The Mysterious Dilogarithm

Ivan Ip

Department of Mathematics
Yale University

December 12, 2008
The Taylor series of the logarithm around 1 is given by

\[-\log(1 - x) = \sum_{n=1}^{\infty} \frac{x^n}{n} \quad \text{for } 0 < x < 1, \]
The Taylor series of the logarithm around 1 is given by

\[- \log(1 - x) = \sum_{n=1}^{\infty} \frac{x^n}{n} \quad \text{for } 0 < x < 1,\]

By analogy, we have:

Definition (Leibnitz 1696; Euler 1768)

The polylogarithm is defined by the power series

\[\text{Li}_m(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^m} \quad \text{for } 0 < x < 1.\]
The Taylor series of the logarithm around 1 is given by

\[- \log(1 - x) = \sum_{n=1}^{\infty} \frac{x^n}{n} \quad \text{for } 0 < x < 1,\]

By analogy, we have:

Definition (Leibnitz 1696; Euler 1768)

The polylogarithm is defined by the power series

\[\text{Li}_m(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^m} \quad \text{for } 0 < x < 1.\]

\(\text{Li}_2(x)\) is called the dilogarithm function.
From the definition, it is clear that:

\[\frac{d}{dx} \text{Li}_m(x) = \frac{1}{x} \text{Li}_{m-1}(x) \quad m \leq 2 \]
From the definition, it is clear that:

\[\frac{d}{dx} \text{Li}_m(x) = \frac{1}{x} \text{Li}_{m-1}(x) \quad m \leq 2 \]

Hence we can give an analytic continuation of the dilogarithm by:

\[\text{Li}_2(z) = - \int_0^z \log(1 - u) \frac{du}{u} \quad \text{for } z \in \mathbb{C} \setminus [1, \infty) \]
Dilogarithm

Introduction

Definition
Reflection properties

Proposition

\[\text{Li}_2\left(\frac{1}{z}\right) + \text{Li}_2(z) = -\frac{\pi^2}{6} - \frac{1}{2} \log^2(-z) \]

\[\text{Li}_2(1 - z) + \text{Li}_2(z) = \frac{\pi^2}{6} - \log(z) \log(1 - z) \]
Reflection properties

Proposition

\[\text{Li}_2\left(\frac{1}{z}\right) + \text{Li}_2(z) = -\frac{\pi^2}{6} - \frac{1}{2} \log^2(-z) \]

\[\text{Li}_2(1 - z) + \text{Li}_2(z) = \frac{\pi^2}{6} - \log(z) \log(1 - z) \]

Proof: Differentiating both sides.
Reflection properties

Proposition

\[
\text{Li}_2\left(\frac{1}{z}\right) + \text{Li}_2(z) = -\frac{\pi^2}{6} - \frac{1}{2} \log^2(-z)
\]

\[
\text{Li}_2(1 - z) + \text{Li}_2(z) = \frac{\pi^2}{6} - \log(z) \log(1 - z)
\]

Proof: Differentiating both sides.
Applying these formula, we see that the 6 functions:

\[
\text{Li}_2(z), \text{Li}_2\left(\frac{1}{1 - z}\right), \text{Li}_2\left(\frac{z - 1}{z}\right), -\text{Li}_2\left(\frac{1}{z}\right), -\text{Li}_2(1 - z), -\text{Li}_2\left(\frac{z}{z - 1}\right)
\]

are equal modulo elementary functions.
Proposition (Duplication formula)

\[\text{Li}_2(z^2) = 2(\text{Li}_2(z) + \text{Li}_2(-z)) \]
Proposition (Duplication formula)

\[\text{Li}_2(z^2) = 2(\text{Li}_2(z) + \text{Li}_2(-z)) \]

and more generally the "distribution property":

\[\text{Li}_2(x) = n \sum_{z^n = x} \text{Li}_2(z) \quad (n = 1, 2, 3...) \]
There are exactly 8 values of z for which z and $\text{Li}_2(z)$ can both be given in closed form:

\[
\begin{align*}
\text{Li}_2(0) &= 0 \\
\text{Li}_2(1) &= \frac{\pi^2}{6} \\
\text{Li}_2(-1) &= -\frac{\pi^2}{12}
\end{align*}
\]

\[
\begin{align*}
\text{Li}_2\left(\frac{1}{2}\right) &= \frac{\pi^2}{12} - \frac{1}{2} \log^2(2) \\
\text{Li}_2(\phi) &= \frac{\pi^2}{10} - \log^2(\phi^{-1}) \\
\text{Li}_2(-\phi) &= -\frac{\pi^2}{15} - \frac{1}{2} \log^2(\phi^{-1}) \\
\text{Li}_2(\phi^{-1}) &= \frac{\pi^2}{15} - \log^2(\phi^{-1}) \\
\text{Li}_2(-\phi^{-1}) &= -\frac{\pi^2}{10} - \frac{1}{2} \log^2(\phi^{-1})
\end{align*}
\]

where $\phi = \frac{\sqrt{5}-1}{2}$ is the golden ratio.
Let’s consider the recurrence relation

$$1 - z_n = z_{n-1}z_{n+1}$$
Five-Term Relation

Let’s consider the recurrence relation

\[1 - z_n = z_{n-1}z_{n+1} \]

If we let the initial values to be \(z_0 = x, z_1 = 1 - xy \) (so \(z_2 = y \)), then we have:
Five-Term Relation

Let’s consider the recurrence relation

\[1 - z_n = z_{n-1} z_{n+1} \]

If we let the initial values to be \(z_0 = x, z_1 = 1 - xy \) (so \(z_2 = y \)), then we have:

\[
\begin{align*}
 z_3 &= \frac{1 - z_2}{z_1} = \frac{1 - y}{1 - xy} \\
 z_4 &= \frac{1 - z_3}{z_2} = \frac{1 - x}{1 - xy} \\
 z_5 &= \frac{1 - z_4}{z_3} = x \\
 z_6 &= \frac{1 - z_5}{z_4} = 1 - xy \\
\end{align*}
\]

so this recurrence relation actually has period 5!
The most important functional equation is the following:

Theorem (Spence(1809), Abel(1827), Hill(1828), Kummer(1840), Schaeffer(1846)...)

\[
\text{Li}_2(x) + \text{Li}_2(1 - xy) + \text{Li}_2(y) + \text{Li}_2\left(\frac{1 - y}{1 - xy}\right) + \text{Li}_2\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{6} - \log(x) \log(1 - x) - \log(y)(1 - y) + \log\left(\frac{1 - x}{1 - xy}\right) \log\left(\frac{1 - y}{1 - xy}\right)
\]
The most important functional equation is the following:

\[
\text{Theorem (Spence (1809), Abel (1827), Hill (1828), Kummer (1840), Schaeffer (1846)...)}
\]

\[
\text{Li}_2(x) + \text{Li}_2(1 - xy) + \text{Li}_2(y) + \text{Li}_2\left(\frac{1 - y}{1 - xy}\right) + \text{Li}_2\left(\frac{1 - x}{1 - xy}\right)
\]

\[
= \frac{\pi^2}{6} - \log(x) \log(1 - x) - \log(y)(1 - y) + \log\left(\frac{1 - x}{1 - xy}\right) \log\left(\frac{1 - y}{1 - xy}\right)
\]

The right hand side is a junk — they can be removed by giving an equivalent but modified definition of the dilogarithm function.
Bloch-Wigner function $D(z)$

- $\text{Li}_2(z)$ has a jump by $2\pi i \log |z|$ across the cut.
Bloch-Wigner function $D(z)$

- $\text{Li}_2(z)$ has a jump by $2\pi i \log |z|$ across the cut.
- Therefore $\text{Li}_2(z) + i \arg(1 - z) \log |z|$ is continuous.
Bloch-Wigner function $D(z)$

- $\text{Li}_2(z)$ has a jump by $2\pi i \log |z|$ across the cut.
- Therefore $\text{Li}_2(z) + i \arg(1 - z) \log |z|$ is continuous.

Definition

The Bloch-Wigner function $D(z)$ is defined by

$$\Im(\text{Li}_2(z)) + \arg(1 - z) \log |z|$$
Bloch-Wigner function $D(z)$

- $\text{Li}_2(z)$ has a jump by $2\pi i \log |z|$ across the cut.
- Therefore $\text{Li}_2(z) + i \arg(1 - z) \log |z|$ is continuous.

Definition

The Bloch-Wigner function $D(z)$ is defined by

$$\Im(\text{Li}_2(z)) + \arg(1 - z) \log |z|$$
Dilogarithm

Bloch-Wigner Dilogarithm $D(z)$

Definition

Bloch-Wigner function $D(z)$

- $D(z)$ is real analytic on \mathbb{C} except at 0 and 1.
Bloch-Wigner function $D(z)$

- $D(z)$ is real analytic on \mathbb{C} except at 0 and 1.
- (Kummer)

$$D(z) = \frac{1}{2} \left[D\left(\frac{z}{\bar{z}}\right) + D\left(\frac{1 - 1/\bar{z}}{1 - 1/z}\right) + D\left(\frac{1/(1-z)}{1/(1-\bar{z})}\right) \right]$$

i.e. $D(z)$ only depends on its value on the unit circle:

$$D(e^{i\theta}) = \Im[\text{Li}_2(e^{i\theta})] = \sum_{n=1}^{\infty} \frac{\sin n\theta}{n^2}$$
Bloch-Wigner function $D(z)$

All functional equations for $\text{Li}_2(z)$ lose the elementary terms. In particular:

\[
D(z) + D(1 - \frac{1}{1 + z}) + D(y) + D(1 - \frac{1}{1 + y}) = 0
\]
Bloch-Wigner function $D(z)$

All functional equations for $\text{Li}_2(z)$ lose the elementary terms. In particular:

- (6-fold symmetry)

$$D(z) = D\left(\frac{1}{1-z}\right) = D\left(\frac{z-1}{z}\right)$$

$$= -D\left(\frac{1}{z}\right) = -D(1-z) = -D\left(\frac{z}{z-1}\right)$$
Bloch-Wigner function $D(z)$

All functional equations for $\text{Li}_2(z)$ lose the elementary terms. In particular:

- (6-fold symmetry)

\[D(z) = D\left(\frac{1}{1-z}\right) = D\left(\frac{z-1}{z}\right) \]

\[= -D\left(\frac{1}{z}\right) = -D(1-z) = -D\left(\frac{z}{z-1}\right) \]

- (5-term relation)

\[D(x) + D(1-xy) + D(y) + D\left(\frac{1-y}{1-xy}\right) + D\left(\frac{1-x}{1-xy}\right) = 0 \]
Bloch-Wigner function \(D(z) \)

The relation become even nicer if we write \(D \) in terms of cross-ratio of 4 numbers:
Bloch-Wigner function $D(z)$

The relation become even nicer if we write D in terms of cross-ratio of 4 numbers:

$$
\tilde{D}(z_0, z_1, z_2, z_3) = D \left(\frac{z_0 - z_2}{z_0 - z_3} \frac{z_1 - z_3}{z_1 - z_2} \right) \quad (z_0, z_1, z_2, z_3 \in \mathbb{C})
$$

Then:
Bloch-Wigner function $D(z)$

The relation become even nicer if we write D in terms of cross-ratio of 4 numbers:

$$\tilde{D}(z_0, z_1, z_2, z_3) = D \left(\frac{z_0 - z_2}{z_0 - z_3} \frac{z_1 - z_3}{z_1 - z_2} \right) \quad (z_0, z_1, z_2, z_3 \in \mathbb{C})$$

Then:

- ”6-fold symmetry” says that \tilde{D} is (anti)invariant under (odd)even permutation of its 4 variables,
Bloch-Wigner function $D(z)$

The relation become even nicer if we write D in terms of cross-ratio of 4 numbers:

$$\tilde{D}(z_0, z_1, z_2, z_3) = D \left(\frac{z_0 - z_2}{z_0 - z_3} \frac{z_1 - z_3}{z_1 - z_2} \right) \quad (z_0, z_1, z_2, z_3 \in \mathbb{C})$$

Then:

- ”6-fold symmetry” says that \tilde{D} is (anti)invariant under (odd)even permutation of its 4 variables,

- ”5-term relation” becomes

$$\sum_{i=0}^{4} (-1)^i \tilde{D}(z_0, ..., \hat{z}_i, ..., z_4) = 0 \quad (z_0, ..., z_4 \in \mathbb{P}^1(\mathbb{C}))$$
5 term relation

The 5 term relation plays an important role:
The 5 term relation plays an important role:

Theorem

\[D(z) \text{ is the unique measurable function on } \mathbb{P}^1(\mathbb{C}) \text{ (up to constant) satisfying the 5 term relation.} \]
The 5 term relation plays an important role:

Theorem

\[D(z) \] is the unique measurable function on \(\mathbb{P}^1(\mathbb{C}) \) (up to constant) satisfying the 5 term relation.

Theorem (Wojtkowiak)

Every functional equation of the form \(\sum_i D(x_i(t)) = C \) is a formal consequence of the 5 term relation.
Here \(x_i(t) \) is a rational function in \(t \), and \(C \) is a constant.
The 5 term relation plays an important role:

Theorem

\[D(z) \text{ is the unique measurable function on } \mathbb{P}^1(\mathbb{C}) \text{ (up to constant) satisfying the 5 term relation.} \]

Theorem (Wojtkowiak)

Every functional equation of the form \(\sum_i D(x_i(t)) = C \) is a formal consequence of the 5 term relation. Here \(x_i(t) \) is a rational function in \(t \), and \(C \) is a constant.

All applications onward will be related to THE 5-term relation.
Let’s realize the hyperbolic 3-space as $\mathbb{H}_3 = \mathbb{C} \times \mathbb{R}_+$ with standard hyperbolic metric.

(i.e. geodesics = vertical lines/semicircles in vertical planes with endpoints in $\mathbb{C} \times \{0\}$ etc.)
Let’s realize the hyperbolic 3-space as $\mathbb{H}_3 = \mathbb{C} \times \mathbb{R}_+$ with standard hyperbolic metric.

(i.e. geodesics = vertical lines/semicircles in vertical planes with endpoints in $\mathbb{C} \times \{0\}$ etc.)

Definition

An *ideal tetrahedron* is a tetrahedron whose vertices are all in $\partial \mathbb{H}_3 = \mathbb{C} \cup \{\infty\} = \mathbb{P}^1(\mathbb{C})$
How does Ideal Tetrahedra look like?
Theorem (Lobachevsky)

The hyperbolic volume of an ideal tetrahedron is finite, and is given by

$$Vol(\Delta) = \tilde{D}(z_0, z_1, z_2, z_3)$$
Theorem (Lobachevsky)

The hyperbolic volume of an ideal tetrahedron is finite, and is given by

\[\text{Vol}(\Delta) = \tilde{D}(z_0, z_1, z_2, z_3) \]

Then:
Theorem (Lobachevsky)

The hyperbolic volume of an ideal tetrahedron is finite, and is given by

$$\text{Vol}(\Delta) = \tilde{D}(z_0, z_1, z_2, z_3)$$

Then:

- ”6-fold symmetry” follows from the fact that renumbering the vertices leaves Δ unchanged but may change the orientation.
Ideal Tetrahedra

Theorem (Lobachevsky)

The hyperbolic volume of an ideal tetrahedron is finite, and is given by

\[\text{Vol}(\Delta) = \tilde{D}(z_0, z_1, z_2, z_3) \]

Then:

- ”6-fold symmetry” follows from the fact that renumbering the vertices leaves \(\Delta \) unchanged but may change the orientation.

- ”5-term relation” follows from the fact that the five \(\Delta \)'s spanned by 4 at a time of \(z_0, ..., z_4 \in \mathbb{P}^1(\mathbb{C}) \), with signs, add up algebraically to a zero 3-cycle.
It turns out that the group $SL_2(\mathbb{C})$ acts on \mathbb{H}_3 by isometries, and it can always bring \{\(z_0, z_1, z_2, z_3\}\} into the form \{\(\infty, 0, 1, z\)\}.

Theorem (Jrgensen and Thurston)

The “volume spectrum” $\text{Vol}(M)$ is a countable and well-ordered subset of \mathbb{R}_+.

Volume of Hyperbolic 3-manifold

- It turns out that the group $SL_2(\mathbb{C})$ acts on \mathbb{H}_3 by isometries, and it can always bring \{\(z_0, z_1, z_2, z_3\)\} into the form \{\(\infty, 0, 1, z\)\}.

- Every complete oriented hyperbolic 3-manifold with finite volume can be triangulated into ideal tetrahedra.
Volume of Hyperbolic 3-manifold

- It turns out that the group $SL_2(\mathbb{C})$ acts on \mathbb{H}_3 by isometries, and it can always bring $\{z_0, z_1, z_2, z_3\}$ into the form $\{\infty, 0, 1, z\}$.
- Then the formula reduce to

$$Vol(\Delta) = D(z).$$
Volume of Hyperbolic 3-manifold

- It turns out that the group $SL_2(\mathbb{C})$ acts on \mathbb{H}_3 by isometries, and it can always bring $\{z_0, z_1, z_2, z_3\}$ into the form $\{\infty, 0, 1, z\}$.
- Then the formula reduce to

$$Vol(\Delta) = D(z).$$

- Every complete oriented hyperbolic 3-manifold with finite volume can be triangulated into ideal tetrahedra.

$$Vol(M) = \sum_{v=1}^{n} Vol(\Delta_v) = \sum_{v=1}^{n} D(z_v).$$
Volume of Hyperbolic 3-manifold

- It turns out that the group $SL_2(\mathbb{C})$ acts on \mathbb{H}_3 by isometries, and it can always bring $\{z_0, z_1, z_2, z_3\}$ into the form $\{\infty, 0, 1, z\}$.
- Then the formula reduce to

$$Vol(\Delta) = D(z).$$

- Every complete oriented hyperbolic 3-manifold with finite volume can be triangulated into ideal tetrahedra.

$$Vol(M) = \sum_{v=1}^{n} Vol(\Delta_v) = \sum_{v=1}^{n} D(z_v)$$

Theorem (Jørgensen and Thurston)

"volume spectrum"

$$Vol = \{ Vol(M) | M \text{ a hyperbolic 3-manifold} \} \subset \mathbb{R}_+$$

is a countable and well-ordered subset of \mathbb{R}_+.
Bloch Group

- The parameters z_v of the tetrahedra triangulation need to satisfy

$$\sum_{v=1}^{n} z_v \wedge (1 - z_v) = 0$$

in the abelian group $\bigwedge^2 \mathbb{C}^\times$.
The parameters z_v of the tetrahedra triangulation need to satisfy

$$\sum_{v=1}^{n} z_v \wedge (1 - z_v) = 0$$

in the abelian group $\wedge^2 \mathbb{C}^\times$.

Here $\wedge^2 \mathbb{C}^\times$ is the set of all formal linear combinations $x \wedge y, x, y \in \mathbb{C}^\times$ subject to the relations

$$x \wedge x = 0$$

and

$$(x_1 x_2) \wedge y = x_1 \wedge y + x_2 \wedge y.$$
Consider the abelian group of formal sums $[z_1] + \ldots + [z_n]$ with $z_i \in \mathbb{C}^\times \setminus \{1\}$ satisfying $\sum_{v=1}^{n} z_v \wedge (1 - z_v) = 0$.
Consider the abelian group of formal sums $[z_1] + \ldots + [z_n]$ with $z_i \in \mathbb{C}^\times \setminus \{1\}$ satisfying $\sum_{v=1}^{n} z_v \wedge (1 - z_v) = 0$.

Then it contains the elements:

$$[x] + \left[\frac{1}{x}\right], \quad [x] + [1 - x],$$

$$[x] + [1 - xy] + [y] + \left[\frac{1 - y}{1 - xy}\right] + \left[\frac{1 - x}{1 - xy}\right] \quad (*)$$

corresponding to the symmetries and 5-term relation for $D(z)$.

Consider the abelian group of formal sums $[z_1] + \ldots + [z_n]$ with $z_i \in \mathbb{C}^\times \setminus \{1\}$ satisfying $\sum_{v=1}^n z_v \wedge (1 - z_v) = 0$.

Then it contains the elements:

$$[x] + \left[\frac{1}{x}\right], \quad [x] + [1 - x],$$

$$[x] + [1 - xy] + [y] + \left[\frac{1 - y}{1 - xy}\right] + \left[\frac{1 - x}{1 - xy}\right] \quad (\ast)$$

corresponding to the symmetries and 5-term relation for $D(z)$.

Definition

The *Bloch Group* $\mathcal{B}_\mathbb{C}$ is defined as the quotient of this abelian group with the subgroup generated by the elements (\ast).
It follows that D extends to a linear map

$$D : \mathcal{B}_\mathbb{C} \longrightarrow \mathbb{R}$$

by

$$[z_1] + \ldots + [z_n] \mapsto D(z_1) + \ldots + D(z_n)$$
It follows that D extends to a linear map

$$D : \mathcal{B}_\mathbb{C} \rightarrow \mathbb{R}$$

by

$$[z_1] + \ldots + [z_n] \mapsto D(z_1) + \ldots + D(z_n)$$

Theorem (Bloch)

The set $D(\mathcal{B}_\mathbb{C})$ coincides with $D(\mathcal{B}_\mathbb{Q})$.
It follows that D extends to a linear map

$$D : \mathcal{B}_C \rightarrow \mathbb{R}$$

by

$$[z_1] + ... + [z_n] \mapsto D(z_1) + ... + D(z_n)$$

Theorem (Bloch)

The set $D(\mathcal{B}_C)$ coincides with $D(\mathcal{B}_\mathbb{Q})$.

In particular, **Vol** is countable.
Definition

The *Dedekind Zeta Function* of a number field F is defined as

$$
\zeta_F(s) = \prod_{p \subset \mathcal{O}_F} \left(1 - \frac{1}{(Np)^s}\right)^{-1} = \sum_{a \subset \mathcal{O}_F} \frac{1}{(Na)^s}
$$

where \mathcal{O}_F is the number ring of F, and $Na = |\mathcal{O}_F/a|$ is the *norm* of a.
Dedekind Zeta Function

Definition

The *Dedekind Zeta Function* of a number field F is defined as

$$\zeta_F(s) = \prod_{p \subset \mathcal{O}_F} \left(1 - \frac{1}{(Np)^s}\right)^{-1} = \sum_{a \subset \mathcal{O}_F} \frac{1}{(Na)^s}$$

where \mathcal{O}_F is the number ring of F, and $Na = |\mathcal{O}_F/a|$ is the norm of a.

When $F = \mathbb{Q}$, this is just the Riemann Zeta function:

$$\zeta(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1} = \sum_{n \in \mathbb{Z}} \frac{1}{n^s}$$
Examples

- Let $F = \mathbb{Q}(\sqrt{-a})$ with $a \geq 1$ square free.
Examples

- Let $F = \mathbb{Q}(\sqrt{-a})$ with $a \geq 1$ square free.
- The discriminant of F is $d = -a$ or $-4a$ (depending on $a(\mod 4)$)
Examples

- Let $F = \mathbb{Q}(\sqrt{-a})$ with $a \geq 1$ square free.
- The discriminant of F is $d = -a$ or $-4a$ (depending on $a \pmod{4}$)
- Then
 \[\zeta_F(s) = \zeta(s)L(s) \]
 where
 \[L(s) = \sum_{n \geq 1} \left(\frac{d}{n} \right) n^{-s} \]
 is the L-series.
Examples

- Let $F = \mathbb{Q}(\sqrt{-a})$ with $a \geq 1$ square free.
- The discriminant of F is $d = -a$ or $-4a$ (depending on $a \pmod{4}$)
- Then
 \[\zeta_F(s) = \zeta(s)L(s) \]
 where
 \[L(s) = \sum_{n \geq 1} \left(\frac{d}{n} \right) n^{-s} \]
 is the L-series.
- Here $\left(\frac{d}{n} \right)$ is the Kronecker Symbol, taking values ± 1 or 0 and periodic with period $|d|$ in n.
Examples

For $a = -7$, we have:

$$\zeta_{\mathbb{Q}(\sqrt{-7})}(s) = \left(\sum_{n=1}^{\infty} n^{-s} \right) \left(\sum_{n=1}^{\infty} \left(\frac{-7}{n} \right) n^{-s} \right)$$

$$\left(\frac{-7}{n} \right) = \begin{cases} +1 & n \equiv 1, 2, 4 \mod 7 \\ -1 & n \equiv 3, 5, 6 \mod 7 \\ 0 & n \equiv 0 \mod 7 \end{cases}$$
One of the questions of interest is the evaluation of the Dedekind Zeta Function at integer arguments.
One of the questions of interest is the evaluation of the Dedekind Zeta Function at integer arguments.

It is well known that $\zeta_F(1)$ can be expressed using the usual logarithm (through a term called *regulator*).
One of the questions of interest is the evaluation of the Dedekind Zeta Function at integer arguments.

It is well known that $\zeta_F(1)$ can be expressed using the usual logarithm (through a term called regulator).

We expect that $\zeta_F(2)$ can be expressed using dilogarithm also.
Examples

\[\zeta_F(2) = \zeta(2) L(2) = \frac{\pi^2}{6} \sum_{n \geq 1} \left(\frac{d}{n} \right) n^{-2} \]
Examples

\[\zeta_F(2) = \zeta(2) L(2) = \frac{\pi^2}{6} \sum_{n \geq 1} \left(\frac{d}{n} \right) n^{-2} \]

Since \(\left(\frac{d}{n} \right) \) is periodic in \(n \), we can write it as finite linear combinations of \(e^{2\pi i kn/|d|} \) and obtain:

\[\zeta_F(2) = \frac{\pi^2}{6 \sqrt{|d|}} \sum_{k=1}^{|d|-1} \left(\frac{d}{k'} \right) D(e^{2\pi ik/|d|}) \]
Examples

\[\zeta_F(2) = \zeta(2) L(2) = \frac{\pi^2}{6} \sum_{n \geq 1} \left(\frac{d}{n} \right) n^{-2} \]

Since \((\frac{d}{n})\) is periodic in \(n\), we can write it as finite linear combinations of \(e^{2\pi ikn/|d|}\) and obtain:

\[\zeta_F(2) = \frac{\pi^2}{6 \sqrt{|d|}} \sum_{k=1}^{|d|-1} \left(\frac{d}{k} \right) D(e^{2\pi i k/|d|}) \]

For example:

\[\zeta_{\mathbb{Q}(\sqrt{-7})}(2) = \frac{\pi^2}{3 \sqrt{7}} (D(e^{2\pi i/7}) + D(e^{4\pi i/7}) - D(e^{6\pi i/7})) \]

expressing \(\zeta_F(2)\) in closed form using \(D(z)\) at algebraic arguments \(z\).
Examples

By considering $\Gamma = SL_2(\mathcal{O}_F)$ as a discrete subgroup of $SL_2(\mathbb{C})$, hence acts on \mathfrak{h}_3:

Theorem (Humbert, Zagier)

$$Vol(\mathfrak{h}_3) = \frac{1}{d} \frac{1}{3!} = 2$$

and H_3 can be triangulated into ideal tetrahedra with vertices on $P_1(\mathcal{O})$.

Hence

$$F(2) = 2\frac{1}{3!} \frac{1}{d}$$

where $n_v \in \mathbb{Z}$ and $z_v \in F$, a much smaller field than $\mathbb{Q}(e^{2\pi i/d})$.

For example:

$$\mathbb{Q}(\sqrt{7})(2) = 2\frac{1}{3!} \frac{1}{d} \sqrt{7} + D(1 + \sqrt{7}) + D(1 + \sqrt{7}^4)$$
Examples

By considering $\Gamma = SL_2(\mathcal{O}_F)$ as a discrete subgroup of $SL_2(\mathbb{C})$, hence acts on \mathfrak{H}_3:

Theorem (Humbert, Zagier)

$$Vol(\mathfrak{H}_3/\Gamma) = |d|^{3/2} \zeta_F(2)/4\pi^2$$

and \mathfrak{H}_3/Γ can be triangulated into ideal tetrahedra with vertices on $\mathbb{P}^1(F) \subset \mathbb{P}^1(\mathbb{C})$.
Examples

By considering $\Gamma = SL_2(\mathcal{O}_F)$ as a discrete subgroup of $SL_2(\mathbb{C})$, hence acts on \mathfrak{H}_3:

Theorem (Humbert, Zagier)

\[\text{Vol}(\mathfrak{H}_3/\Gamma) = |d|^{3/2} \zeta_F(2)/4\pi^2\]

and \mathfrak{H}_3/Γ can be triangulated into ideal tetrahedra with vertices on $\mathbb{P}^1(F) \subset \mathbb{P}^1(\mathbb{C})$.

- Hence

\[\zeta_F(2) = \frac{\pi^2}{3|d|^{3/2}} \sum_v n_v D(z_v)\]

where $n_v \in \mathbb{Z}$ and $z_v \in F$, a much smaller field than $\mathbb{Q}(e^{2\pi i n/|d|})$.
Examples

By considering $\Gamma = SL_2(O_F)$ as a discrete subgroup of $SL_2(\mathbb{C})$, hence acts on \mathfrak{H}_3:

Theorem (Humbert, Zagier)

$$Vol(\mathfrak{H}_3/\Gamma) = |d|^{3/2} \zeta_F(2)/4\pi^2$$

and \mathfrak{H}_3/Γ can be triangulated into ideal tetrahedra with vertices on $\mathbb{P}^1(F) \subset \mathbb{P}^1(\mathbb{C})$.

- Hence

$$\zeta_F(2) = \frac{\pi^2}{3|d|^{3/2}} \sum_v n_v D(z_v)$$

 where $n_v \in \mathbb{Z}$ and $z_v \in F$, a much smaller field than $\mathbb{Q}(e^{2\pi i n/|d|})$.

- For example:

$$\zeta_{\mathbb{Q}(\sqrt{-7})}(2) = \frac{4\pi^2}{21\sqrt{7}} \left(2D\left(\frac{1 + \sqrt{-7}}{2}\right) + D\left(\frac{-1 + \sqrt{-7}}{4}\right)\right)$$
Algebraic K Theory

For general number field F with r_1 real and r_2 pairs of complex embeddings, the relation between $D(z)$ and $\zeta_F(2)$ is given nicely through the use of Algebraic K Theory by A. Borel.
Algebraic K Theory

For general number field F with r_1 real and r_2 pairs of complex embeddings, the relation between $D(z)$ and $\zeta_F(2)$ is given nicely through the use of Algebraic K Theory by A. Borel.

Theorem (A. Borel)

- The Bloch Group for F: \mathcal{B}_F is isomorphic to a some quotient of $K_3(F)$.
For general number field F with r_1 real and r_2 pairs of complex embeddings, the relation between $D(z)$ and $\zeta_F(2)$ is given nicely through the use of Algebraic K Theory by A. Borel.

Theorem (A. Borel)

- The Bloch Group for F: B_F is isomorphic to a some quotient of $K_3(F)$.
- $B_F/\{\text{torsion}\} \cong \mathbb{Z}^{r_2}$
For general number field F with r_1 real and r_2 pairs of complex embeddings, the relation between $D(z)$ and $\zeta_F(2)$ is given nicely through the use of Algebraic K Theory by A. Borel.

Theorem (A. Borel)

- The Bloch Group for F: \mathcal{B}_F is isomorphic to a some quotient of $K_3(F)$.
- $\mathcal{B}_F/\{\text{torsion}\} \cong \mathbb{Z}^{r_2}$
- The image of the map $\mathcal{B}_F \rightarrow \mathcal{B}_C^{r_2} \xrightarrow{D} \mathbb{R}^{r_2}$ after torsion, has co-volume:

$$c|d|^{1/2}\zeta_F(2)/\pi^{2r_1+2r_2} \text{ for some } c \in \mathbb{Q}$$

Here the first map corresponds to the r_2 different complex embeddings of F to \mathbb{C}.
Conjecture (Lichtenbaum)

The rational multiple c is related to

$$\frac{|K_3(F)_{\text{torsion}}|}{|K_2(\mathcal{O}_F)|}$$
Algebraic K Theory

Conjecture (Lichtenbaum)

The rational multiple c is related to

\[
\frac{|K_3(F)_{torsion}|}{|K_2(\mathcal{O}_F)|}
\]

- There exists efficient algorithm to produce many elements in \mathcal{B}_F, and $|K_3(F)_{torsion}|$ is also easy (not for me...) to determine.
Conjecture (Lichtenbaum)

The rational multiple c is related to

$$\frac{|K_3(F)_{\text{torsion}}|}{|K_2(\mathcal{O}_F)|}$$

- There exists efficient algorithm to produce many elements in \mathcal{B}_F, and $|K_3(F)_{\text{torsion}}|$ is also easy (not for me...) to determine.

- So the mysterious dilogarithm gives, at least conjecturally, an effective way of calculating the orders of certain groups in algebraic K-theory!
Rogers dilogarithm \(L(z) \)

Another version of dilogarithm, taking real arguments, is more common in physical literature:

\[
L(z) := \text{Li}_2(z) + \frac{1}{2} \log^2(1 - z)
\]

and has an analytic continuation to \(\mathbb{C} \) on \([-1, 1]). \)

Furthermore, \(L(z) \) belongs to the class \(C^1([0, 1]) \).
Rogers dilogarithm $L(z)$

Another version of dilogarithm, taking real arguments, is more common in physical literature:

Definition

The Rogers dilogarithm is defined as

$$L(x) := \text{Li}_2(x) + \frac{1}{2} \log(x) \log(1 - x)$$

$$= -\frac{1}{2} \int_0^x \left(\frac{\log(1 - y)}{y} + \frac{\log y}{1 - y} \right) dy$$

and has an analytic continuation to $\mathbb{C} \setminus ((-\infty, 0] \cup [1, \infty))$.
Another version of dilogarithm, taking real arguments, is more common in physical literature:

Definition

The Rogers dilogarithm is defined as

\[
L(x) := \text{Li}_2(x) + \frac{1}{2} \log(x) \log(1 - x)
\]

\[
= -\frac{1}{2} \int_0^x \left(\frac{\log(1 - y)}{y} + \frac{\log y}{1 - y} \right) dy
\]

and has an analytic continuation to \(\mathbb{C} \setminus ((-\infty, 0] \cup [1, \infty)) \). Furthermore, \(L(x) \) belongs to the class \(C^\infty((0, 1)) \).
The five-term relation is now simplified to:

\[L(x) + L(1 - xy) + L(y) + L\left(\frac{1 - y}{1 - xy}\right) + L\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{2} \]

where \(0 < x, y < 1\).
Dilogarithm

Rogers Dilogarithm $L(z)$

Definition

Rogers dilogarithm

The five-term relation is now simplified to:

$$L(x) + L(1 - xy) + L(y) + L\left(\frac{1 - y}{1 - xy}\right) + L\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{2}$$

where $0 < x, y < 1$.

Theorem

$L(x)$ is the unique function in $C^3((0, 1))$ that satisfies the five-term relation.
Rogers dilogarithm

The five-term relation is now simplified to:

\[L(x) + L(1 - xy) + L(y) + L\left(\frac{1 - y}{1 - xy}\right) + L\left(\frac{1 - x}{1 - xy}\right) = \frac{\pi^2}{2} \]

where \(0 < x, y < 1\).

Theorem

\(L(x)\) is the unique function in \(C^3((0, 1))\) that satisfies the five-term relation.

Definition

\(L(x)\) is extended to the rest of \(\mathbb{R}\) by setting \(L(0) = 0, L(1) = \frac{\pi^2}{6}\),

\[L(x) = \begin{cases} 2L(1) - L(1/x) & \text{if } x > 1 \\ -L(x/(x-1)) & \text{if } x < 0 \end{cases} \]
Rogers dilogarithm

\[L(z) \]

Definition

Rogers dilogarithm is defined by the integral

\[L(z) = -\frac{\pi^2}{6} + \int_1^z \frac{\log(1-t/2)}{t} \, dt \]

modulo 2, this function is "continuous" at 1, and the five-term relation holds. Every "nice" functional equations is again a consequence of the five-term relation.
Rogers dilogarithm

- Modulo $\frac{\pi^2}{2}$, this function is "continuous" at ∞, and the five-term relation holds.
Rogers dilogarithm

- Modulo $\frac{\pi^2}{2}$, this function is "continuous" at ∞, and the five-term relation holds.
- Every "nice" functional equations is again a consequence of the five-term relation.
The Rogers dilogarithm $L(z)$ is well known in the physics literature, especially in rational conformal field theory.
The Rogers dilogarithm $L(x)$ is well known in the physics literature, especially in rational conformal field theory.

For example, consider the identity:

$$
\sum_{i=1}^{[k/2]} L \left(\frac{\sin^2 \frac{\pi}{k+2}}{\sin^2 \frac{(i+1)\pi}{k+2}} \right) = L(1) \frac{k - 1}{k + 2}
$$
The Rogers dilogarithm $L(x)$ is well known in the physics literature, especially in rational conformal field theory. For example, consider the identity:

$$\sum_{i=1}^{[k/2]} L \left(\frac{\sin^2 \frac{\pi}{k+2}}{\sin^2 \frac{(i+1)\pi}{k+2}} \right) = L(1) \frac{k - 1}{k + 2}$$

The right hand side is related to the effective central charge of the $SU(2)$ level k WZW model,
The Rogers dilogarithm $L(x)$ is well known in the physics literature, especially in rational conformal field theory.

For example, consider the identity:

$$\sum_{i=1}^{[k/2]} L \left(\frac{\sin^2 \frac{\pi}{k+2}}{\sin^2 \frac{(i+1)\pi}{k+2}} \right) = L(1) \frac{k-1}{k+2}$$

The right hand side is related to the effective central charge of the $SU(2)$ level k WZW model,

on the left hand side, the expression (Jones indices):

$$\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}$$

is the ”quantum dimensions” of the primary fields of this WZW theory.
a q Hypergeometric series is (roughly) a series of the form
\[
\sum_{n=0}^{\infty} A_n(q) \text{ where } \frac{A_n(q)}{A_{n-1}(q)} \text{ is rational function of } q
\]
Modular Function

- A q Hypergeometric series is (roughly) a series of the form $\sum_{n=0}^{\infty} A_n(q)$ where $\frac{A_n(q)}{A_{n-1}(q)}$ is rational function of q.
- One question of interest in q-hypergeometric series is that when is it a modular function? (Here $q = e^{2\pi i z}$)
Modular Function

- A q-Hypergeometric series is (roughly) a series of the form
 \[\sum_{n=0}^{\infty} A_n(q) \] where \(\frac{A_n(q)}{A_{n-1}(q)} \) is a rational function of q

- One question of interest in q-hypergeometric series is that when is it a modular function? (Here $q = e^{2\pi i z}$)

- Consider the r-fold q-hypergeometric series defined by:

\[
 f_{A,B,C}(z) = \sum_{n \in (\mathbb{Z}_{\geq 0})^r} \frac{q^{\frac{1}{2}n^t A n + B^t n + C}}{(q)_{n_1} \cdots (q)_{n_r}}
\]
Modular Function

- a q Hypergeometric series is (roughly) a series of the form
 \[\sum_{n=0}^{\infty} A_n(q) \] where \(\frac{A_n(q)}{A_{n-1}(q)} \) is rational function of q
- One question of interest in q-hypergeometric series is that when is it a modular function? (Here $q = e^{2\pi i z}$)
- Consider the r-fold q-hypergeometric series defined by:

\[
\begin{align*}
 f_{A,B,C}(z) &= \sum_{n \in \mathbb{Z}_{\geq 0}^r} \frac{q^{\frac{1}{2}n^t A_n + B^t n + C}}{(q)_{n_1} \cdots (q)_{n_r}} \\
 &\quad \text{where } (q)_n = (1 - q)(1 - q^2)\cdots(1 - q^n)
\end{align*}
\]
Modular Function

- A q Hypergeometric series is (roughly) a series of the form $\sum_{n=0}^{\infty} A_n(q)$ where $\frac{A_n(q)}{A_{n-1}(q)}$ is rational function of q

- One question of interest in q-hypergeometric series is that when is it a modular function? (Here $q = e^{2\pi i z}$)

- Consider the r-fold q-hypergeometric series defined by:

$$f_{A,B,C}(z) = \sum_{n \in (\mathbb{Z}_{\geq 0})^r} \frac{q^{\frac{1}{2}n^t A n + B^t n + C}}{(q)_{n_1} \cdots (q)_{n_r}}$$

where $(q)_n = (1-q)(1-q^2)\cdots(1-q^n)$

$A \in M_{r \times r}(\mathbb{Q})$ is a positive definite symmetric matrix
Modular Function

- a q Hypergeometric series is (roughly) a series of the form $\sum_{n=0}^{\infty} A_n(q)$ where $\frac{A_n(q)}{A_{n-1}(q)}$ is rational function of q
- One question of interest in q-hypergeometric series is that when is it a modular function? (Here $q = e^{2\pi iz}$)
- Consider the r-fold q-hypergeometric series defined by:

$$f_{A,B,C}(z) = \sum_{n \in (\mathbb{Z}_{\geq 0})^r} \frac{q^{\frac{1}{2} n^t A n + B^t n + C}}{(q)_{n_1 \cdots} (q)_{n_r}}$$

where $(q)_n = (1 - q)(1 - q^2)\cdots(1 - q^n)$

$A \in M_{r \times r}(\mathbb{Q})$ is a positive definite symmetric matrix

$B \in \mathbb{Q}^r$ and C a scalar in \mathbb{Q}.
If we consider the r equations in r unknowns:

$$1 - Q_i = \prod_{j=1}^{r} Q_{ij}^{a_{ij}} \quad (i = 1, \ldots, r)$$
Modular Function

- If we consider the r equations in r unknowns:

$$1 - Q_i = \prod_{j=1}^{r} Q_{ij}^{a_{ij}} \quad (i = 1, \ldots, r)$$

- Let Q_1, \ldots, Q_r be the solution, and consider the element:

$$\xi_Q = [Q_1] + \ldots + [Q_r] \in \mathbb{Z}[F]$$

$$F = \mathbb{Q}(Q_1, \ldots, Q_r)$$
If we consider the r equations in r unknowns:

$$1 - Q_i = \prod_{j=1}^{r} Q_{ij}^{a_{ij}} \quad (i = 1, \ldots, r)$$

Let Q_1, \ldots, Q_r be the solution, and consider the element:

$$\xi_Q = [Q_1] + \ldots + [Q_r] \in \mathbb{Z}[F]$$

$(F = \mathbb{Q}(Q_1, \ldots, Q_r))$

Then this element is in the Bloch Group \mathcal{B}_F.
Modular Function

- If we consider the \(r \) equations in \(r \) unknown:

\[
1 - Q_i = \prod_{j=1}^{r} Q_{ij}^{a_{ij}} \quad (i = 1, \ldots, r)
\]

- Let \(Q_1, \ldots, Q_r \) be the solution, and consider the element:

\[
\xi_Q = [Q_1] + \ldots + [Q_r] \in \mathbb{Z}[F]
\]

\((F = \mathbb{Q}(Q_1, \ldots, Q_r))\)

- Then this element is in the Bloch Group \(\mathcal{B}_F \).

Conjecture (Nahm)

Given positive definite symmetric \(r \times r \) matrix \(A \), the following is equivalent:
Modular Function

- If we consider the r equations in r unknown:

\[1 - Q_i = \prod_{j=1}^{r} Q_j^{a_{ij}} \quad (i = 1, \ldots, r) \]

- Let Q_1, \ldots, Q_r be the solution, and consider the element:

\[\xi_Q = [Q_1] + \ldots + [Q_r] \in \mathbb{Z}[F] \]

\[(F = \mathbb{Q}(Q_1, \ldots, Q_r)) \]

- Then this element is in the Bloch Group \mathcal{B}_F.

Conjecture (Nahm)

Given positive definite symmetric $r \times r$ matrix A, the following is equivalent:

- The element ξ_Q is torsion in \mathcal{B}_F for every solution $Q = (Q_i)$
If we consider the r equations in r unknowns:

$$1 - Q_i = \prod_{j=1}^{r} Q_{ij}^{a_{ij}} \quad (i = 1, \ldots, r)$$

Let Q_1, \ldots, Q_r be the solution, and consider the element:

$$\xi_Q = [Q_1] + \ldots + [Q_r] \in \mathbb{Z}[F]$$

($F = \mathbb{Q}(Q_1, \ldots, Q_r)$)

Then this element is in the Bloch Group \mathcal{B}_F.

Conjecture (Nahm)

Given positive definite symmetric $r \times r$ matrix A, the following is equivalent:

- The element ξ_Q is torsion in \mathcal{B}_F for every solution $Q = (Q_i)$
- There exists $B \in \mathbb{Q}^r, C \in \mathbb{Q}$ such that $f_{A,B,C}(z)$ is a modular function.*
Modular Function

- Torsion in \mathcal{B}_F means the value of $L(x)$ is rational multiple of π^2.
Torsion in B_F means the value of $L(x)$ is rational multiple of π^2.

$L(x)$ also appears in the asymptotic analysis for $f_{A,B,C}$: $L(1) - L(Q)$ is the leading coefficient for the series when $q = e^{-\epsilon} \to 1$ as $\epsilon \searrow 0$.
Modular Function

- Torsion in B_F means the value of $L(x)$ is rational multiple of π^2.

- $L(x)$ also appears in the asymptotic analysis for $f_{A,B,C}$: $L(1) - L(Q)$ is the leading coefficient for the series when $q = e^{-\epsilon} \rightarrow 1$ as $\epsilon \searrow 0$.

- This conjecture is motivated from physics: all modular functions $f_{A,B,C}$ obtained in this way should be characters of rational conformal field theories.
Modular Function

- Torsion in B_F means the value of $L(x)$ is rational multiple of π^2.
- $L(x)$ also appears in the asymptotic analysis for $f_{A,B,C}$: $L(1) - L(Q)$ is the leading coefficient for the series when $q = e^{-\epsilon} \longrightarrow 1$ as $\epsilon \searrow 0$.
- This conjecture is motivated from physics: all modular functions $f_{A,B,C}$ obtained in this way should be characters of rational conformal field theories.
- In some special cases, the proof uses Quantum Dilogarithm.
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w) \]
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w) = 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1}) \cdots (q^k - q^{-k})}
\]
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w) = 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1}) \cdots (q^k - q^{-k})} = \exp \sum_{k=1}^{\infty} \frac{(-1)^k w^k}{k(q^k - q^{-k})}
\]
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w)
\]

\[
= 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1}) \cdots (q^k - q^{-k})}
\]

\[
= \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k w^k}{k(q^k - q^{-k})} \right)
\]

They are the same because they satisfy: \(\frac{S_q(qw)}{S_q(q^{-1}w)} = \frac{1}{1+w}\) and \(S_q(0) = 1\).
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w) \\
= 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1})...(q^k - q^{-k})} \\
= \exp \sum_{k=1}^{\infty} \frac{(-1)^k w^k}{k(q^k - q^{-k})}
\]

They are the same because they satisfy: \(\frac{S_q(qw)}{S_q(q^{-1}w)} = \frac{1}{1+w} \) and \(S_q(0) = 1 \).

- The first expression says \(S_q(w) \) is like a Gamma function
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w)
\]

\[
= 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1})...(q^k - q^{-k})}
\]

\[
= \exp \sum_{k=1}^{\infty} \frac{(-1)^k w^k}{k(q^k - q^{-k})}
\]

They are the same because they satisfy: \(\frac{S_q(qw)}{S_q(q^{-1}w)} = \frac{1}{1+w} \) and \(S_q(0) = 1 \).

- The first expression says \(S_q(w) \) is like a Gamma function
- The second expression says \(S_q(w) \) is like an Exponential function
Quantum Dilogarithm

q Generalization of the Dilogarithm function ($|q| < 1$)

Definition (Faddeev)

\[
S_q(w) = \prod_{n=0}^{\infty} (1 + q^{2n+1}w)
\]

\[
= 1 + \sum_{k=0}^{\infty} \frac{(-1)^k q^{k(k-1)/2} w^k}{(q - q^{-1})...\,(q^k - q^{-k})}
\]

\[
= \exp \left(\sum_{k=1}^{\infty} \frac{(-1)^k w^k}{k(q^k - q^{-k})} \right)
\]

They are the same because they satisfy: \(\frac{S_q(qw)}{S_q(q^{-1}w)} = \frac{1}{1+w} \) and \(S_q(0) = 1 \).

- The first expression says \(S_q(w) \) is like a Gamma function
- The second expression says \(S_q(w) \) is like an Exponential function
- The last expression says \(S_q(w) \) is like a Dilogarithm function!
Quantum 5-term relation

Theorem

If $uv = q^2 vu$ *is a Weyl pair, then:*

\[
S_q(u) S_q(v) = S_q(u + v) \quad S_q(v) S_q(u) = S_q(u) S_q(v^1) S_q(v) S_q(u) = S_q(u) S_q(q^1 uv) S_q(v) S_q(u) \]

These are proven formally using the power series expansion. The last relation reduces to the 5-term relation in a suitable $q!$ limit.
Quantum 5-term relation

Theorem

If $uv = q^2 vu$ is a Weyl pair, then:

$$S_q(u)S_q(v) = S_q(u + v)$$
Quantum 5-term relation

Theorem

If \(uv = q^2vu \) is a Weyl pair, then:

\[
S_q(u)S_q(v) = S_q(u + v)
\]

\[
S_q(v)S_q(u) = S_q(u)S_q(q^{-1}uv)S_q(v)
\]
Quantum 5-term relation

Theorem

If \(uv = q^2vu \) is a Weyl pair, then:

\[
S_q(u)S_q(v) = S_q(u + v)
\]

\[
S_q(v)S_q(u) = S_q(u)S_q(q^{-1}uv)S_q(v)
\]

- These are proven formally using the power series expansion.
Quantum 5-term relation

Theorem

If $uv = q^2 vu$ *is a Weyl pair, then:*

$$S_q(u)S_q(v) = S_q(u + v)$$

$$S_q(v)S_q(u) = S_q(u)S_q(q^{-1}uv)S_q(v)$$

- These are proven formally using the power series expansion.
- The last relation reduced to the 5-term relation in a suitable $q \to 1$ limit.
The Quantum 5-term relation is used to prove braid relation:
The Quantum 5-term relation is used to prove braid relation:

Define

$$\Theta(w) = S_q(qw)S_q(q^{-1}w^{-1})$$
Knot Invariant

- The Quantum 5-term relation is used to prove braid relation:
- Define
 \[\Theta(w) = S_q(qw) S_q(q^{-1}w^{-1}) \]
- Then for the Weyl pair it satisfies the Braid Relation:
 \[\Theta(u)\Theta(v)\Theta(u) = \Theta(v)\Theta(u)\Theta(v) \]
The Quantum 5-term relation is used to prove braid relation:

Define

$$\Theta(w) = S_q(qw)S_q(q^{-1}w^{-1})$$

Then for the Weyl pair it satisfies the Braid Relation:

$$\Theta(u)\Theta(v)\Theta(u) = \Theta(v)\Theta(u)\Theta(v)$$

Using this fact, Hikami constructed a Knot Invariant related to the complement of the hyperbolic volume of links.
More importantly, the Quantum Dilogarithm is used to construct the Universal R-matrix of $SL_q(2)$, the most important component of Quantum Group Theory:
More importantly, the Quantum Dilogarithm is used to construct the Universal R-matrix of $SL_q(2)$, the most important component of Quantum Group Theory:

Theorem (Drinfeld)

For the quantum group $SL_q(2) = \langle K = q^H, K', e, f \rangle$, the Universal R Matrix is given by:

$$R = q^{-\frac{H \otimes H'}{2}} S_q(-(q - q^{-1})^2 e \otimes f) \in U_q \otimes U_q$$

satisfying the Yang-Baxter Relation:

$$R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}$$
Many Other Applications...

- **Combinatorial formula for characteristic classes**
 (Gel’fand, MacPherson...)

- **Cohomology of $GL_n(\mathbb{C})$**
 (A. Borel, Dupont, Quillen...)

- **Rogers-Ramanujan’s type identities, asymptotic behavior of partitions**
 (Ramanujan, Hardy, Littlewood...)

- **Representation Theory of infinite dimensional Lie Algebra**
 (Lepowsky, Kac, Fuchs, E.Frenkel...)

- **Exactly Solvable Models**
 (Baxter, Kirillov, Reshetikhin...)

- **Feynman Integral of Ladder Diagrams**
 (Ussyukina, Davydchev...)

- and much more...
"The dilogarithm function is the only mathematical function with a sense of humor."

– Don Zagier
Reference

General:
- D. Zagier, "The Dilogarithm Function" (2007)
- A. Kirillov, "Dilogarithm Identities" (1994)

Hyperbolic Geometry
- A. Borel, "Commensurability classes and volumes of hyperbolic 3-manifolds" (1981)

Dedekind Function

Algebraic K-Theory
- F. Rodriguez Villegas, "Topics in K-theory and L-functions" (Lecture Notes)

Conformal Field Theory
- W. Nahm, A. Recknagel, M. Terhoeven, "Dilogarithm Identities in Conformal Field Theory" (1993)

Modular Form
- W. Nahm, "Conformal Field Theory and Torsion Elements on the Bloch Group" (2007)

Knot Invariant
- K. Hikami, "Notes on Construction of the Knot Invariant from Quantum Dilogarithm Function" (2000)

Quantum Dilogarithm
- L.D. Faddeev, R.M. Kashaev, "Quantum Dilogarithm" (1994)

Quantum Groups
- L.D. Faddeev, "Modular Double of Quantum Group" (1999)