Introduction to Cluster Algebra

Homework 1 (Due 2017/05/08)

(Q1) Compute the Conway-Coxeter frieze pattern $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ for $\left(d_{1}, d_{2}\right)=$ $(1,3)$, i.e.

$$
x_{k+1} x_{k-1}=\left\{\begin{array}{cc}
x_{k}+1 & k \text { is even } \\
x_{k}^{3}+1 & k \text { is odd }
\end{array}\right.
$$

or equivalently, the cluster variables of the cluster algebra associated to the initial seed $\left(x_{1}, x_{2}\right)$ with exchange matrix B :

$$
B=\left(\begin{array}{cc}
0 & 3 \\
-1 & 0
\end{array}\right)
$$

What is the period of this pattern?
(Q2) Proof that there are $\binom{2 n}{n}-1$ minors $\Delta_{I, J}$ for an $n \times n$ matrix. Recall that a minor $\Delta_{I, J}$ is the determinant of the submatrix restricted to the row index I and column index J with $1 \leq|I|=|J| \leq n$.
(Q3) Show that the matrices

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
0 & 1 & 2 & \cdots & n-1 \\
0 & 0 & 1 & \cdots & n-2 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)
$$

are totally positive, by finding the planar networks with weight matrix A and B respectively. (Hint: $B=A^{2}$)
(Q4) Show that the quiver associated to $\mathbb{C}\left[S L_{5} / N\right]$:

is mutation equivalent to some orientation of the $\mathbf{D}_{\mathbf{6}}$ Dynkin quiver:

Note: For a tree diagram, any orientation of arrows are mutation equivalent.
(Q5) Let B be skew-symmetric. Recall that the matrix mutation in direction k, denoted by μ_{k}, is defined by

$$
B^{\prime}:=\mu_{k}(B),
$$

where

$$
b_{i j}^{\prime}=\left\{\begin{array}{ll}
-b_{i j} & k \in\{i, j\} \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise }
\end{array} .\right.
$$

Show that
(1) B^{\prime} is again skew-symmetric,
(2) μ_{k} is an involution, i.e. $\mu_{k}\left(B^{\prime}\right)=B$.

