Introduction to Cluster Algebra

Homework 3 (Due 2017/07/03)

(Q1) Show that matrix mutations preserve the rank of \widetilde{B}.
(Hint: Using the matrix mutation rule for \widetilde{B} :

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\ b_{i j}+\left[b_{k j}\right]_{+} b_{i k}+\left[-b_{i k}\right]_{+} b_{k j} & \text { otherwise }\end{cases}
$$

Show that one can write

$$
\widetilde{B}^{\prime}=X_{m} \widetilde{B} Y_{n}
$$

for some $m \times m$ invertible matrix X_{m} and $n \times n$ invertible matrix Y_{n}.)
(Q2) Let $\alpha_{i} \in \mathfrak{h}^{*}$ be the simple roots. Recall that the corresponding coroots $\alpha_{i}^{\vee} \in \mathfrak{h}$ is defined by

$$
\alpha_{j}\left(\alpha_{i}^{\vee}\right)=c_{i j} .
$$

The fundamental weights $\omega_{i} \in \mathfrak{h}^{*}$ are defined by

$$
\omega_{j}\left(\alpha_{i}^{\vee}\right)=\delta_{i j} .
$$

(a) Write ω_{j} in terms of the simple roots α_{k}.
(b) What is the action of the simple reflections $s_{i} \in W$ on ω_{j} ?
(Q3) Let $G=S L_{4}$.
(a) Draw the quiver diagram $\Gamma(\mathbf{i})$ corresponding to $G^{s_{2}, w_{0}}$.
(b) What is the cluster type of $\mathbb{C}\left[G^{s_{2}, w_{0}}\right]$?
(Q4) Let G be of type D_{4}. Let the reduced word of w_{0} be $\mathbf{i}=(1,3,4,2,1,3,4,2,1,3,4,2)$.

(a) Draw the quiver diagram Γ (i) corresponding to $G^{e, w_{0}}$.
(b) Show that the cluster algebra is of infinite type. (Find a subdiagram of the mutable part of $\Gamma(\mathbf{i})$ that is not 2 -finite (see Lecture 6))
(Q5) Let $G=S L_{n+1}$ and $H \subset G$ the maximal torus consisting of the diagonal matrices. Let $h_{j}(a):=\operatorname{diag}(1, \ldots, \underbrace{a, a^{-1}}_{j, j+1}, \ldots, 1) \in H$. Then the fundamental weights ω_{i} act multiplicatively as

$$
h_{j}(a)^{\omega_{i}}:=\omega_{i}\left(h_{j}(a)\right)=\left\{\begin{array}{ll}
a & i=j \\
1 & i \neq j
\end{array} .\right.
$$

(a) For $h \in H$, show that $h^{\omega_{i}}=\prod_{k=1}^{i} h_{k k}=\Delta_{[1, i],[1, i]}(h)$
(b) Hence if $x=[x]_{-}[x]_{0}[x]_{+} \in N_{-} H N_{+} \subset G$ admits a Gauss decomposition, show that $[x]_{0}^{\omega_{i}}=\Delta_{[1, i],[1, i]}(x)$. (Hint: write x as block matrix.)

