11 Cluster Algebra from Surfaces

In this lecture, we will define and give a quick overview of some properties of cluster algebra from surfaces. We will follow [Surface-I] and [Surface-II].

11.1 Bordered Surfaces with Marked Points

Definition 11.1. A bordered surface with marked points is a pair \((S, M)\) where

- \(S\) a connected oriented 2-dimensional Riemann surface (possibly with boundary \(\partial S\)).
- \(M \subset S\) a non-empty finite set of marked points in \(S\)
- \(m \in M\) in the interior \(S - \partial S\) are called punctures
- Each connected boundary component has at least one marked point
- We require \(S\) to have at least one triangulation (see below). Hence \(S\) is NOT a:
 - sphere with 1 or 2 punctures
 - 1-gon (monogon) with 0 or 1 puncture
 - 2-gon (digon) with 0 punctures
 - 3-gon (triangle) with 0 punctures

\((n\text{-gon means a disk with } n\text{ marked points})\) We also exclude sphere with 3 punctures.

*Center for the Promotion of Interdisciplinary Education and Research/
Department of Mathematics, Graduate School of Science, Kyoto University, Japan
Email: ivan.ip@math.kyoto-u.ac.jp
Example 11.2. An example:

Figure 1: S is a torus with 2 punctures, 1 boundary components, and 5 marked points

We also have some restrictions on the arcs of triangulations:

Definition 11.3. An arc γ in (S, M) is a curve up to isotopy, such that

- Endpoints of γ lie in M
- γ does not self-intersect outside endpoints
- γ is disjoint from M and ∂S outside endpoints
- γ does not cut out an 1-gon or 2-gon with no punctures.

Two arcs are compatible with they do not intersect in the interior of S. The set of all arcs is denoted by $A^0(S, M)$.

Definition 11.4. An ideal triangulation is a maximal collection of distinct pairwise compatible arcs. The arcs cut S into ideal triangulations. (We allow self-folded triangles.)

Each ideal triangulation consists of $n = 6g + 3b + 3p + c - 6$ arcs, where

- g = genus
- b = # boundary components
- p = # punctures
Definition 11.5. We can flip the triangles as usual. But edges inside a self-folded triangle cannot be flipped!

Definition 11.6. The arc complex $\Delta^0(S,M)$ is a simplicial complex with

- vertex = the arcs $\in A^0(S,M)$,
- simplex = compatible arcs
- maximal simplices = ideal triangulations

The dual graph is $E^0(S,M)$: vertices = triangulations, edges = flips
Example 11.7. Once-punctured triangle. We see that $\Delta^0(S, M)$ has a boundary, and $E^0(S, M)$ is not 3-regular, since some edges cannot be flipped.

Figure 5: $\Delta^0(S, M)$ and $E^0(S, M)$

Proposition 11.8.
- $\Delta^0(S, M)$ is contractible unless (S, M) is a polygon without punctures, then it is \simeq sphere S^n.
- $E^0(S, M)$ is connected. Hence we can obtain any triangulations by flipping.
- π_1 of E^0 is generated by 4 and 5-cycles.

Theorem 11.9. There exists a triangulation for (S, M) with no self-folded triangles.

Hence we can always start with a nice triangulation, and obtain any other triangulations by flipping.

11.2 Cluster Algebra

Recall that given a triangulation (without self-folded triangles), we can associate to it a quiver Q, such that a flip correspond to quiver mutation:
Then for example, a change of triangulation will induce a change of quivers, called the “quiver mutation”, that will be describe in more detail later.

If \tilde{B} is the adjancency matrix of the quiver Q, then we can define a cluster algebra of geometric type A of rank n with initial seed (\tilde{x}, \tilde{B}) where $x = (x_1, ..., x_n, x_{n+1}, ..., x_m)$

- $n=$number of arcs of the triangulation
- cluster variables $x = (x_1, ..., x_n)$ labeled by the arcs,
- frozen variables $(x_{n+1}, ..., x_m)$ labeled by the sides of S (connected components of $\partial S - M$)

Remark 11.10. In this quick overview, for simplicity, we will ignore the sides and only consider the principal part B of \tilde{B}. The cluster algebra structures (cluster complex and exchange graph) are mostly independent of the coefficients (frozen variables). However, a major part of this theory deals with the properties and combinatorics of general coefficients (in \mathbb{P}) that is very interesting on its own.

One can now define the adjancency matrix for a triangulation with self-folded triangles: they should be obtained from B by appropriate mutation. Any triangulation can be glued from 3 kind of “puzzle pieces”, and B is obtained by summing up each matrix matching the row and column indices.
Corollary 11.11. By construction

- $\Delta^0(S, M)$ is a subcomplex of the cluster complex of \mathcal{A}.
- $E^0(S, M)$ is a subgraph of the exchange graph of \mathcal{A}.

In order to get the full cluster complex and exchange graph, we need to extend the definition of our triangulations to include tagged arcs.

11.3 Examples

Here we consider some examples:

Example 11.12. Some examples in lower rank: (please work out the quivers...)

- 4-gon, 0 punctures (type A_1)
- 5-gon, 0 punctures (type A_2)
- 2-gon, 1 puncture (type $A_1 \times A_1$)
- 3-gon, 1 puncture (type A_3)
- torus, 1 puncture (Markov quiver)

Example 11.13. Polygons:

- Type A_n: $(n + 3)$-gon with 0 punctures, from snake diagram
- Type D_n: n-gon with 1 puncture
Also consider some special types:

Lemma 11.14. Let Γ be n-cycle ($n \geq 3$) with n_1 edges in one direction and n_2 edges in another direction. Then the mutation equivalence class of Γ depends only on the unordered pair $\{n_1, n_2\}$.

We call its type $\tilde{A}(n_1, n_2)$. Note that $\tilde{A}(n,0) \simeq \tilde{A}(0,n) \simeq D_n$ (See Lecture 6).

Also recall the affine diagram:

![Diagram](image)

Example 11.15.
- Type $\tilde{A}(n_1,n_2)$: Annulus with 0 puncture, n_1 marked points on one boundary, n_2 marked points on another.
- Type $\tilde{A}(2,2)$: 1-gon with 2 punctures
- Type \tilde{D}_{n-1}: $(n-3)$-gon with 2 punctures.
11.4 Tagged arcs

We introduce tagging to resolve the self-folded triangles.

Definition 11.16. A tagged arcs is an arc in \((S, M)\) with a tagging (plain or \(\odot\)) on each end

- Endpoint on \(\partial S\) is tagged plain
- Both ends of a loop are tagged the same way
- The arc does not cut out an 1-gon with 1 puncture

The set of all tagged arcs is \(A^\triangledown(\Sigma, M)\). We let \(\alpha_0\) to be the untagged version of the tagged arc \(\alpha\).

Definition 11.17. Replacement \(\tau\) of an ordinary arc \(\gamma\) is a tagged arc \(\tau(\gamma)\):

- if \(\gamma\) does not cut out an 1-gon with 1 puncture, then \(\tau(\gamma) = \gamma\) with plain tags
- Otherwise if \(\gamma\) is a loop, it is given by the following replacement:

\[\gamma \quad \tau(\gamma) \]

Figure 9: \(\gamma\) and \(\tau(\gamma)\)
Hence there is a map from $A^0(S, M) \to A^\infty(S, M)$.

Definition 11.18. Two tagged arcs $\alpha, \beta \in A^\infty(S, M)$ are compatible if

- The untagged version α_0, β_0 are compatible
- If untagged version of α_0, β_0 are different, and they share an endpoint a, then they must be tagged the same way at a.
- If untagged version of α_0, β_0 are the same, they must be tagged the same way in at least one endpoint.

Definition 11.19. Tagged arc complex $\Delta^\infty(S, M)$ is the simplicial complex where

- vertex = the tagged arcs $\in A^0(S, M)$,
- simplex = compatible tagged arcs
- maximal simplices = “tagged triangulations”

Also let $E^\infty(S, M)$ be the dual graph. The edges of $E^\infty(S, M)$ give us the “flipping of tagged triangulation”.

Remark 11.20. If S has no punctures, $\Delta^\infty = \Delta^0$ and $E^\infty = E^0$.

We can see now that we can extend our previous complexes:
Figure 10: $\Delta^\infty(S, M)$ for 1 punctured triangle

Figure 11: $E^0(S, M)$ and $E^\infty(S, M)$ for $S=2$-gon with 1 puncture

Proposition 11.21. • If (S, M) is not a closed surface with exactly one punct-
ture, then $E^\triangledown(S, M)$ and $\Delta^\triangledown(S, M)$ is connected.

- If (S, M) is a closed surface with one puncture, then $E^\triangledown(S, M)$ and $\Delta^\triangledown(S, M)$ has two isomorphic components: one with all ends of arg tagged plain, and another with all ends of arg tagged \triangledown.

We arrive at the main theorem:

Theorem 11.22. Let A be the cluster algebra corresponding to (S, M). Then

- If (S, M) is not a closed surface with exactly one puncture, then $\Delta(A) \simeq \Delta^\triangledown(S, M)$ and exchange graph of A is $\simeq E^\triangledown(S, M)$.

- If (S, M) is a closed surface with exactly one puncture, then $\Delta(A) \simeq$ a connected component of $\Delta^\triangledown(S, M)$, and the exchange graph is \simeq a connected component of $E^\triangledown(S, M)$.

To understand the idea behind the proof of the Theorem, we need to describe explicitly the tagged flipping as well as the adjacency matrix associated to a tagged triangulation.

Definition 11.23. The undone version of a tagged triangulation T is an ordinary triangulation T^0 where

- if all arcs from a puncture is tagged \triangledown, remove the tag.
- for all other puncture, undo the map τ by replacing γ with a loop

Proposition 11.24. Tagged flipping has 2 types:

(D) A “digon flip” as in Figure 11.

(Q) A “quadrilateral flip”, which flips the corresponding undone version of the triangulation.

Example 11.25. Illustrating (Q): sphere with 4 punctures.
Proposition 11.26. The adjacency matrix of a tagged triangulation T is defined as

$$B(T) := B(T^0)$$

Then $B(T)$ satisfies the same matrix mutation rule with tagged flipping.

Corollary 11.27. The cluster algebra from surface is of finite mutation type

Proof. The adjacency matrix can only take value 0, ±1, ±2.

Example 11.28. The adjacency matrix (quiver) associated with Figure 11:
11.5 Denominator Theorem

One can also describe the cluster variables explicitly, just like in the finite type. First we define the intersection number:

Definition 11.29. The intersection number of 2 tagged arcs α, β is

$$(\alpha|\beta) := A + B + C + D$$

where

- $A =$ number of intersection of α_0 and β_0 outside the endpoints
- $B = 0$ unless α_0 is a loop based at a, with β_0 intersect α_0 at $\beta_1, ..., \beta_m$, then B is the $(-1)\times$ number of contractible triangle formed by β_i, β_{i+1}, a.
- $C = \begin{cases} -1 & \alpha_0 = \beta_0 \\ 0 & \text{otherwise} \end{cases}$
- $D =$ number of ends of β sharing an endpoint with α but tagged differently.

From the Laurent phenomenon of cluster algebra, we also have an expression of the denominator vectors:

Definition 11.30. Fix an initial seed (x_0, B). Any $z \in A$ can be written as a Laurent polynomial:

$$z = \frac{P(x_0)}{\prod_{x \in x_0} x^{d(x|z)}}$$

where P is a polynomial in x_0, and $d(x|z)$ is called the denominator vector.
Recall that each cluster variable correspond to a tagged arc $a \mapsto x[\alpha]$.

Theorem 11.31. For any tagged arcs α, β, the denominator vector $d(x[\alpha]|x[\beta])$ equals the intersection number $(\alpha|\beta)$.

References
