Lecture 25 Setup throughout: L is a finite. - dim. semisimple Lie alg., defined over alg. claed field IF with charIF=0, Choose a Cartan subalgebra HCL, write ICH* for corresp. roots.s. choose a set of simple roots D, positive roots \$\$, write W = < val 2 E \$7 C GL(H*) for well group. La st time : Let \mathcal{Z} be center of universal enveloping alg. $\mathcal{U}(L)$ For each $\mathcal{J} \in \mathcal{H}^*$ we have a cyclic L-module $Z(\mathcal{J}) \stackrel{def}{=} \mathcal{U}(L) \otimes D_{\mathcal{J}}$ Fact: There exists a unique algebra hom. X1: Z-JA Borelsubala (called the central character) with a.u = X, (a) u Vac Z, uc Z(1)

Harish-Chandrois thin gives nec. and suff. condition to have $x_{\lambda} = x_{\mu}$ for λ , $\mu \in H^*$. Namely: Say that λ , $\mu \in H^*$ are linked (and write 1~µ) if 1+8 and µ+8 are in some W-orbit where $\delta = \frac{1}{2} \sum_{\alpha \in \phi^+} \delta_{\alpha \in \phi^+}$ Thm For $J, \mu \in H^*$ we have $x_j = \chi_{\mu}$ if and only if $J \sim \mu$. Define the formal character of any (Standard Cyclic) L-module V to be the formal expression $Chv = \Sigma dinV_{\mu} e^{\mu}$ $\mu \in \mathcal{H}^{*}$ Here SVµ = EveVIh·v = µ(h)vYheH? Len is just a formal symbol

polynomials) under convention that etem = et+m For this kind of multiplication to be well-defined the set of nonzero coefficients $C_{\mu} \neq 0$ in a character $\sum_{\mu \in H^*} C_{\mu} c^{\mu}$ must be finitely supported in some sense. Relevant property: If V Isstandard Cxclic then chive JE where HE is set of expressions Schem for which there are finitely many 1, 12, -, 1k (H* such that Cr +0 =) p < 1; for some index i where p cl means 1-p & Z >0-span [x ED].

The reason for this notation is that we want enable adding and multiplying characters like formal power series (or polynomials) under convention that $e^{+}e^{+} = e^{++\mu}$ Recall that V(H) is unique irreducible quotient of Z(H). $\int_{Y} finite. dim iff <math>J \in \Lambda^{+} = (\text{set of dominant integral wtr}) \in H^{*}$

Now, given
$$\lambda, \mu \in H^{*}$$
 define
 $m_{\lambda}(\mu) = \dim V(\lambda) \mu = \begin{pmatrix} \dim of \mu \text{ weight space} \\ \ln V(\lambda) \end{pmatrix}$
so that $ch_{V(\lambda)} \stackrel{\text{def}}{=} ch_{\lambda} = \sum m_{\lambda}(\mu) e^{\mu}$
 $\mu \in H^{*}$

Let sgn:
$$W \rightarrow \{ \pm 1 \}$$
 be unique group honomorphism
with $sgn(r_{\alpha}) = -1$.

Let
$$p(A) = (\text{the of ways of writing } -\lambda \text{ as a sum of})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } K : \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= (\text{the functions } \Phi^{+} \rightarrow \mathbb{Z}_{\geq 0})$$

$$= ($$

In proof of Kostant's formula, we encantered two identities:
Let
$$q \stackrel{\text{def}}{=} TT (e^{w_2} - e^{-w_2}) = e^{\delta} TT (1 - e^{-\alpha}) \in \mathcal{X}.$$

 $x \in \phi^+$
Then (1) $q \quad ch_{\lambda} = \sum \text{Sgn}(w) e^{w(\lambda + \delta)}$
 $(\lambda) q \quad z = \sum \text{Sgn}(w) e^{w\delta}$ (set $\lambda = 0$ in (1))
 $(\lambda) q \quad z = \sum \text{Sgn}(w) e^{w\delta}$ (set $\lambda = 0$ in (1))
substituing (2) into (1) gives the Weyl Character formula
which is

Then If $j \in \Lambda^{+}$ then $\left(\sum_{w \in W} sgn(w) e^{w\delta}\right) ch_{\lambda} = \sum_{w \in W} sgn(w) e^{w(2+\delta)}$

Thus can compute ch_{λ} by doing "long division" in ring $\mathcal{X} \longrightarrow$ but this is somewhat complicated in practice if $|\Delta|$ is large.

Application: an explicit formula for $deg(A) \stackrel{def}{=} din V(A) = \sum_{\mu \in H^*} m_{\lambda}(\mu) for A \in \Lambda^+$

Let $\mathfrak{X}_0 \subset \mathfrak{X}$ be \mathbb{Z} -spanie $1 \neq 1 \neq 1$ (so form) chart with then can define eval: $\mathfrak{X}_0 \to \mathfrak{F}$ cm $\Sigma c_{\mu} e^{\mu} \longrightarrow \Sigma c_{\mu}$ Then deg(d) = eval(ch1). Also eval: Xo + F is a ring homomorphism So eval (ch, ch) = eval (ch,) eval (ch). For $\alpha \in \Phi$ let D_{α} : $\mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ be linear map with $D_{\alpha}e^{\lambda} = (1, \alpha)e^{\lambda}$ This is a derivation: $D_{\alpha}(fg) = D_{\alpha}(f)g + f D_{\alpha}(g)$ since $D_{\alpha}(e^{\uparrow}e^{\mu}) = D_{\alpha}(e^{\uparrow}e^{\mu}) = (1+\mu, \alpha)e^{\uparrow}e^{\mu} = D_{\alpha}(e^{\uparrow})e^{\mu}e^{\uparrow}D_{\alpha}(e^{\mu})$

Let
$$D = TT D_{\alpha}$$
: Xo -3 Xo (no longer a derivation
 $\alpha \in \varphi^+$
Let $Q = \sum sgn(w) e^{w\delta}$
 $P = \sum sgn(w) e^{w(\delta+1)}$ So Weyl char. form. is
 $Q \cdot ch_{1} = P$
wew
we want to apply eval o D to both sides of this
Since each D_{α} is derivation, $Q = e^{\delta}TT(e^{\alpha}-1)$, and
 $\alpha \in e^{+}$
 $eval(e^{\alpha}-1) = 0$, one can show that this gives
 $eval(D(Q)) eval(Ch_{1}) = eval(D(P))$
 $= aval(D(Q)) after concellations$

This implies that
$$deg(L) = \frac{eval(D(P))}{eval(D(Q))}$$

Now observe that $eval(D(e^{\delta})) = eval(T(\delta_{\alpha}\alpha) \cdot e^{\delta})$
 $= T_{\alpha}eq^{+}(\delta_{\alpha}\alpha)$
Similarly $eval(D(e^{w\delta})) = T(w\delta_{\alpha}\alpha) = T(\delta_{\alpha}w^{\dagger}\alpha)$
But recall that w^{\dagger} permutes ϕ
 $are q^{\dagger}$
 $are q^{\dagger}$
Thus $eval(D(Q)) = \sum_{w\in W} sgn(w) eval(D(e^{w\delta}))$
 $= W| \cdot T_{\alpha}eq^{\dagger}(\delta_{\alpha})$

Similarly we derive
$$eval(D(P)) = Z sgn(r) eval(D(e^{u(1+\delta)}))$$

 $= IWI \cdot T (S+1, \alpha) T hus, as deg(1) = \frac{eval(D(P))}{eval(D(Q))}$

$$deg(H) \stackrel{def}{=} dim V(H) = \prod_{\alpha \in \phi^{\dagger}} \frac{(\delta + \lambda, \alpha)}{(\delta, \alpha)} = \prod_{\alpha \in \phi^{\dagger}} \frac{(\delta + \lambda, \alpha)}{(\delta, \alpha)}$$
where $\delta = \frac{1}{2} \sum_{\alpha \in \phi^{\dagger}} \alpha = \frac{1}{2$

Example (+ype A₂) Consider root System
(1)(1) = ²/₁/₃
dz 41
dz 41
dz 41
dz 41
(1)(1) = ²/₁/₃
positive roots are
$$\alpha_{1}\alpha_{1}+\alpha_{2},\alpha_{2}$$
 and $\delta = \alpha_{1}+\alpha_{2}$
(α_{1},α_{2}) = $\beta_{1}(\alpha_{1}+\alpha_{2},\alpha_{2})$ and $\delta = \alpha_{1}+\alpha_{2}$
(α_{1},α_{1}) = $\beta_{1}(\alpha_{1}+\alpha_{2},\alpha_{2})$ and $\delta = \alpha_{1}+\alpha_{2}$
(α_{1},α_{1}) = $\beta_{1}(\alpha_{1}+\alpha_{2},\alpha_{2})$ and $\delta = \alpha_{1}+\alpha_{2}$
(α_{1},α_{1}) = $\beta_{1}(\alpha_{1}+\alpha_{2})$ and $\delta = \alpha_{1}+\alpha_{2}$
(α_{1},α_{1}) = $\beta_{1}(\alpha_{1}+\alpha_{2})$ and $(\alpha_{1}+\alpha_{2},\alpha_{2})$
(α_{1},α_{2}) = $(\alpha_{2},\alpha_{1}) = -1/2$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
Such that
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
Such that
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{2},\delta) = \frac{1}{2}$ and $(\alpha_{1}+\alpha_{2},\delta) = \frac{1}{2}$
(α_{1},α_{2}) = $(\alpha_{1}+\alpha_{2},\alpha_{2},\delta) = \frac{1}{2}$
($\alpha_{1},\alpha_{2},\alpha_{2},\delta) = \frac{1}{2}$
($\alpha_{1},\alpha_{2},\alpha_{2},\alpha_{2},\delta) = \frac{1}{2}$
($\alpha_{1},\alpha_{2},\alpha$