MATH 5143 - Lecture 25

MATH 5143 - Lecture 25
Setup throughart: L is a finite-dim. Semisimple Lie alg, defined over alg. closed field F with char $F=0$, choose a Carton subalgebra $H \subset L$, write $\Phi \subset H^{*}$ for corresp rootsy, choose a set of simple roots Δ, positive roots ϕ^{+}, write
$w=\left\langle r_{\alpha} \mid \alpha \in \phi\right\rangle C G L\left(H^{*}\right)$ for well group.
Last time: Let ' z be center of universal enveloping alg. U(L) For each $\lambda \in H^{*}$ we have a standicer L-module $Z(A) \stackrel{\text { def }}{=} u(1) \otimes_{u(B)} D_{\lambda}$
Fact: There exists a unique algebra ham. $x_{\lambda}: Z \rightarrow H$ (call ed the central character) with $a \cdot u=x_{\lambda}(a) u \forall a \in \mathcal{Z}, u \in Z(-1)$

Harish-Chandra's thin gives nee and suff. condition to have $x_{\lambda}=x_{\mu}$ for $\lambda_{j} \mu \in H^{*}$. Namely: say that $\lambda, \mu \in H^{*}$ are linked (and write $\lambda \sim \mu$) if $\lambda+\delta$ and $\mu+\delta$ are in same W-orbit where $\delta=\frac{1}{2} \sum_{\alpha \in \phi^{+}}^{\alpha}$
The For $\lambda_{,}, \mu \in H^{*}$ we have $x_{\lambda}=x_{\mu}$ if and only if $t \sim \mu$.
Define the formal character of any (standard cyclic) L-moduleV to be the formal expression $c_{\nu}=\sum_{\mu \in H^{*}} \operatorname{dim} V_{\mu} e^{\mu}$. Here $\left\{\begin{array}{l}V_{\mu}=[v \in V \mid h \cdot v=\mu(h) v V h \in H] \\ e^{\mu} \text { is just a formal symbol }\end{array}\right.$

The reason for this notation is that we want enable adding and multiplying characters like formal power series (or polynomials) under cavention that $e^{t} e^{\mu}=e^{t+\mu}$

For this kind of multiplication to be well-defined the set of nonzero coefficients $c_{\mu} \neq 0$ in a character $\sum_{\mu \in H^{*}} c_{\mu} e^{\mu}$ must be finitely supported in some sense.

Relevant property: If \vee is standard cyclic then $c h v \in \mathcal{H}$ where \mathcal{H} is set of expressions $\sum_{\mu \in H^{*}} C_{\mu} e^{\mu}$ for which there are finitely many $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in H^{*}$ such that $C_{\mu} \neq 0 \Rightarrow \mu<\lambda_{i}$ for some index: where $\mu<\lambda$ means $\lambda-\mu \in \mathbb{Z} \geq 0-\operatorname{sDan}\{\alpha \in \Delta]$.

Recall that $V(-t)$ is unique irreducible quotient of $Z(1)$.

Now, given $\lambda, \mu \in H^{*}$ define

$$
m_{\lambda}(\mu)=\operatorname{dim} V(\lambda) \mu=\binom{\operatorname{dim} \text { ot } \mu \text { weight space }}{\text { in } V(-1)}
$$

so that $c h_{v(A)} \stackrel{\text { def }}{=} c h_{\lambda}=\sum_{\mu \in H^{*}} m_{1}(\mu) e^{\mu}$
Let ign: $W \rightarrow\{ \pm 1\}$ be unique group hanamapliom with $\operatorname{sgn}\left(r_{\alpha}\right)=-1$.

Let $p(\lambda)=\binom{\#$ of ways of writing $-\lambda$ as a sum of }{ positive roots }

$$
=\binom{\# \text { functions } k: \phi^{+} \rightarrow \mathbb{Z} \geq 0}{\text { such that } \lambda+\sum_{\alpha \in \phi^{+}} k(\alpha) \alpha=0}
$$

"Kortant partition function"
(dominant, integral, so dim $V(1)<\infty)$
Thin (Kostant's formula) If $\lambda \in \Lambda^{+}$then

$$
m_{\lambda}(\mu)=\sum_{w \in w} \operatorname{sgn}(w) p(\mu+\delta-w(\lambda+\delta))
$$

Explicit formula but still leis efficient than recursive, less explicit algorithms for computation

In proc of Kostant's formula, we encountered two identities: Let $q \stackrel{\text { def }}{=} \prod_{\alpha \in \phi^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)=e^{\delta} \prod_{\alpha \in \phi^{+}}\left(1-e^{-\alpha}\right) \in X$.
Then (1) $q c h_{\lambda}=\sum_{w \in w} \operatorname{sgn}(w) e^{w(\lambda+\delta)}$
(2) $q=\sum_{w \in w} \operatorname{sgn}(w) e^{w \delta} \quad($ set $\lambda=0$ in $(1))$
substitung (2) into (1) gives the weyl character formula which is ...

Thu If $\lambda \in \Lambda^{+}$then

$$
\left(\sum_{w \in W} \operatorname{sgn}(w) e^{w \delta}\right) c h_{\lambda}=\sum_{w \in W} \operatorname{sgn}(w) e^{w(1+\delta)}
$$

Thus can compute ch y by doing "longdvision" in ring $\chi \leadsto$ but this is somewhat complicated in practice if $|\Delta|$ is large.

Application: an explicit formula for

$$
\left.\operatorname{deg}(\lambda) \stackrel{\text { def }}{=} \operatorname{dim} V(t)=\sum_{\mu \in H^{*}} m_{\lambda} / \mu\right) \begin{aligned}
& \text { only defined } \\
& \text { for } t \in \Lambda^{+}
\end{aligned}
$$

Let $X_{0} \subset \notin$ be \mathbb{Z}-span $\left\{e^{\lambda} \mid \lambda \in H^{*}\right\}$ ($\left.\begin{array}{l}\text { so formal) chars with } \\ \text { finite } \# \text { of nonzero coeffr }\end{array}\right)$
Then can define eval: $\mathcal{E}_{0} \rightarrow F$

$$
\sum_{\mu} c_{\mu} e^{\mu} \longmapsto \sum_{r} c_{\mu}
$$

Then $\operatorname{deg} A)=\operatorname{eval}\left(c h_{\lambda}\right)$.
Also eval: $x_{0} \rightarrow \mathbb{F}$ is a ring homomorphism
so eval (ch, ch 2 $)=$ eval (c hi) eval (cha).
For $\alpha \in \Phi$ let $D_{\alpha}: X_{0} \rightarrow{ }_{t}$ o be linear map with $D_{\alpha} e^{\lambda}=(\lambda, \alpha) e^{\lambda}$
This is a derivation: $D_{\alpha}(f g)=D_{\alpha}(f) g+f D_{\alpha}(g)$ since

$$
D_{\alpha}\left(e^{\lambda} e^{\mu}\right)=D_{\alpha}\left(e^{\lambda+\mu}\right)=(\lambda+\mu, \alpha) e^{\lambda+\mu}=D_{\alpha}\left(e^{\lambda}\right) e^{\mu}+e^{\lambda} D_{\alpha}\left(e^{\mu}\right)
$$

Let $D=\prod_{\alpha \in \phi^{+}} D_{\alpha}: X_{0} \rightarrow f_{0}$ (no langer a derivation)
Let $Q=\sum_{w \in w} \operatorname{sgn}(w) e^{w \delta}$

$$
P=\sum_{w \in w} \operatorname{sgn}(w) e^{w(\delta+1)} \quad \underbrace{Q \cdot c h_{\lambda}=p}
$$

so Well char. form is

We want to apply eval. D to both sides of this Since each D_{α} is derivation, $Q=e^{-\delta} \Pi\left(e^{\alpha}-1\right)$, and $\alpha \in \Phi^{+}$ $\operatorname{eval}\left(e^{\alpha}-1\right)=0$, one $\underset{=\operatorname{deg}(t)}{ }$ show that this gives

$$
\underbrace{\operatorname{eval}(D(Q)) \overbrace{\operatorname{eval}\left(c h_{1}\right.}^{\operatorname{deg}(t)})}_{=\operatorname{eval}\left(D\left(Q \cdot c h_{1}\right)\right)}=\operatorname{eval}(D(P))
$$

This implies that $\operatorname{deg}(\lambda)=\frac{\operatorname{eval}(D(P))}{\operatorname{eval}(D(Q))}$
Now observe that $\operatorname{eval}\left(D\left(e^{\delta}\right)\right)=\operatorname{eval}\left(\prod_{\alpha \in \phi^{+}}(\delta, \alpha) \cdot e^{\delta}\right)$

$$
=\pi_{\alpha \in \phi^{+}}(\delta, \alpha)
$$

Similarly $\operatorname{eval}\left(D\left(e^{w \delta}\right)\right)=\prod_{\alpha \in \phi^{+}}(\omega \delta, \alpha)=\prod_{\alpha \in \phi^{+}}\left(\delta, w^{-1} \alpha\right)$
But recall that w" permutes ϕ
and senor $\ell\left(w^{-}\right)=\ell(w)$ roots in ϕ^{+}to $-\phi^{+}$so $^{\xi}=(-1)^{\ell(\omega)} \prod_{\alpha \in \phi^{+}}(\delta, \alpha)$

$$
=\operatorname{sgn}(\omega) \prod_{\alpha \in \phi^{+}}(\delta, \alpha)
$$

$$
\text { Thus } \begin{aligned}
\operatorname{eval}(D(Q))) & =\sum_{w \in w} \operatorname{sgn}(w) \operatorname{eval}\left(D\left(e^{w \delta \delta)}\right)\right. \\
& =|w| \cdot \pi_{\alpha \in \phi^{+}}(\delta, \alpha)
\end{aligned}=\sum_{w \in w^{\operatorname{ssn}(w)^{2}} \pi_{\alpha \in \phi^{+}}(\delta \alpha)}^{\alpha \in \alpha^{+0}}
$$

Similarly we derive $\operatorname{eval}(D(P))=\sum_{w \in W} \operatorname{sgn}(m) \operatorname{eval}\left(D\left(e^{(a, i v p)}\right)\right.$ $=|W| \cdot \prod_{\alpha \in \phi^{+}}(\delta+\lambda, \alpha)$. Thus, as $\operatorname{deg}(t)=\frac{\operatorname{eval}((p(p))}{\operatorname{eval}((0, \theta))}$:

Cor (well dimension formula) If $t \in \Lambda^{+}$then

$$
\operatorname{deg}(\lambda) \stackrel{\operatorname{det}}{=} \operatorname{dim} V(-1)=\prod_{\alpha \in \phi^{+}} \frac{(\delta+\lambda, \alpha)}{(\delta, \alpha)}=\prod_{\alpha \in \phi^{\dagger}}^{\langle\delta+\lambda, \alpha\rangle}\langle\delta, \alpha\rangle
$$

where $\delta=\frac{1}{2} \sum_{\alpha \in \phi^{+}}$and $^{2}\langle\beta, \alpha\rangle=\frac{2(\beta, \alpha)}{(\alpha, \alpha)}$

Example (type A_{2}) Consider root system

Positive roots are $\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}$, and $\delta=\alpha_{1}+\alpha_{2}$ $(\vec{x}, \vec{y})=\|\vec{x}\|\|\vec{y}\|$ cos (angle between \vec{x} ard \vec{y}) so

$$
\begin{aligned}
& \left(\alpha_{1}, \alpha_{1}\right)=1=\left(\alpha_{2}, \alpha_{2}\right) \\
& \left(\alpha_{1}, \alpha_{2}\right)=\left(\alpha_{2}, \alpha_{1}\right)=-1 / 2
\end{aligned}
$$

Let $\lambda_{11} \lambda_{2} \in \mathbb{R}^{2}$ be

$$
\left(\alpha_{1}, \delta\right)=\left(\alpha_{2}, \delta\right)=\frac{1}{2} \text { and }\left(\alpha_{1}+\alpha_{2}, \delta\right)=1
$$

such that

$$
\begin{aligned}
\left\langle\lambda_{i}, \alpha_{j}\right\rangle=\left\{\begin{array}{l}
1_{i=j}^{i=j} \\
0 i \neq j
\end{array}\right. & \Rightarrow\left\langle\delta, \alpha_{1}\right\rangle=\left\langle\delta, \alpha_{2}\right\rangle=1\left\langle\delta, \alpha_{1}+\alpha_{2}\right\rangle=2 \\
& \Rightarrow \prod_{\alpha \in \phi^{+}}\langle\delta, \alpha\rangle=2
\end{aligned}
$$

Every weight $\lambda \in \Lambda^{+}$can be written uniquely as $\lambda=m_{1} \lambda_{1}+m_{2} \lambda_{2}$

$$
\text { Ar }\left\langle\lambda+\delta, \alpha_{1}\right\rangle=m_{1}+1,\left\langle\lambda+\delta, \alpha_{2}\right\rangle=m_{2}+1,\left\langle\lambda+\delta, \alpha_{1}+\alpha_{2}\right\rangle=m_{1}+m_{2}+2
$$

we end up with $\operatorname{deg}(A)=\frac{1}{2}\left(m_{1}+1\right)\left(m_{2}+1\right)\left(m_{1}+m_{2}+2\right)$

