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11 Cluster Algebra from Surfaces

In this lecture, we will define and give a quick overview of some properties of cluster
algebra from surfaces. We will follow [Surface-I] and [Surface-II].

11.1 Bordered Surfaces with Marked Points

Definition 11.1. A bordered surface with marked points is a pair (S,M) where

• S a connected oriented 2-dimensional Riemann surface (possibly with bound-
ary ∂S).

• M ⊂ S a non-empty finite set of marked points in S

• m ∈M in the interior S− ∂S are called punctures

• Each connected boundary component has at least one marked point

• We require S to have at least one triangulation (see below). Hence S is NOT
a:

– sphere with 1 or 2 punctures

– 1-gon (monogon) with 0 or 1 puncture

– 2-gon (digon) with 0 punctures

– 3-gon (triangle) with 0 punctures

(n-gon means a disk with n marked points) We also exclude sphere with 3 punctures.

∗Center for the Promotion of Interdisciplinary Education and Research/
Department of Mathematics, Graduate School of Science, Kyoto University, Japan
Email: ivan.ip@math.kyoto-u.ac.jp

1



Example 11.2. An example:

Figure 1: S is a torus with 2 punctures, 1 boundary components, and 5 marked
points

We also have some restrictions on the arcs of triangulations:

Definition 11.3. An arc γ in (S,M) is a curve up to isotopy, such that

• Endpoints of γ lie in M

• γ does not self-intersect outside endpoints

• γ is disjoint from M and ∂S outside endpoints

• γ does not cut out an 1-gon or 2-gon with no punctures.

Two arcs are compatible with they do not intersect in the interior of S.
The set of all arcs is denoted by A0(S,M).

Definition 11.4. An ideal triangulation is a maximal collection of distinct pairwise
compatible arcs. The arcs cut S into ideal triangulations. (We allow self-folded
triangles.)

Each ideal triangulation consists of

n = 6g + 3b+ 3p+ c− 6

arcs, where

• g=genus

• b=# boundary components

• p=# punctures
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Figure 2: Self-folded triangle

• c=# marked points on ∂S

Definition 11.5. We can flip the triangles as usual. But edges inside a self-folded
triangle cannot be flipped!

γ −→ γ′

Figure 3: Usual flip

−→

Figure 4: The red edge cannot be flipped

Definition 11.6. The arc complex ∆0(S,M) is a simplicial complex with

• vertex = the arcs ∈ A0(S,M),

• simplex = compatible arcs

• maximal simpliecs = ideal triangulations

The dual graph is E0(S,M): vertices = triangulations, edges = flips
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Example 11.7. Once-punctured triangle. We see that ∆0(S,M) has a boundary,
and E0(S,M) is not 3-regular, since some edges cannot be flipped.

Figure 5: ∆0(S,M) and E0(S,M)

Proposition 11.8. • ∆0(S,M) is contratible unless (S,M) is a polygon with-
out punctures, then it is ' sphere Sn.

• E0(S,M) is connected. Hence we can obtain any triangulations by flipping.

• π1 of E0 is generated by 4 and 5-cycles.

Theorem 11.9. There exists a triangluation for (S,M) with no self-folded trian-
gles.

Hence we can always start with a nice triangulation, and obtain any other
triangulations by flipping.

11.2 Cluster Algebra

Recall that given a triangulation (without self-folded triangles), we can associate
to it a quiver Q, such that a flip correspond to quiver mutation:
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Then for example, a change of triangulation will induce a change of quivers,
called the “quiver mutaiton”, that will be describe in more detail later.

−→

If B̃ is the adjancency matrix of the quiver Q, then we can define a cluster algebra of
geometric type A of rank n with initial seed (x̃, B̃) where x = (x1, ..., xn, xn+1, ..., xm)

• n=number of arcs of the triangluation

• cluster variables x = (x1, ..., xn) labeled by the arcs,

• frozen variables (xn+1, ..., xm) labeled by the sides of S (connected compo-
nents of ∂S−M)

Remark 11.10. In this quick overview, for simplicity, we will ignore the sides
and only consider the principal part B of B̃. The cluster algebra structures (clus-
ter complex and exchange graph) are mostly independent of the coefficients (frozen
variables). However, a major part of this theory deals with the properties and com-
binatorics of general coefficients (in P) that is very interesting on its own.

One can now define the adjancency matrix for a triangulation with self-folded
triangles: they should be obtained from B by appropriate mutation. Any triangu-
lation can be glued from 3 kind of “puzzle pieces”, and B is obtained by summing
up each matrix matching the row and column indices.
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Figure 6: The 3 puzzle pieces

Corollary 11.11. By construction

• ∆0(S,M) is a subcomplex of the cluster complex of A.

• E0(S,M) is a subgraph of the exchange graph of A.

In order to get the full cluster complex and exchange graph, we need to extend
the definition of our triangulations to include tagged arcs.

11.3 Examples

Here we consider some examples:

Example 11.12. Some examples in lower rank: (please work out the quivers...)

• 4-gon, 0 punctures (type A1)

• 5-gon, 0 punctures (type A2)

• 2-gon, 1 puncture (type A1 ×A1)

• 3-gon, 1 puncture (type A3)

• torus, 1 puncture (Markov quiver)

Example 11.13. Polygons:

• Type An: (n+ 3)-gon with 0 punctures, from snake diagram

• Type Dn: n-gon with 1 puncture
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Figure 7: The snake diagram for type An and Dn

Also consider some special types:

Lemma 11.14. Let Γ be n-cycle (n ≥ 3) with n1 edges in one direction and n2
edges in another direction. Then the mutation equivalence class of Γ depends only
on the unordered pair {n1, n2}.

We call its type Ã(n1, n2). Note that Ã(n, 0) ' Ã(0, n) ' Dn (See Lecture 6).

Also recall the affine diagram:

D̃n−1 · · ·

Example 11.15. • Type Ã(n1, n2): Annulus with 0 puncture, n1 marked points
on one boundary, n2 marked points on another.

• Type Ã(2, 2): 1-gon with 2 punctures

• Type D̃n−1: (n− 3)-gon with 2 punctures.
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Figure 8: The quiver diagram for type Ã(10, 4) and D̃10

11.4 Tagged arcs

We introduce tagging to resolve the self-folded triangles.

Definition 11.16. A tagged arcs is an arc in (S,M) with a tagging (plain or ./)
on each end

• Endpoint on ∂S is tagged plain

• Both ends of a loop are tagged the same way

• The arc does not cut out an 1-gon with 1 puncture

The set of all tagged arcs is A./(S,M). We let α0 to be the untagged version of the
tagged arc α.

Definition 11.17. Replacement τ of an ordinary arc γ is a tagged arc τ(γ):

• if γ does not cut out an 1-gon with 1 puncture, then τ(γ) = γ with plain tags

• Otherwise if γ is a loop, it is given by the following replacement:

Figure 9: γ and τ(γ)

8



Hence there is a mpa from A0(S,M) −→ A./(S,M).

Definition 11.18. Two tagged arcs α, β ∈ A./(S,M) are compatible if

• The untagged version α0, β0 are compatible

• If untagged version of α0, β0 are different, and they share an endpoint a, then
they must be tagged the same way at a.

• If untagged version of α0, β0 are the same, they must be tagged the same way
in at least one endpoint

Definition 11.19. Tagged arc complex ∆./(S,M) is the simplicial complex where

• vertex = the tagged arcs ∈ A0(S,M),

• simplex = compatible tagged arcs

• maximal simpliecs = “tagged triangulations”

Also let E./(S,M) be the dual graph. The edges of E./(S,M) give us the “flipping
of tagged triangulation”.

Remark 11.20. If S has no punctures, ∆./ = ∆0 and E./ = E0.

We can see now that we can extend our previous complexes:
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Figure 10: ∆./(S,M) for 1 punctured triangle

Figure 11: E0(S,M) and E./(S,M) for S=2-gon with 1 puncture

Proposition 11.21. • If (S,M) is not a closed surface with exactly one punc-
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ture, then E./(S,M) and ∆./(S,M) is connected.

• If (S,M) is a closed surface with one puncture, then E./(S,M) and ∆./(S,M)
has two isomorphic components: one with all ends of arg tagged plain, and
another with all ends of arg tagged ./.

We arrive at the main theorem:

Theorem 11.22. Let A be the cluster algebra corresponding to (S,M). Then

• If (S,M) is not a closed surface with exactly one puncture, then ∆(A) '
∆./(S,M) and exchange graph of A is ' E./(S,M).

• If (S,M) is a closed surface with exactly one puncture, then ∆(A) ' a con-
nected component of ∆./(S,M), and the exchange graph is ' a connected
component of E./(S,M).

To understand the idea behind the proof of the Theorem, we need to describe
explicitly the tagged flipping as well as the adjacency matrix associated to a tagged
triangulation.

Definition 11.23. The undone version of a tagged triangulation T is an ordinary
triangulation T 0 where

• if all arcs from a puncture is tagged ./, remove the tag.

• for all other puncture, undo the map τ by replacing γ with a loop

Proposition 11.24. Tagged flipping has 2 types:

(D) A “digon flip” as in Figure 11.

(Q) A “quadrilateral flip”, which flips the corresponding undone version of the
triangulation.

Example 11.25. Illustrating (Q): sphere with 4 punctures.
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Figure 12: A Q flip

Proposition 11.26. The adjacency matrix of a tagged triangulation T is defined
as

B(T ) := B(T 0)

Then B(T ) satisfies the same matrix mutation rule with tagged flipping.

Corollary 11.27. The cluster algebra from surface is of finite mutation type

Proof. The adjacency matrix can only take value 0,±1,±2.

Example 11.28. The adjancency matrix (quiver) associated with Figure 11:
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Figure 13: E./(S,M) for S=2-gon with 1 puncture

11.5 Denominator Theorem

One can also describe the cluster variables explicitly, just like in the finite type.
First we define the intersection number:

Definition 11.29. The intersection number of 2 tagged arcs α, β is

(α|β) := A+B + C +D

where

• A = number of intersection of α0 and β0 outside the endpoints

• B = 0 unless α0 is a loop based at a, with β0 intersect α0 at β1, ..., bm, then
B is the (−1)× number of contractible triangle formed by bi, bi+1, a.

• C =

{
−1 α0 = β0
0 otherwise

• D = number of ends of β sharing an endpoint with α but tagged differently.

From the Laurent phenomenon of cluster algebra, we also have an expression of
the demonimator vectors:

Definition 11.30. Fix an initial seed (x0, B). Any z ∈ A can be written as a
Laurent polynomial:

z =
P (x0)∏

x∈x0
xd(x|z)

where P is a polynomial in x0, and d(x|z) is called the denominator vector.
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Recall that each cluster variable correspond to a tagged arc a 7→ x[α].

Theorem 11.31. For any tagged arcs α, β, the denominator vector d(x[α]|x[β])
equals the intersection number (α|β).
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