Introduction to Cluster Algebra

Homework 2 (Due 2017/06/12)

(Q1) Consider the sequence y_0, y_1, \dots defined by the recurrence

$$y_k = \frac{y_{k-1}^2 + y_{k-1} + 1}{y_{k-2}}$$

Show that every term of this sequence is a Laurent polynomial in y_0 and y_1 with coefficients in \mathbb{Z} . In particular, if $y_0 = y_1 = 1$, this is an integer sequence! Hint: Apply the Caterpillar Lemma with a suitable exchange pattern of rank 2 and exchange polynomial $P \in \mathbb{Z}[x_1, x_2]$ by verifying the conditions of the lemma.

- (Q2) Compare the denominators of the cluster variables of the Conway-Coxeter frieze pattern of height n = 3 and the root system of type A_3 .
- (Q3) For a skew-symmetrizable matrix B with diagram $\Gamma(B)$ whose edges have weights $|b_{ij}b_{ji}|$, we have the diagram mutation rule:

where

$$\sqrt{c} + \sqrt{c'} = \sqrt{ab}$$

Show that c' must be an integer. (Hint: There exists integer diagonal matrix D such that DB is skew symmetric.)

(Q4) Show that

- (a) Show that $D_4^{(1)}$ is 2-infinite.
- (b) Show that $F_4^{(1)}$ is 2-infinite.
- (c) Show that $G_2^{(1)}$ is 2-infinite.

- (d) Oriented triangle with edge weights $\{2, 2, 1\} \sim B_3$.
- (e) Oriented 4-cycle with edge weights $\{2, 1, 2, 1\} \sim F_4$.
- (Q5) In type C_3 , let $I_+ = \{1, 3\}, I_- = \{2\}$ and the long root be α_3 . Calculate the $\langle \tau_+, \tau_- \rangle$ -orbits of the almost positive roots of type C_3 .

(The positive roots can be found on the C_3 -cyclohedron in the lecture notes.)