Positive Representations of Split Real Quantum Groups

Ivan Chi-Ho IP

Kavli IPMU, University of Tokyo
Yale University

Aug 23, 2012

The XXIXth International Colloquium on Group-Theoretical Methods in Physics
Chern Institute of Mathematics, China
This talk is based on the following papers:

I. Ip, *Positive representations of split real quantum groups of type B_n, C_n, F_4 and G_2*, arXiv:1205.2940
Let \(\mathfrak{g} \) be a simple Lie algebra, and \(\mathfrak{g}_c \) its compact form. (e.g. for type \(A_n \), \(\mathfrak{g} = SL(n + 1, \mathbb{C}) \) and \(\mathfrak{g}_c = SU(n + 1) \).)
Let \(\mathfrak{g} \) be a simple Lie algebra, and \(\mathfrak{g}_c \) its compact form. (e.g. for type \(A_n \), \(\mathfrak{g} = SL(n + 1, \mathbb{C}) \) and \(\mathfrak{g}_c = SU(n + 1) \).) Representation theory has nice properties:
Motivation

Let \mathfrak{g} be a simple Lie algebra, and \mathfrak{g}_c its compact form. (e.g. for type A_n, $\mathfrak{g} = SL(n+1, \mathbb{C})$ and $\mathfrak{g}_c = SU(n+1)$.)

Representation theory has nice properties:

- Finite dimensional representations V_λ parametrized by $\lambda \in P^+ \subset \mathfrak{h}_\mathbb{R}^*$ (positive weights),
Motivation

Let \(\mathfrak{g} \) be a simple Lie algebra, and \(\mathfrak{g}_c \) its compact form. (e.g. for type \(A_n \), \(\mathfrak{g} = SL(n+1, \mathbb{C}) \) and \(\mathfrak{g}_c = SU(n+1) \).)

Representation theory has nice properties:

- Finite dimensional representations \(V_\lambda \) parametrized by \(\lambda \in P^+ \subset \mathfrak{h}_\mathbb{R}^* \) (positive weights),

- Peter Weyl: \(\mathbb{C}[G] \cong \bigoplus_\lambda V_\lambda \otimes V_\lambda^* \),
Motivation

Let \mathfrak{g} be a simple Lie algebra, and \mathfrak{g}_c its compact form. (e.g. for type A_n, $\mathfrak{g} = SL(n+1, \mathbb{C})$ and $\mathfrak{g}_c = SU(n+1)$.) Representation theory has nice properties:

- Finite dimensional representations V_λ parametrized by $\lambda \in P^+ \subset \mathfrak{h}^*_\mathbb{R}$ (positive weights),
- Peter Weyl: $\mathbb{C}[G] \simeq \bigoplus_{\lambda} V_\lambda \otimes V_\lambda^*$,
- Closed under tensor product: $V_\lambda \otimes V_\mu \simeq \bigoplus_{\nu} c^\nu_{\lambda\mu} V_\nu$.

Existence of universal R matrix \Rightarrow Braided Tensor Category.
Let \mathfrak{g} be a simple Lie algebra, and \mathfrak{g}_c its compact form. (e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_c = SU(n + 1)$.)

Representation theory has nice properties:

- Finite dimensional representations V_λ parametrized by $\lambda \in P^+ \subset \mathfrak{h}_\mathbb{R}^*$ (positive weights),
- Peter Weyl: $\mathbb{C}[G] \simeq \bigoplus_{\lambda} V_\lambda \otimes V_\lambda^*$,
- Closed under tensor product: $V_\lambda \otimes V_\mu \simeq \bigoplus_{\nu} c_{\lambda \mu}^{\nu} V_\nu$.

These also hold for compact quantum groups $\mathcal{U}_q(\mathfrak{g}_c)$.
Let \mathfrak{g} be a simple Lie algebra, and \mathfrak{g}_c it’s compact form. (e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_c = SU(n + 1)$.)

Representation theory has nice properties:

- Finite dimensional representations V_λ parametrized by $\lambda \in P^+ \subset \mathfrak{h}_R^*$ (positive weights),

- Peter Weyl: $\mathbb{C}[G] \simeq \bigoplus \lambda V_\lambda \otimes V_\lambda^*$,

- Closed under tensor product: $V_\lambda \otimes V_\mu \simeq \bigoplus \nu c^\nu_{\lambda\mu} V_\nu$.

These also hold for compact quantum groups $\mathcal{U}_q(\mathfrak{g}_c)$.

Existence of universal R matrix \implies Braided Tensor Category.
Motivation

Considering the split real form \mathfrak{g}_R
(e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_R = SL(n + 1, \mathbb{R})$.)
Motivation

Considering the split real form \mathfrak{g}_R
(e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_R = SL(n + 1, \mathbb{R})$.)

The situation is not so nice...
Motivation

Considering the split real form $\mathfrak{g}_\mathbb{R}$
(e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_\mathbb{R} = SL(n + 1, \mathbb{R})$.)

The situation is not so nice...

Example:

$(SL(2, \mathbb{R}))$: $\mathcal{P}_\lambda \otimes \mathcal{P}_\mu \simeq \bigoplus P_\nu \bigoplus$ (discrete series)...

$L^2(SL(2, \mathbb{R})) \simeq \int \bigoplus P_\lambda \otimes P_\lambda^* d\lambda \bigoplus$ (discrete series)...
Motivation

Considering the split real form $\mathfrak{g}_\mathbb{R}$ (e.g. for type A_n, $\mathfrak{g} = SL(n + 1, \mathbb{C})$ and $\mathfrak{g}_\mathbb{R} = SL(n + 1, \mathbb{R})$).

The situation is not so nice...

Example:

$(SL(2, \mathbb{R})): \mathcal{P}_\lambda \otimes \mathcal{P}_\mu \simeq \bigoplus P_\nu \bigoplus (\text{discrete series})$...

$L^2(SL(2, \mathbb{R})) \simeq \int \bigoplus P_\lambda \otimes P_\lambda^* d\lambda \bigoplus (\text{discrete series})$...

Parametrization: we can restrict to principal series associated to Borel subalgebra $\mathfrak{b}_\mathbb{R}$, parametrized by \mathbb{R}_+-span of P^+.

(Minimal principal series)
Let us first recall the definition of $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$:
\(\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R})) \)

Let us first recall the definition of \(\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R})) \):

Definition (Drinfel’d-Jimbo)

Let \(q = e^{\pi ib^2}, |q| = 1, b^2 \in (0, 1) \setminus \mathbb{Q} \).

\(\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R})) \) is the Hopf-* algebra generated by \(E, F, K \) such that

\[
KE = q^2 KE, \quad KF = q^{-2} FK, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}
\]

\[
K^* = K, \quad E^* = E, \quad F^* = F
\]
Let us first recall the definition of $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$:

Definition (Drinfel’d-Jimbo)

Let $q = e^{\pi ib^2}$, $|q| = 1$, $b^2 \in (0, 1) \setminus \mathbb{Q}$.

$\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$ is the Hopf-* algebra generated by E, F, K such that

\[
KE = q^2EK, \quad KF = q^{-2}FK, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}
\]

\[
K^* = K, \quad E^* = E, \quad F^* = F
\]

Coproduct: $\Delta(K) = K \otimes K$

\[
\Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F,
\]
Let us first recall the definition of $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$:

Definition (Drinfel’d-Jimbo)

Let $q = e^{\pi ib^2}, |q| = 1, b^2 \in (0, 1) \setminus \mathbb{Q}$.

$\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$ is the Hopf-* algebra generated by E, F, K such that

$$KE = q^2EK, \quad KF = q^{-2}FK, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}}$$

$$K^* = K, \quad E^* = E, \quad F^* = F$$

Coproduct: $\Delta(K) = K \otimes K$

$$\Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F,$$

For higher rank, also $E_iF_j = q^{a_{ij}}F_jE_i$, Serre relations etc.
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$)

(acting densely on the core $\mathcal{W} = \text{span}\{e^{-\alpha x^2 + \beta x} P(x)\}$.)
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$)
(acting densely on the core $\mathcal{W} = \text{span}\{e^{-\alpha x^2+\beta x} P(x)\}$.)
Algebraically irreducible, but does not generate full $\mathcal{B}(L^2(\mathbb{R}))$:
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$) (acting densely on the core $W = \text{span}\{e^{-\alpha x^2} + \beta x P(x)\}$.) Algebraically irreducible, but does not generate full $B(L^2(\mathbb{R}))$:

Define $\tilde{u} := u^{\frac{1}{b^2}}, \tilde{v} := v^{\frac{1}{b^2}}, \tilde{q} = e^{\pi ib^{-2}}$ (replacing b by b^{-1}).
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$)

(acting densely on the core $\mathcal{W} = \text{span}\{e^{-\alpha x^2+\beta x} P(x)\}$.)

Algebraically irreducible, but does not generate full $\mathcal{B}(L^2(\mathbb{R}))$:

Define $\tilde{u} := u^{\frac{1}{b^2}}$, $\tilde{v} := v^{\frac{1}{b^2}}$, $\tilde{q} = e^{\pi ib^{-2}}$ (replacing b by b^{-1}).

Then

$$\tilde{u}\tilde{v} = \tilde{q}^2\tilde{v}\tilde{u}$$
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$)

(acting densely on the core $\mathcal{W} = \text{span}\{e^{-\alpha x^2 + \beta x} P(x)\}$.)

Algebraically irreducible, but does not generate full $\mathcal{B}(L^2(\mathbb{R}))$:

Define $\tilde{u} := u^{\frac{1}{b^2}}, \tilde{v} := v^{\frac{1}{b^2}}, \tilde{q} = e^{\pi ib^{-2}}$ (replacing b by b^{-1}).

Then

- $\tilde{u}\tilde{v} = \tilde{q}^2 \tilde{v}\tilde{u}$

- (u, v) commute (weakly) with (\tilde{u}, \tilde{v})
Faddeev’s Modular Double

For $|q| = 1$, there is a canonical representation for the relation

$$uv = q^2 vu$$

where u, v are positive self adjoint operators:

$$u = e^{2\pi bx}, \quad v = e^{2\pi bp}$$

unbounded operators on $L^2(\mathbb{R})$. ($p = \frac{1}{2\pi i} \frac{d}{dx}$) (acting densely on the core $\mathcal{W} = \text{span}\{e^{-\alpha x^2 + \beta x}P(x)\}$.)

Algebraically irreducible, but does not generate full $\mathcal{B}(L^2(\mathbb{R}))$:

Define $\tilde{u} := u \frac{1}{b^2}, \tilde{v} := v \frac{1}{b^2}, \tilde{q} = e^{\pi ib^{-2}}$ (replacing b by b^{-1}).

Then

- $\tilde{u}\tilde{v} = \tilde{q}^2\tilde{v}\tilde{u}$
- (u, v) commute (weakly) with (\tilde{u}, \tilde{v})

Together they form the Modular Double.
Ponsot-Teschner’s representation

Special class of representation \mathcal{P}_λ for $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$ ($\lambda \in \mathbb{R}_+$):

$$E = \left(i q - q - 1 \right) \left(e^{\pi b (x - \lambda - 2p)} + e^{\pi b (-x + \lambda - 2p)} \right)$$
$$F = \left(i q - q - 1 \right) \left(e^{\pi b (x + \lambda + 2p)} + e^{\pi b (-x - \lambda + 2p)} \right)$$
$$K = e^{-2\pi bx}$$

(Note: $i q - q - 1 = (2 \sin \pi b/2)^2 - 1 > 0$.)
Ponsot-Teschner’s representation

Special class of representation \mathcal{P}_λ for $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$ ($\lambda \in \mathbb{R}_+$):

Theorem

The following gives a representation of $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$:

$$E = \left(\frac{i}{q - q^{-1}} \right) \left(e^{\pi b(x - \lambda - 2p)} + e^{\pi b(-x + \lambda - 2p)} \right)$$

$$F = \left(\frac{i}{q - q^{-1}} \right) \left(e^{\pi b(x + \lambda + 2p)} + e^{\pi b(-x - \lambda + 2p)} \right)$$

$$K = e^{-2\pi bx}$$

(Note: $\frac{i}{q - q^{-1}} = (2 \sin \pi b^2)^{-1} > 0.$)
Ponsot-Teschner’s representation

Special class of representation \mathcal{P}_λ for $U_q(\mathfrak{sl}(2, \mathbb{R}))$ ($\lambda \in \mathbb{R}_+$):

Theorem

The following gives a representation of $U_q(\mathfrak{sl}(2, \mathbb{R}))$:

\[
E = \left(\frac{i}{q - q^{-1}} \right) \left(e^{\pi b (x - \lambda - 2p)} + e^{\pi b (-x + \lambda - 2p)} \right)
\]
\[
F = \left(\frac{i}{q - q^{-1}} \right) \left(e^{\pi b (x + \lambda + 2p)} + e^{\pi b (-x - \lambda + 2p)} \right)
\]
\[
K = e^{-2\pi bx}
\]

(Note: $\frac{i}{q - q^{-1}} = (2 \sin \pi b^2)^{-1} > 0.$)

\mathcal{P}_λ has NO classical limit as $b \longrightarrow 0!$
Ponsot-Teschner’s representation

(1) \(\mathcal{P}_\lambda \) is parametrized by \(\lambda \in \mathbb{R}_+ \).
Ponsot-Teschner’s representation

1. \mathcal{P}_λ is parametrized by $\lambda \in \mathbb{R}_+$.
2. Represented by positive (essentially) self-adjoint operators on $L^2(\mathbb{R})$.

Replacing b by $b - 1$, gives $\tilde{E}, \tilde{F}, \tilde{K}$ commuting with E, F, K, also a representation of $U_{\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$.

Define $e = (i\tilde{q}^{-1} - q^{-1}) - 1 E, f = (i\tilde{q}^{-1} - q^{-1}) - 1 F$, we have

$e_1 b_2 = \tilde{e}, f_1 b_2 = \tilde{f}, K_1 b_2 = \tilde{K},$

called the “transcendental relations”.
Ponsot-Teschner’s representation

1. \mathcal{P}_λ is parametrized by $\lambda \in \mathbb{R}_+$.
2. Represented by positive (essentially) self-adjoint operators on $L^2(\mathbb{R})$.
3. Replacing b by b^{-1}, gives $\tilde{E}, \tilde{F}, \tilde{K}$ commuting with E, F, K, also a representation of $\mathcal{U}_q(sl(2, \mathbb{R}))$.

Define $e = \left(iq - q - 1 \right)^{-1} E$, $f = \left(iq - q - 1 \right)^{-1} F$, we have

$e_1 b_2 = \tilde{e}$, $f_1 b_2 = \tilde{f}$, $K_1 b_2 = \tilde{K}$, called the “transcendental relations”.

Ponsot-Teschner’s representation

(1) \mathcal{P}_λ is parametrized by $\lambda \in \mathbb{R}_+$.

(2) Represented by positive (essentially) self-adjoint operators on $L^2(\mathbb{R})$.

(3) Replacing b by b^{-1}, gives $\tilde{E}, \tilde{F}, \tilde{K}$ commuting with E, F, K, also a representation of $\mathcal{U}_q(\mathfrak{sl}(2, \mathbb{R}))$.

- Define

$$e = \left(\frac{i}{q - q^{-1}} \right)^{-1} E, \quad f = \left(\frac{i}{q - q^{-1}} \right)^{-1} F,$$

we have

$$e^\frac{b^2}{2} = \tilde{e}, \quad f^\frac{b^2}{2} = \tilde{f}, \quad K^\frac{b^2}{2} = \tilde{K},$$

called the ”transcendental relations”.
Existence of universal R matrix:

$$R = q^{\frac{H \otimes H}{4}} g_b(e \otimes f) q^{\frac{H \otimes H}{4}}$$
Existence of universal R matrix:

$$R = q^{\frac{H \otimes H}{4}} g_b(e \otimes f) q^{\frac{H \otimes H}{4}}$$

R is invariant under the change $b \leftrightarrow b^{-1}$.
Properties

Existence of universal R matrix:

$$R = q^{\frac{H \otimes H}{4}} g_b(e \otimes f) q^{\frac{H \otimes H}{4}}$$

R is invariant under the change $b \leftrightarrow b^{-1}$.

- Here $g_b(x)$ is called quantum dilogarithm.
Existence of universal R matrix:

$$R = q^{\frac{H\otimes H}{4}} g_b(e \otimes f) q^{\frac{H\otimes H}{4}}$$

R is invariant under the change $b \leftrightarrow b^{-1}$.

- Here $g_b(x)$ is called **quantum dilogarithm**.
- $g_b(x)$ is the non-compact analogue of the q-exponential function
Properties

Existence of universal R matrix:

$$R = q^{\frac{H \otimes H}{4}} g_b(e \otimes f) q^{\frac{H \otimes H}{4}}$$

R is invariant under the change $b \longleftrightarrow b^{-1}$.

- Here $g_b(x)$ is called quantum dilogarithm.
- $g_b(x)$ is the non-compact analogue of the q-exponential function
- $|g_b(x)| = 1$ when $x \in \mathbb{R}_{>0}$.

Ivan Ip (Kavli IPMU)
Properties

Closure under tensor product (in the continuous sense):

Theorem (Ponsot-Teschner (2000))

We have

\[\mathcal{P}_\alpha \otimes \mathcal{P}_\beta \simeq \int_{\mathbb{R}^+} \oplus P_\gamma d\mu(\gamma) \]

where \(d\mu(\gamma) \) is expressed in terms of (a variant of) quantum dilogarithm.
Properties

Peter-Weyl type Theorem (proposed by Ponsot-Teschner):

Theorem (Ip (2011))
We have

\[L^2(SL_q^+(2, \mathbb{R})) \cong \int_{\mathbb{R}_+} \bigoplus P_\alpha \otimes P_\alpha d\mu(\alpha) \]

as a \(\mathcal{U}_{q,L} \otimes \mathcal{U}_{q,R} \) representation.
Properties

Peter-Weyl type Theorem (proposed by Ponsot-Teschner):

Theorem (Ip (2011))

We have

\[L^2(SL^+_q(2, \mathbb{R})) \simeq \int_{\mathbb{R}^+} \bigoplus P_\alpha \otimes P_\alpha d\mu(\alpha) \]

as a \(U_{q,L} \otimes U_{q,R} \) representation.

Here \(L^2(SL^+_q(2, \mathbb{R})) \) is a Hilbert space constructed from the GNS representation of a \(C^* \)-algebraic version of \(SL^+_q(2, \mathbb{R}) \).
Properties

Peter-Weyl type Theorem (proposed by Ponsot-Teschner):

Theorem (Ip (2011))

We have

\[L^2(SL_q^+(2, \mathbb{R})) \cong \int_{\mathbb{R}^+} \oplus \ P_\alpha \otimes P_\alpha d\mu(\alpha) \]

as a \(U_{q,L} \otimes U_{q,R} \) representation.

Here \(L^2(SL_q^+(2, \mathbb{R})) \) is a Hilbert space constructed from the GNS representation of a \(C^* \)-algebraic version of \(SL_q^+(2, \mathbb{R}) \).

The action of \(U_q(\mathfrak{sl}(2, \mathbb{R})) \) is obtained by dualizing the regular corepresentation of \(SL_q^+(2, \mathbb{R}) \).
Definition

Can this class of representations be extended to arbitrary type \mathfrak{g}_R?
Can this class of representations be extended to arbitrary type $\mathfrak{g}_\mathbb{R}$? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ for $|q| = 1$ such that

1. The class of representation is parametrized by \mathbb{R}^+-span of P^+, or equivalently, $(\mathbb{R}^+)^\text{rank}(\mathfrak{g})$.
2. The action of the generators E_i, F_i, K_i are represented by positive (essentially) self adjoint operators.
3. Transcendental relations $\tilde{X} = X_1 b_2$ exist, relating $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ to $\mathcal{U}_{\tilde{q}}(\mathfrak{g}_\mathbb{R})$ (Modular Double).

We call these "positive principal series representations" or "positive representations" for short. The answer is YES, and have been constructed for all types of $\mathfrak{g}_\mathbb{R}$.
Can this class of representations be extended to arbitrary type \mathfrak{g}_R? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_R)$ for $|q| = 1$ such that

(1) The class of representation is parametrized by \mathbb{R}_+-span of P^+, or equivalently, $(\mathbb{R}_+)^{\text{rank}(\mathfrak{g})}$
Can this class of representations be extended to arbitrary type \mathfrak{g}_R? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_R)$ for $|q| = 1$ such that

1. The class of representation is parametrized by $\mathbb{R}_+\text{-span of } P^+$, or equivalently, $(\mathbb{R}_+)^\text{rank}(\mathfrak{g})$

2. The action of the generators E_i, F_i, K_i are represented by positive (essentially) self adjoint operators.

We call these "positive principal series representations," or "positive representations" for short. The answer is YES, and have been constructed for all types of \mathfrak{g}_R.
Can this class of representations be extended to arbitrary type $\mathfrak{g}_\mathbb{R}$? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ for $|q| = 1$ such that

1. The class of representation is parametrized by $\mathbb{R}_+\text{-span of } P^+$, or equivalently, $(\mathbb{R}_+)^{\text{rank}(\mathfrak{g})}$
2. The action of the generators E_i, F_i, K_i are represented by positive (essentially) self adjoint operators.
3. Transcendental relations $\tilde{X} = X^{\frac{1}{b^2}}$ exist, relating $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ to $\mathcal{U}_{\tilde{q}}(\mathfrak{g}_\mathbb{R})$ (Modular Double).
Definition

Can this class of representations be extended to arbitrary type $\mathfrak{g}_\mathbb{R}$? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ for $|q| = 1$ such that

1. The class of representation is parametrized by $\mathbb{R}_+\text{-span of } P^+$, or equivalently, $(\mathbb{R}_+)^{\text{rank}(\mathfrak{g})}$
2. The action of the generators E_i, F_i, K_i are represented by positive (essentially) self-adjoint operators.
3. Transcendental relations $\tilde{X} = X_{\frac{1}{b^2}}$ exist, relating $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ to $\mathcal{U}_{\tilde{q}}(\mathfrak{g}_\mathbb{R})$ (Modular Double).

We call these ”positive principal series representations”, or ”positive representations” for short.
Can this class of representations be extended to arbitrary type \mathfrak{g}_R? Namely, we want to construct a class of representation for $\mathcal{U}_q(\mathfrak{g}_R)$ for $|q| = 1$ such that

1. The class of representation is parametrized by \mathbb{R}_+-span of P^+, or equivalently, $(\mathbb{R}_+)^{\text{rank}(\mathfrak{g})}$

2. The action of the generators E_i, F_i, K_i are represented by positive (essentially) self adjoint operators.

3. Transcendental relations $\tilde{X} = X \frac{1}{b^2}$ exist, relating $\mathcal{U}_q(\mathfrak{g}_R)$ to $\mathcal{U}_{\tilde{q}}(\mathfrak{g}_R)$ (Modular Double).

We call these "positive principal series representations", or "positive representations" for short.

The answer is **YES**, and have been constructed for all types of \mathfrak{g}_R.
Construction

I will use $\mathcal{U}_q(\mathfrak{sl}(3, \mathbb{R}))$ as a toy model. The general idea is similar.
Construction

I will use $\mathcal{U}_q(\mathfrak{sl}(3, \mathbb{R}))$ as a toy model. The general idea is similar.

Theorem (Lusztig Data for total positivity)

Fix a longest element $w_0 = s_{i_1}...s_{i_m} \in W$ in the Weyl group with reduced expression.
Construction

I will use $\mathcal{U}_q(\mathfrak{sl}(3, \mathbb{R}))$ as a toy model. The general idea is similar.

Theorem (Lusztig Data for total positivity)

Fix a longest element $w_0 = s_{i_1}...s_{i_m} \in W$ in the Weyl group with reduced expression. Then the totally positive upper unipotent subgroup $U^+_>0$ is parametrized by

$$\mathbb{R}^m_{>0} \rightarrow U^+_>0$$

$$(a_1, ..., a_m) \mapsto x_{i_1}(a_1)...x_{i_m}(a_m)$$
Construction

I will use $U_q(\mathfrak{sl}(3, \mathbb{R}))$ as a toy model. The general idea is similar.

Theorem (Lusztig Data for total positivity)

Fix a longest element $w_0 = s_{i_1}...s_{i_m} \in W$ in the Weyl group with reduced expression. Then the totally positive upper unipotent subgroup $U_{>0}^+$ is parametrized by

$$\mathbb{R}_{>0}^m \rightarrow U_{>0}^+$$

$$(a_1, ..., a_m) \mapsto x_{i_1}(a_1)...x_{i_m}(a_m)$$

where (x_i, χ_i, y_i) is the root subgroup for each root i.
Construction

I will use $\mathcal{U}_q(\mathfrak{sl}(3, \mathbb{R}))$ as a toy model. The general idea is similar.

Theorem (Lusztig Data for total positivity)

Fix a longest element $w_0 = s_{i_1} \cdots s_{i_m} \in W$ in the Weyl group with reduced expression. Then the totally positive upper unipotent subgroup $U^+_{>0}$ is parametrized by

$$\mathbb{R}^m_{>0} \rightarrow U^+_{>0}
\begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \mapsto x_{i_1}(a_1) \cdots x_{i_m}(a_m)$$

where (x_i, χ_i, y_i) is the root subgroup for each root i.

Example: choosing $w_0 = s_2 s_1 s_2$ we have

$$U^+_{>0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b & bc \\ 0 & 1 & a + c \\ 0 & 0 & 1 \end{pmatrix}$$
Construction

From this we can apply the regular representation

\[g \cdot f(g_+) = [f(g+g)] + \chi_\lambda(g+g) \]

to get the action of \(E, F, H \)
Construction

From this we can apply the regular representation

\[g \cdot f(g_+) = [f(g_+g)] + \chi \lambda (g_+g) \]

to get the action of \(E, F, H \)

Example: \(e^{tE_2} \):

\[
\begin{pmatrix}
1 & b & bc \\
0 & 1 & a + c \\
0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{pmatrix}
\]
Construction

From this we can apply the regular representation

\[g \cdot f(g+) = [f(g+g)] + \chi\lambda(g+g) \]

to get the action of \(E, F, H \)

Example: \(e^tE_2 \):

\[
\begin{pmatrix}
1 & b & bc \\
0 & 1 & a + c \\
0 & 0 & 1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{pmatrix}
\]

i.e. action on \(\mathbb{C}[U^+_0] : f(a, b, c) \mapsto f(a, b, c + t) \)
Construction

From this we can apply the regular representation

\[g \cdot f(g_+) = [f(g+g)] + \chi_\lambda(g+g) \]

to get the action of \(E, F, H \)

Example: \(e^{tE_2} : \begin{pmatrix} 1 & b & bc \\ 0 & 1 & a + c \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \ t \\ 0 & 0 & 1 \end{pmatrix} \)

i.e. action on \(\mathbb{C}[U^+_{>0}] : f(a, b, c) \mapsto f(a, b, c + t) \)

Action of \(E_2 : \frac{\partial}{\partial c} : f \mapsto f_c \)
We have

\[
E_1 : f \mapsto \frac{c}{b} f_a + f_b - \frac{c}{b} f_c \\
E_2 : f \mapsto f_c \\
F_1 : f \mapsto -b^2 f_b + baf_a + 2\lambda_1 b \\
F_2 : f \mapsto -a^2 f_a - 2caf_a + bcf_b - c^2 f_c + 2\lambda_2 (a + c) \\
H_1 : f \mapsto af_a - 2b f_b + cf_c + 2\lambda_1 \\
H_2 : f \mapsto -2af_a + b_b - 2c_c + 2\lambda_2
\]

Acting on \(\mathbb{C}[U^+_0] \).
Construction

We have

\[E_1 : f \mapsto \frac{c}{b} f_a + f_b - \frac{c}{b} f_c \]
\[E_2 : f \mapsto f_c \]
\[F_1 : f \mapsto -b^2 f_b + baf_a + 2\lambda_1 b \]
\[F_2 : f \mapsto -a^2 f_a - 2caf_a + bcf_b - c^2 f_c + 2\lambda_2 (a + c) \]
\[H_1 : f \mapsto af_a - 2bf_b + cf_c + 2\lambda_1 \]
\[H_2 : f \mapsto -2af_a + b_b - 2c_c + 2\lambda_2 \]

Acting on \(\mathbb{C}[U^+] \).

Different from usual regular representation acting on \(\mathbb{C}[U^+] \).
Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u) x^u \, du \]

So that:

\[x \cdot f(u) \mapsto f(u-1) \]

\[\frac{\partial}{\partial x} : f(u) \mapsto (u+1) f(u+1) \]

\[x \frac{\partial}{\partial x} : f(u) \mapsto uf(u) \]

Differential operators become finite difference operators!
Crucial Step: Mellin Transform

Mellin Transform: unitary map $L^2(\mathbb{R}) \longrightarrow L^2(\mathbb{R}^+)$:

$$f(u) \mapsto F(x) := \frac{1}{2\pi} \int_{\mathbb{R}} f(u)x^{-\frac{1}{2} + iu} du$$
Constructions | Mellin Transform

Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u)x^u du \]
Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u)x^udu \]

So that:

\[x : f(u) \mapsto f(u - 1) \]
Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u)x^u du \]

So that:

\[x : f(u) \mapsto f(u - 1) \]

\[\frac{\partial}{\partial x} : f(u) \mapsto (u + 1)f(u + 1) \]
Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u)x^u \, du \]

So that:

\[x : f(u) \mapsto f(u - 1) \]
\[\frac{\partial}{\partial x} : f(u) \mapsto (u + 1)f(u + 1) \]
\[x \frac{\partial}{\partial x} : f(u) \mapsto uf(u) \]
Crucial Step: Mellin Transform

Formally:

\[f(u) \mapsto F(x) := \int f(u)x^u \, du \]

So that:

- \(x : f(u) \mapsto f(u - 1) \)
- \(\frac{\partial}{\partial x} : f(u) \mapsto (u + 1)f(u + 1) \)
- \(x \frac{\partial}{\partial x} : f(u) \mapsto uf(u) \)

Differential operators becomes finite difference operators!
Crucial Step: Mellin Transform

We have \([(a,b,c)\mapsto (u,v,w)\text{ and simplifying notations...}]\)

\[
E_1 : f \mapsto (u + 1)f(u + 1, v + 1, w - 1) + (1 + v - w)f(v + 1)
\]

\[
E_2 : f \mapsto (w + 1)f(w + 1)
\]

\[
F_1 : f \mapsto (2\lambda_1 + u - v + 1)f(v - 1)
\]

\[
F_2 : f \mapsto (2\lambda_2 - u + 1)f(u - 1) + (2\lambda_2 - 2u + v - w + 1)f(w - 1)
\]

\[
H_1 : f \mapsto (u - 2v + w + 2\lambda_1)f
\]

\[
H_2 : f \mapsto (-2u + v - 2w + 2\lambda_2)f
\]

Acting on functions with \(\text{dim}(U^+)\text{ variables.}\)
Crucial Step 2: Quantization

\[E_1: \quad u + 1 \rightarrow q(f(u + 1, v + 1, w - 1) + 1 + v - w)q(f(v + 1)) \]

\[E_2: \quad w + 1 \rightarrow q(f(w + 1)) \]

\[F_1: \quad 2\lambda_1 + u - v + 1 \rightarrow q(f(v - 1)) \]

\[F_2: \quad 2\lambda_2 - u + 1 \rightarrow q(f(u - 1)) + 2\lambda_2 - 2u + v - w + 1 \rightarrow q(f(w - 1)) \]

\[K_1 = qH_1 : qu - 2v + w + 2\lambda_1 \]

\[K_2 = qH_2 : q - 2u + v - 2w + 2\lambda_2 \]

One can check this is a representation for \(U_q(x) \) without the real structure yet.
Crucial Step 2: Quantization

Simply quantizing the weights!!
Crucial Step 2: Quantization

Simply quantizing the weights!!

\[E_1 : [u + 1]qf(u + 1, v + 1, w - 1) + [1 + v - w]qf(v + 1) \]
\[E_2 : [w + 1]qf(w + 1) \]
\[F_1 : [2\lambda_1 + u - v + 1]qf(v - 1) \]
\[F_2 : [2\lambda_2 - u + 1]qf(u - 1) + [2\lambda_2 - 2u + v - w + 1]qf(w - 1) \]

\[K_1 = q^{H_1} : q^{u-2v+w+2\lambda_1} \]
\[K_2 = q^{H_2} : q^{-2u+v-2w+2\lambda_2} \]
Crucial Step 2: Quantization

Simply quantizing the weights!!

\[
E_1 : [u + 1]qf(u + 1, v + 1, w - 1) + [1 + v - w]qf(v + 1)
\]
\[
E_2 : [w + 1]qf(w + 1)
\]
\[
F_1 : [2\lambda_1 + u - v + 1]qf(v - 1)
\]
\[
F_2 : [2\lambda_2 - u + 1]qf(u - 1) + [2\lambda_2 - 2u + v - w + 1]qf(w - 1)
\]
\[
K_1 = q^{H_1} : q^{u-2v+w+2\lambda_1}
\]
\[
K_2 = q^{H_2} : q^{-2u+v-2w+2\lambda_2}
\]

One can check this is a representation for \(\mathcal{U}_q(\mathfrak{g})\), without the real structure yet.
Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a "twist" in the quantum weight.

\[
\begin{align*}
 u + 1 &\quad q \mapsto \left[Q^2 b - i u b \right] q, \\
 Q &= b + 1, \\
 n &= q^n - q^{n-1}
\end{align*}
\]

Recall that the original variables belong to \(\mathbb{R}^>0 \). Now we use the correct Mellin transform, where the variable includes a complex part.

However, no more classical limit as \(b \to 0 \).

\[E_2 : \left[w + 1 \right] q f(w + 1) \to \left[Q^2 b - i w b \right] q e^{-2\pi bp w} \]

Recall that \(q = e^{\pi ib/2} \), this can be rewritten as:

\[
(i q - q^{-1}) \left(e^{\pi b (w - 2p w)} + e^{-\pi b (w - 2p w)} \right)
\]

which is positive, and can also be shown to be (essentially) self adjoint as required!
Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a "twist" in the quantum weight.
Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a ”twist” in the quantum weight.

\[[u + 1]_q \mapsto \left[\frac{Q}{2b} - i \frac{u}{b} \right]_q, \quad Q = b + \frac{1}{b}, \quad [n] = \frac{q^n - q^{-n}}{q - q^{-1}} \]

(Recall that the original variables belongs to \(\mathbb{R}_{>0} \). Now we use the correct Mellin transform, where the variable includes a complex part.)
Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a "twist" in the quantum weight.

\[
[u + 1]_q \mapsto \left[\frac{Q}{2b} - i \frac{u}{b} \right]_q, \quad Q = b + \frac{1}{b}, \quad [n] = \frac{q^n - q^{-n}}{q - q^{-1}}
\]

(Recall that the original variables belongs to \(\mathbb{R}_{>0} \). Now we use the correct Mellin transform, where the variable includes a complex part) However, no more classical limit as \(b \longrightarrow 0! \)

\[
E_2 : [w + 1]_q f(w + 1) \longrightarrow \left[\frac{Q}{2b} - i \frac{w}{b} \right]_q e^{-2\pi bp w}
\]
Crucial Step 3: Positivity twist

To obtain positive representations, the trick is to induce a ”twist” in the quantum weight.

\[
[u + 1]_q \mapsto \left[\frac{Q}{2b} - i \frac{u}{b}\right]_q, \quad Q = b + \frac{1}{b}, \quad [n] = \frac{q^n - q^{-n}}{q - q^{-1}}
\]

(Recall that the original variables belongs to \(\mathbb{R}_{>0} \). Now we use the correct Mellin transform, where the variable includes a complex part) However, no more classical limit as \(b \rightarrow 0! \)

\[
E_2 : [w + 1]_q f(w + 1) \mapsto \left[\frac{Q}{2b} - i \frac{w}{b}\right] e^{-2\pi bp w}
\]

Recall that \(q = e^{\pi ib^2} \), this can be rewritten as

\[
\left(\frac{i}{q - q^{-1}}\right) \left(e^{\pi b(w-2p w)} + e^{-\pi b(w-2p w)}\right)
\]

which is positive, and can also be shown to be (essentially) self adjoint as required!
Construction

Let us denote simply

\[[u]e(-p) := \left[\frac{Q}{2b} - i\frac{u}{b} \right]_q e^{-2\pi bp} \]
Construction

Let us denote simply

\[[u] e(-p) := \left[\frac{Q}{2b} - \frac{iu}{b} \right] q e^{-2\pi bp} \]

It is understood that this is positive as long as \([p, u] = \frac{1}{2\pi i} \).
Construction

Let us denote simply

\[[u] e(-p) := \left[\frac{Q}{2b} - i \frac{u}{b} \right] e^{-2\pi bp} \]

It is understood that this is positive as long as \([p, u] = \frac{1}{2\pi i} \).

Final result:

\[
\begin{align*}
E_1 & : [u] e(-pu - pv + pw) + [v - w] e(-pv) \\
E_2 & : [w] e(-pw) \\
F_1 & : [2\lambda_1 + u - v] e(pv) \\
F_2 & : [2\lambda_2 - u] e(pu) + [2\lambda_2 - 2u + v - w] e(pw) \\
K_1 & : e^{\pi b (u - 2v + w - 2\lambda_1)} \\
K_2 & : e^{\pi b (-2u + v - 2w - 2\lambda_2)}
\end{align*}
\]

Acting on \(L^2(\mathbb{R}^{\dim U^+})\).
Final Step

So far we have constructed the representation for a particular choice of longest element w_0.
Final Step

So far we have constructed the representation for a particular choice of longest element w_0.
However the representation is indeed canonical:
Final Step

So far we have constructed the representation for a particular choice of longest element w_0. However the representation is indeed canonical:

Theorem

The transformation of the operators of $\mathcal{U}_q(\mathfrak{g}_R)$ corresponding to the change of words $\ldots s_is_js_i\ldots = \ldots s_js_is_j\ldots$

$$x_i(u)x_j(v)x_i(w) \leftrightarrow x_j(u')x_i(v')x_j(w')$$
Final Step

So far we have constructed the representation for a particular choice of longest element w_0. However the representation is indeed canonical:

Theorem

The transformation of the operators of $U_q(\mathfrak{g}_\mathbb{R})$ corresponding to the change of words $...s_is_js_i... = ...s_js_is_j...$

$$x_i(u)x_j(v)x_i(w) \longleftrightarrow x_j(u')x_i(v')x_j(w')$$

is given by

$$X \mapsto \Phi X \Phi^{-1},$$
Final Step

So far we have constructed the representation for a particular choice of longest element w_0. However the representation is indeed canonical:

Theorem

The transformation of the operators of $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$ corresponding to the change of words $...s_is_-js_i... = ...s_js_is_j...$

$$x_i(u)x_j(v)x_i(w) \leftrightarrow x_j(u')x_i(v')x_j(w')$$

is given by

$$X \mapsto \Phi X \Phi^{-1},$$

where

$$\Phi = T \circ g_b(e^{\pi b(2p_w-2p_u+u-v+w)})g^*_b(e^{\pi b(2p_w-2p_u-u+v-w)}),$$

is a unitary transform. Here T is a linear transformation of $\det=1$.
Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.
Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.

$$F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j}^{m} u_j^{l,m} - 2u_i^l \right) + u_i^k + 2\lambda_i \right] e(p_i^k)$$

To find action of E_i in general:

Fix any reduced expression of w_0. Find the change of words so that the target index i is to the rightmost. The action is $u_i e(-p_i u_i)$ Carry out the (actually very easy) unitary transformation to obtain the desired expression. Positive representations of $U_{q}(g_{R})$ of all simply-laced type can be computed this way.
Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.

$$F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j}^{m} u_{j}^{l,m} - 2u_{i}^{l} \right) + u_{i}^{k} + 2\lambda_{i} \right] e(p_{i}^{k})$$

To find action of E_i in general:

- Fix any reduced expression of w_0
Construction

The action of \(F_i \) is essentially the Feigin map, and can be obtained directly from any reduced expression of \(w_0 \).

\[
F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j}^{m} u_{j,m}^{l,m} - 2u_{i}^{l} \right) + u_{i}^{k} + 2\lambda_{i} \right] e(p_{i}^{k})
\]

To find action of \(E_i \) in general:

- Fix any reduced expression of \(w_0 \)
- Find the change of words so that the target index \(i \) is to the rightmost.
Constructions

Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.

$$F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j}^{m} u_{j;m}^{l;m} - 2u_{l}^{l} \right) + u_{i}^{k} + 2\lambda_{i} \right] e(p_{i}^{k})$$

To find action of E_i in general:

- Fix any reduced expression of w_0
- Find the change of words so that the target index i is to the rightmost.
- The action is $[u]e(-p_u)$
Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.

$$F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j}^{m} u_{j}^{l,m} - 2u_{i}^{l} \right) + u_{i}^{k} + 2\lambda_{i} \right] e(p_{i}^{k})$$

To find action of E_i in general:

- Fix any reduced expression of w_0
- Find the change of words so that the target index i is to the rightmost.
- The action is $[u]e(-p_u)$
- Carry out the (actually very easy) unitary transformation to obtain the desired expression.
Construction

The action of F_i is essentially the Feigin map, and can be obtained directly from any reduced expression of w_0.

$$F_i = \sum_{k=1}^{n} \left[\sum_{l=k}^{n} \left(\sum_{j} u_{j,l}^m - 2u_i^l \right) + u_i^k + 2\lambda_i \right] e(p_i^k)$$

To find action of E_i in general:

- Fix any reduced expression of w_0
- Find the change of words so that the target index i is to the rightmost.
- The action is $[u]e(-p_u)$
- Carry out the (actually very easy) unitary transformation to obtain the desired expression.

Positive representations of $U_q(g_\mathbb{R})$ of all simply-laced type can be computed this way.
Results

Type A_n: (for the best choice of w_0)

Theorem

The action of E_i, F_i, K_i is given by

\[
E_i = \sum_{k=1}^{n-i+1} [u_{i+k-1}^k - u_{i+k}^k] e \left(\sum_{l=1}^{k} (p_{i+l-1}^{l-1} - p_{i+l}^{l}) \right),
\]

\[
F_i = \sum_{k=1}^{i} \left[u_{i}^k - \sum_{l=k}^{i} (2u_{i}^l - u_{i-1}^l - u_{i+1}^l) - 2\lambda_i \right] e(p_i^k),
\]

\[
K_i = e^{\pi b (\sum_{k=1}^{i} (u_{i-1}^k + u_{i+1}^k - 2u_i^k) + 2\lambda_i)},
\]
Results

Type D_n: (for the best choice of w_0)

Theorem

For $i = 0$ or 1:

$$E_i = \sum_{k=1}^{n-1} \left[u_{k+i-1}^k - u_{2k-1}^2 \right] e \left(\sum_{l_0=1}^{s_1(k)} (-1)^{l_0} p_{i}^{l_0} - \sum_{l_1=1}^{s_2(k)} (-1)^{l_1} p_{1-i}^{l_1} - \sum_{l_2=1}^{2k-2} (-1)^{l_2} p_{2}^{l_2} \right)$$

$$+ \sum_{k=1}^{n-2} \left[u_{2k}^2 - u_{k+i}^k \right] e \left(\sum_{l_0=1}^{s_1(k)} (-1)^{l_0} p_{i}^{l_0} - \sum_{l_1=1}^{s_2(k)} (-1)^{l_1} p_{1-i}^{l_1} - \sum_{l_2=1}^{2k} (-1)^{l_2} p_{2}^{l_2} \right)$$

and for $i \geq 2$,

$$E_i = \sum_{k=1}^{2n-2i-1} [(-1)^k (u_{k+i+1}^k - u_i^k)] e \left(\sum_{l_0=1}^{s_1(k)} (-1)^{l_0} p_{i}^{l_0} - \sum_{l_1=1}^{s_2(k)} (-1)^{l_1} p_{i+1}^{l_1} \right),$$

where $\overline{k} := k \pmod{2} \in \{0, 1\}$, and $s_1(k) := 2 \left\lfloor \frac{k}{2} \right\rfloor - 1$, $s_2(k) := 2 \left\lceil \frac{k}{2} \right\rceil$.
Number of terms for the action of E_i

<table>
<thead>
<tr>
<th></th>
<th>A_n</th>
<th>D_n</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td></td>
<td>$2n - 3$</td>
<td>9</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>E_1</td>
<td>n</td>
<td>$2n - 3$</td>
<td>1</td>
<td>11</td>
<td>23</td>
</tr>
<tr>
<td>E_2</td>
<td>$n - 1$</td>
<td>$2n - 5$</td>
<td>11</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>E_3</td>
<td>$n - 2$</td>
<td>$2n - 7$</td>
<td>10</td>
<td>16</td>
<td>28</td>
</tr>
<tr>
<td>E_4</td>
<td></td>
<td>$2n - 9$</td>
<td>7</td>
<td>17</td>
<td>29</td>
</tr>
<tr>
<td>E_5</td>
<td></td>
<td>$2n - 11$</td>
<td>5</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>E_6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>E_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E_k</td>
<td>$n - k$</td>
<td>$2n - 2k - 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{n-1}</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_n</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>$\frac{n(n+1)}{2}$</td>
<td>$n^2 - 2$</td>
<td>43</td>
<td>80</td>
<td>175</td>
</tr>
</tbody>
</table>
Fun(?) Facts

Choice of reduced expression for w_0 is important.
Fun(?) Facts

Choice of reduced expression for w_0 is important.

Example: For E_8, the best choice

$$w_0 = 4 \ 34 \ 034 \ 230432 \ 12340321 \ 5432103243054321 \ 654320345612345034230123456$$

$$765432103243546503423012345676543203456123450342301234567 \ (obtained \ by \ inclusions \ of \ Lie \ algebra) \ gives \ at \ most \ 29 \ terms.$$
Choice of reduced expression for w_0 is important.

Example: For E_8, the best choice

$$w_0 = 4 34 034 230432 12340321 5432103243054321 654320345612345034230123456$$

$$765432103243546503423012345676543203456123450342301234567$$

(obtained by inclusions of Lie algebra) gives at most 29 terms.

However, the choice for $w_0 = w' w_{A_n} s_0$ gives over 1,000,000 terms for the action of E_3.
Fun(?) Facts

Choice of reduced expression for w_0 is important.

Example: For E_8, the best choice $w_0 = 4 \ 34 \ 034 \ 230432 \ 12340321 \ 5432103243054321 \ 654320345612345034230123456$

765432103243546503423012345676543203456123450342301234567 (obtained by inclusions of Lie algebra) gives at most 29 terms.

$\circ_0 - \circ_1 - \circ_2 - \circ_3 - \circ_4 - \circ_5 - \circ_6 - \circ_7$

However, the choice for $w_0 = w'w_{A_n}s_0$ gives over 1,000,000 terms for the action of E_3.

But from the previous remarks, they are unitary equivalent representations!
Properties

Extending the Feigin map:
Properties

Extending the Feigin map:

Theorem

Denote by $\mathbb{C}[T] = \mathbb{C}[u_i^\pm, v_i^\pm]_{i=1}^r$ the Weyl algebra, where $u_i v_i = q^2 v_i u_i$.
Properties

Extending the Feigin map:

Theorem

Denote by \(\mathbb{C}[T] = \mathbb{C}[u_i^\pm, v_i^\pm]_{i=1}^r \) the Weyl algebra, where \(u_i v_i = q^2 v_i u_i \), we have

\[
\mathcal{U}_q(\mathfrak{g}_R) \rightarrow \mathbb{C}[T]
\]

such that the image of the generators are polynomials,
Properties

Extending the Feigin map:

Theorem

Denote by $\mathbb{C}[T] = \mathbb{C}[u_i^\pm, v_i^\pm]_{i=1}^r$ the Weyl algebra, where $u_i v_i = q^2 v_i u_i$, we have

$\mathcal{U}_q(\mathfrak{g}_R) \longrightarrow \mathbb{C}[T]$ such that the image of the generators are polynomials, and only *sums* appear (positivity).
Properties

Extending the Feigin map:

Theorem

Denote by $\mathbb{C}[T] = \mathbb{C}[u_i^\pm, v_i^\pm]_{i=1}^r$ the Weyl algebra, where $u_i v_i = q^2 v_i u_i$, we have

$$\mathcal{U}_q(g_\mathbb{R}) \longrightarrow \mathbb{C}[T]$$

such that the image of the generators are polynomials, and only sums appear (positivity).

We also have the existence of universal R-matrix, essentially replacing \exp_q by g_b in the Reshetikhin model, and showing certain positivity properties. (In preparation)
Properties

Transcendental Relations:

Define $e_i = (i q - q - 1)^{-1}$, $f_i = (i q - q - 1)^{-1}$, we have $e_{1b}^2 = \tilde{e}_i$, $f_{1b}^2 = \tilde{f}_i$, $K_{1b}^2 = \tilde{K}_i$, where \tilde{E}_i, \tilde{F}_i, \tilde{K}_i generates $U_{\tilde{q}}(g_R)$. (replacing $b \leftarrow b - 1$)

Follows from the "magic Lemma" by Yu. Volkov: For $u, v > 0$: $uv = q^2 vu = \Rightarrow (u + v)^{1b} = u^{1b} + v^{1b}$

However, $(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i)$ commute with (E_i, F_i, K_i) only up to a sign.

$= \Rightarrow$ Need a slight modification in order to define the modular double.
Properties

Transcendental Relations:

Theorem

Define

\[e_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} F_i, \]

where \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(U_{\tilde{q}}(g_R) \). (replacing \(b \leftarrow b - 1 \))

Follows from the "magic Lemma" by Yu. Volkov: For \(u, v > 0 \):

\[uv = q^2 vu = \Rightarrow (u + v)^{1b_2} = u^{1b_2} + v^{1b_2} \]

However, \((\tilde{E}_i, \tilde{F}_i, \tilde{K}_i)\) commute with \((E_i, F_i, K_i)\) only up to a sign.

\[\Rightarrow \text{Need a slight modification in order to define the modular double.} \]
Properties

Transcendental Relations:

Theorem

Define

\[e_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} F_i, \]

we have

\[e_i^{b^2} = \tilde{e}_i, \quad f_i^{b^2} = \tilde{f}_i, \quad K_i^{b^2} = \tilde{K}_i, \]

where \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(\mathcal{U}_{\tilde{q}}(\mathfrak{g}_R) \). (replacing \(b \leftrightarrow b^{-1} \))
Transcendental Relations:

Theorem

Define

\[e_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} F_i, \]

we have

\[e_i^{\frac{1}{b^2}} = \tilde{e}_i, \quad f_i^{\frac{1}{b^2}} = \tilde{f}_i, \quad K_i^{\frac{1}{b^2}} = \tilde{K}_i, \]

where \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(\mathcal{U}_q(g_{\mathbb{R}}) \). (replacing \(b \leftarrow b^{-1} \))

Follows from the "magic Lemma" by Yu. Volkov: For \(u, v > 0 \):

\[uv = q^2 vu \implies (u + v)^{\frac{1}{b^2}} = u^{\frac{1}{b^2}} + v^{\frac{1}{b^2}} \]
Properties

Transcendental Relations:

Theorem

Define

\[e_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} F_i, \]

we have

\[e_i^{\frac{1}{b^2}} = \tilde{e}_i, \quad f_i^{\frac{1}{b^2}} = \tilde{f}_i, \quad K_i^{\frac{1}{b^2}} = \tilde{K}_i, \]

where \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(U_q(\mathfrak{g}_R) \). (replacing \(b \leftrightarrow b^{-1} \))

Follows from the ”magic Lemma” by Yu. Volkov: For \(u, v > 0 \):

\[uv = q^2 vu \implies (u + v)^{\frac{1}{b^2}} = u^{\frac{1}{b^2}} + v^{\frac{1}{b^2}} \]

However, \((\tilde{E}_i, \tilde{F}_i, \tilde{K}_i) \) commute with \((E_i, F_i, K_i) \) only up to a sign.
Properties

Transcendental Relations:

Theorem

Define

\[e_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q - q^{-1}} \right)^{-1} F_i, \]

we have

\[e_i^{\frac{1}{b^2}} = \tilde{e}_i, \quad f_i^{\frac{1}{b^2}} = \tilde{f}_i, \quad K_i^{\frac{1}{b^2}} = \tilde{K}_i, \]

where \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(U_q(\mathfrak{g}_R) \). (replacing \(b \leftarrow b^{-1} \))

Follows from the ”magic Lemma” by Yu. Volkov: For \(u, v > 0 \):

\[uv = q^2 vu \implies (u + v)^{\frac{1}{b^2}} = u^{\frac{1}{b^2}} + v^{\frac{1}{b^2}} \]

However, \((\tilde{E}_i, \tilde{F}_i, \tilde{K}_i) \) commute with \((E_i, F_i, K_i) \) only up to a sign.

\(\implies \) Need a slight modification in order to define the modular double.
Properties

After modifying the quantum group by some scaling of K_i’s, we then have the following result for $U_q(g_{\mathbb{R}})$:
After modifying the quantum group by some scaling of K_i’s, we then have the following result for $U_q(\mathfrak{g}_\mathbb{R})$:

Theorem

The commutant of $U_q(\mathfrak{g}_\mathbb{R})$ is the Langlands dual of the modular double counterpart,

$$(U_q(\mathfrak{g}_\mathbb{R}))' = U_{\tilde{q}}(L\mathfrak{g}_\mathbb{R})$$
Non-simply-laced case

Positive representations constructed using similar techniques. (Different reduced expressions of $w_0 \rightarrow$ transformations are more complicated)

Surprising discovery using transcendental relations. Transcendental relations no longer exchange $b \leftrightarrow b^{-1}$. Instead, it exchanges short roots and long roots!!
Non-simply-laced case

Positive representations constructed using similar techniques. (Different reduced expressions of $w_0 \Rightarrow$ transformations are more complicated) (However, related to simply-laced case by certain folding methods.)
Non-simply-laced case

Positive representations constructed using similar techniques.
(Different reduced expressions of $w_0 \rightarrow$ transformations are more complicated)
(However, related to simply-laced case by certain folding methods.)

Surprising discovery using transcendental relations.
Non-simply-laced case

Positive representations constructed using similar techniques. (Different reduced expressions of $w_0 \implies$ transformations are more complicated) (However, related to simply-laced case by certain folding methods.)

Surprising discovery using transcendental relations.

Transcendental relations no longer exchange $b \leftrightarrow b^{-1}$.
Non-simply-laced case

Positive representations constructed using similar techniques. (Different reduced expressions of $w_0 \implies$ transformations are more complicated) (However, related to simply-laced case by certain folding methods.)

Surprising discovery using transcendental relations.

Transcendental relations no longer exchange $b \leftrightarrow b^{-1}$.

Instead, it exchanges short roots and long roots!!
Non-simply-laced case

Positive representations constructed using similar techniques. (Different reduced expressions of $w_0 \Rightarrow$ transformations are more complicated) (However, related to simply-laced case by certain folding methods.)

Surprising discovery using transcendental relations.

Transcendental relations no longer exchange $b \leftrightarrow b^{-1}$.

Instead, it exchanges short roots and long roots!!
Non-simply-laced case

Theorem

Let $q_i = q_i^{\frac{1}{2}}(\alpha_i,\alpha_i) = e^{\pi ib_i^2}$. Define

$$e_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} E_i,$$

$$f_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} F_i,$$

and define \tilde{e}_i, \tilde{f}_i, \tilde{K}_i then

E_i, F_i generates $U_{\tilde{q}}(LgR)$. If E_i is the short root in $U_q(gR)$, then \tilde{E}_i is the long root in $U_{\tilde{q}}(LgR)$ and vice versa.
Non-simply-laced case

Theorem

Let \(q_i = q^{1/2}(\alpha_i, \alpha_i) = e^{\pi i b_i^2} \). Define

\[
e_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} F_i,
\]

and define

\[
\tilde{e}_i := e_i^{b_i^2}, \quad \tilde{f}_i := f_i^{b_i^2}, \quad \tilde{K}_i := K_i^{b_i^2},
\]
Non-simply-laced case

Theorem

Let \(q_i = q^{\frac{1}{2}}(\alpha_i, \alpha_i) = e^{\pi i b_i^2} \). Define

\[
e_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} F_i,
\]

and define

\[
\tilde{e}_i := e_i^{\frac{1}{b_i^2}}, \quad \tilde{f}_i := f_i^{\frac{1}{b_i^2}}, \quad \tilde{K}_i := K_i^{\frac{1}{b_i^2}},
\]

then \(\tilde{E}_i, \tilde{F}_i, \tilde{K}_i \) generates \(\mathcal{U}_q(L g_{\mathbb{R}}) \).
Non-simply-laced case

Theorem

Let $q_i = q^{\frac{1}{2}}(\alpha_i, \alpha_i) = e^{\pi i b_i^2}$. Define

$$e_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} E_i, \quad f_i = \left(\frac{i}{q_i - q_i^{-1}} \right)^{-1} F_i,$$

and define

$$\tilde{e}_i := e_i^{\frac{1}{b_i^2}}, \quad \tilde{f}_i := f_i^{\frac{1}{b_i^2}}, \quad \tilde{K}_i := K_i^{\frac{1}{b_i^2}},$$

then $\tilde{E}_i, \tilde{F}_i, \tilde{K}_i$ generates $\mathcal{U}_q(L \mathfrak{g}_\mathbb{R})$.

If E_i is the short root in $\mathcal{U}_q(\mathfrak{g}_\mathbb{R})$, then \tilde{E}_i is the long root in $\mathcal{U}_q(L \mathfrak{g}_\mathbb{R})$ and vice versa.
Non-simply-laced case

This provides for the first time a very direct analytic relation between \mathfrak{g} and its Langlands dual.
Non-simply-laced case

This provides for the first time a very direct analytic relation between \mathfrak{g} and its Langlands dual.

Note that under this framework, there is still no classical limit.
Future Perspectives

Conjecture

The class of positive representations is closed under tensor product (in the continuous sense), hence form a (certain kind of) Braided Tensor Category.
Conjecture

The class of positive representations is closed under tensor product (in the continuous sense), hence form a (certain kind of) Braided Tensor Category.

Indeed using the *magic Lemma*, we have

\[
\Delta(e_i) \frac{1}{b^2} = \Delta \tilde{e}_i, \quad \Delta(f_i) \frac{1}{b^2} = \Delta \tilde{f}_i
\]
Conjecture

The class of positive representations is closed under tensor product (in the continuous sense), hence form a (certain kind of) Braided Tensor Category.

Indeed using the magic Lemma, we have

$$\Delta(e_i) \frac{1}{\hbar^2} = \Delta \tilde{e}_i, \quad \Delta(f_i) \frac{1}{\hbar^2} = \Delta \tilde{f}_i$$

hence it is enough to show that the defining properties characterize this class.
Conjecture

The class of positive representations is closed under tensor product (in the continuous sense), hence form a (certain kind of) Braided Tensor Category.

Indeed using the magic Lemma, we have

\[\Delta(e_i) \frac{1}{b^2} = \Delta \tilde{e}_i, \quad \Delta(f_i) \frac{1}{b^2} = \Delta \tilde{f}_i \]

hence it is enough to show that the defining properties characterize this class.
Future Perspectives

- Braided tensor category structure \implies new class of TQFT?
Future Perspectives

- Braided tensor category structure \implies new class of TQFT?
 $\mathcal{U}_{\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.
Future Perspectives

- Braided tensor category structure \Rightarrow new class of TQFT? $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$?
Future Perspectives

- Braided tensor category structure \Rightarrow new class of TQFT?
 $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$?
 (H. Nakajima) Gauge theory \Rightarrow geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_q(\mathfrak{g})$.
Future Perspectives

- Braided tensor category structure \implies new class of TQFT? $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$?
 (H. Nakajima) Gauge theory \implies geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_q(\mathfrak{g})$.
 (T. Dimofte,...) Geometric approach based on CSW model for $G_{\mathbb{R}}$ \implies relation with the $N = 2$ SUSY gauge theory on a 3-d sphere.
Future Perspectives

- Braided tensor category structure \Rightarrow new class of TQFT?
 $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_{\mathbb{R}})$?
 (H. Nakajima) Gauge theory \Rightarrow geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_{q}(\mathfrak{g})$.
 (T. Dimofte,...) Geometric approach based on CSW model for $G_{\mathbb{R}}$ \Rightarrow relation with the $N = 2$ SUSY gauge theory on a 3-d sphere. First step towards geometrization of the category of positive representations of the modular double.
Future Perspectives

- Braided tensor category structure \implies new class of TQFT? $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$?
 (H. Nakajima) Gauge theory \implies geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_q(\mathfrak{g})$.
 (T. Dimofte,...) Geometric approach based on CSW model for $G_\mathbb{R}$ \implies relation with the $N = 2$ SUSY gauge theory on a 3-d sphere. First step towards geometrization of the category of positive representations of the modular double.

- Positivity \implies new insight into canonical bases, cluster algebra, tropicalization... (Fock-Goncharov, Fomin-Zelevinsky...)

Future Perspectives

- Braided tensor category structure \Rightarrow new class of TQFT? $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2, \mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$?
 (H. Nakajima) Gauge theory \Rightarrow geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_q(\mathfrak{g})$.
 (T. Dimofte,...) Geometric approach based on CSW model for $G_\mathbb{R}$ \Rightarrow relation with the $N = 2$ SUSY gauge theory on a 3-d sphere. First step towards geometrization of the category of positive representations of the modular double.

- Positivity \Rightarrow new insight into canonical bases, cluster algebra, tropicalization... (Fock-Goncharov, Fomin-Zelevinsky...)

- Semi-group structure and non-existence of classical limit of positive representations \Rightarrow causality and renormalization.
Future Perspectives

- Braided tensor category structure \implies new class of TQFT? $\mathcal{U}_{q\tilde{q}}(\mathfrak{sl}(2,\mathbb{R}))$ case: an alternative approach to a new class of TQFT from quantum Teichmüller theory.

- Geometrization and Categorification of $\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})$? (H. Nakajima) Gauge theory \implies geometric and categorical constructions of fin. dim. reps for $\mathcal{U}_q(\mathfrak{g})$. (T. Dimofte,...) Geometric approach based on CSW model for $G_\mathbb{R}$ \implies relation with the $N = 2$ SUSY gauge theory on a 3-d sphere. First step towards geometrization of the category of positive representations of the modular double.

- Positivity \implies new insight into canonical bases, cluster algebra, tropicalization... (Fock-Goncharov, Fomin-Zelevinsky...)

- Semi-group structure and non-existence of classical limit of positive representations \implies causality and renormalization.
Thank you!