Introduction to Cluster Algebra

Homework 2 (Due 2017/06/12)

(Q1) Consider the sequence y_{0}, y_{1}, \ldots defined by the recurrence

$$
y_{k}=\frac{y_{k-1}^{2}+y_{k-1}+1}{y_{k-2}}
$$

Show that every term of this sequence is a Laurent polynomial in y_{0} and y_{1} with coefficients in \mathbb{Z}. In particular, if $y_{0}=y_{1}=1$, this is an integer sequence! Hint: Apply the Caterpillar Lemma with a suitable exchange pattern of rank 2 and exchange polynomial $P \in \mathbb{Z}\left[x_{1}, x_{2}\right]$ by verifying the conditions of the lemma.
(Q2) Compare the denominators of the cluster variables of the Conway-Coxeter frieze pattern of height $n=3$ and the root system of type A_{3}.
(Q3) For a skew-symmetrizable matrix B with diagram $\Gamma(B)$ whose edges have weights $\left|b_{i j} b_{j i}\right|$, we have the diagram mutation rule:

where

$$
\sqrt{c}+\sqrt{c^{\prime}}=\sqrt{a b}
$$

Show that c^{\prime} must be an integer. (Hint: There exists integer diagonal matrix D such that $D B$ is skew symmetric.)
(Q4) Show that
(a) Show that $D_{4}^{(1)}$ is 2-infinite.
(b) Show that $F_{4}^{(1)}$ is 2-infinite.
(c) Show that $G_{2}^{(1)}$ is 2-infinite.
(d) Oriented triangle with edge weights $\{2,2,1\} \sim B_{3}$.
(e) Oriented 4 -cycle with edge weights $\{2,1,2,1\} \sim F_{4}$.
(Q5) In type C_{3}, let $I_{+}=\{1,3\}, I_{-}=\{2\}$ and the long root be α_{3}. Calculate the $\left\langle\tau_{+}, \tau_{-}\right\rangle$-orbits of the almost positive roots of type C_{3}.
(The positive roots can be found on the C_{3}-cyclohedron in the lecture notes.)

