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2 Total Positivity

The final and historically the original motivation is from the study of total posi-
tive matrices, which has a long history in classical mechanics, stochastic process,
enumerative combinatorics and graph theory.

2.1 Definition

Let us consider n× n real matrices in GLn(R).

Definition 2.1. Let I and J be subsets of [1, n] of the same size. Then the minor
∆I,J of g ∈ GLn(R) is the determinant of the submatrix of g labelled by the row
index I and column index J .

Note that there are

(
2n
n

)
− 1 minors!

Definition 2.2. A matrix g ∈ GLn(R) is totally positive (resp. nonnegative) if
every minor ∆I,J(g) > 0(resp. ≥ 0).

Example 2.3.

(
a b
c d

)
∈ GL2(R) is totally positive if a, b, c, d,∆. However we

only need to check 4 of them since

ad = ∆ + bc

Total positive matrix is best understood using “planar networks”. Consider a
graph with n sources and n sinks, such that all paths go from left to right.
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Figure 1: Planar network of order 4

Definition 2.4. The path matrix W = (wij) of a planar network G is given by

wij = # paths from si to tj in G

For example, the path matrix of the graph above is

W =


3 2 1 0
2 4 4 1
0 4 7 4
0 3 6 5


and one can check that this matrix is totally non-negative!

2.2 Properties and Decomposition

Theorem 2.5 (Lindström’s Lemma). The path matrix is totally nonnegative. Each
minor ∆I,J equals to the number of families of non-intersecting paths from sources
indexed by I to targets indexed by J .

Proof. We can restrict to the size of |I| = |J | = n and consider just the determinant
of the whole weight matrix. Expanding the determinant, we have

det =
∑
w∈Sn

∑
π∈paths

sgn(w)ω(π)

where π = (π1, π2, ..., πn) such that πi joins i with w(i), and ω(π) is the product of
wij associated to the paths.

For non-intersecting paths, we have w = Id ∈ Sn, hence sgn(w) = +1. For
all other intersecting paths, note that by swapping at the intersecting points, we
obtain the same contribution but different permutation signs sgn(w), hence the two
terms cancel out.
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Similarly, by putting weights on the path, the same argument shows that ∆I,J

equals the weighted sum of families of non-intersecting paths from sources I to
targets J .

Corollary 2.6. If the planar network has non-negative real weights, then its weight
matrix is totally nonnegative.

Example 2.7. Many combinatorial matrices can be shown to be totally nonnegative.
For example, the network

1 1

2 2

3 3

...
...

n n

gives the “Pascal triangle”

1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
· · · · · · · · · · · · · · · · · ·


which is totally nonnegative by the Corollary.

Lemma 2.8 (Cryer). An invertible square matrix g is totally nonnegative iff it has
a Gaussian decomposition

g = g−g0g+

where g− is lower-triangular unipotent, g0 is diagonal, g+ is upper-triangular unipo-
tent, and all three factors are totally nonnegative.
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Example 2.9. Any 3× 3 totally positive matrix is given by d dh dhi
bd bdh+ e bdhi+ e(g + i)
abd abdh+ (a+ c)e abdhi+ (a+ c)e(g + i) + f


which can be represented by the following planar networks,

1 d 1

1 1 e 1

1 f 1

a

b h

ic g

1

2

3

1

2

3

and is composed of the three elementary network correpsonding to the elementary
Jacobi matrices

xi(t) = I + tEi,i+1

yi(t) = I + tEi+1,i

χi(t) = I + (t− 1)Ei,i

xi(t)

t

i

yi(t)

t

i

χi(t)

ti

Theorem 2.10 (Loewner-Whitney). Any invertible totally non-negative matrix
is a product of elementary Jacobi matrices with non-negative matrix entries. In
particular we only need to check n2 minors to determine total positivity.

Lusztig generalize this idea to the notion of total positivity to other semiseimple
groups G, by defining G≥0 as the semigroup generated by the Chevalley generators.
He showed that G≥0 can be described by inequalities of the form ∆(x) ≥ 0 where
∆ ranges over the appropriate dual canonical basis, but this set is infinite and very
hard to understand. This leads to another motivation for Fomin and Zelevinksy to
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introduce the cluster algebra, where this set can be replaced by a much simpler and
finite set called the generalized minors.

For G = SLn, G≥0 forms a multiplicative semigroup, and the study of G≥0 can
be reduced to the investigation of its sub-semigroup N≥0 ⊂ G≥0 of upper-triangular
unipotent totally nonnegative matrices.

Remark 2.11. Strata of N≥0 is ismorphic to Bruhat order of Sn.

Example 2.12. N≥0 =

 1 x z
0 1 y
0 0 1

 with x, y, z, xy− z ≥ 0. N≥0 is a cone with

base M≥0 := {z ≤ x(1− x)}:

Figure 2: The cone xy ≥ z cut out by x+ y = 1

Figure 3: Relation to Bruhat order of S3

2.3 Pseudoline arrangements of C[G/N ]

We will look into the coordinate ring of the base/principal affine space for G = SLn.
Recall the subgroup N ⊂ G of unipotent upper-triangular matrices acts on G by
right multiplication. The algebra A = C[G/N ] consists of regular functions on G
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which are invariant under the action of N , i.e. certain column operations. It is
known that A is generated by flag minors

∆I(x) := det(xij |i ∈ I, j ≤ |I|)

A point [x] in G/N represented by a matrix x ∈ G is called totally positive if all
flag minors ∆I(x) > 0.

By Cryer’s lemma, x ∈ G is totally positive if both [x] and [xT ] are totally
positive in G/N .

Although there are 2n−2 flag minors, we only need to test positivity of dim(G/N) =
(n−1)(n+2)

2 minors. We introduce the pseudoline arrangement.

Figure 4: Two pseudoline arrangements, and associated chamber minors

To each region R, we associate chamber minor ∆I(R) labeled by pseudolines
passing below R. There are 2 types of regions, bounded and unbounded regions.

The 2(n− 1) minors associated with unbounded regions are called frozen:
∆1,∆12,∆123,∆4,∆34,∆234.

The

(
n− 1

2

)
minors associated with bounded regions form the cluster : {∆2,∆3,∆23}

and {∆13,∆3,∆23} for the left and right figure respectively. The two cluster differ
by one element only. In fact one do a local move to relate the two arrangements:
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Figure 5: A local move in a pseudoline arrangement

The chamber minors associated with the regions satisfy

ef = ac+ bd

which is the generalized Plücker relations, also called the exchange relation. For
example, in the figure above we have

∆2∆13 = ∆12∆3 + ∆1∆23

The new chamber minor is given by subtraction-free expression

f =
ac+ bd

e

and all flag minors can be obtained in this way by iterated local moves. In par-
ticular, if all initial cluster is positive at a given point in G/N , so do all other flag
minors.

To describe the cluster structure of A, it turns out there is a hidden relation.
How do we exchange ∆23 in the first diagram? We need more universal combina-
torial language of quivers.

Figure 6: Quivers corresponding to pseudoline arrangements
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Then an exchange relation is very simple:

∆k∆′k =
∏
i←k

∆i +
∏
i→k

∆i

and at the same time, the quiver mutation is proceeded by three steps:

(1) For each pair of directed edges i −→ k −→ j, introduce a new edge i −→ j
(unless both i, j are frozen)

(2) Reverse direction of all edges incident to k

(3) Remove all oriented 2-cycles.

Example 2.13. Consider the example:

u v

x y

z
µz−→

u v

x y

z′

Now we can exchange ∆23 and define the rational function Ω with

∆23Ω = ∆123∆34∆2 + ∆12∆234∆3

This cluster with {∆2,∆3,Ω} is no longer associated to pseudoline arrangements. In
general, repeating such mutation, the generators produced by this process become
rational functions on the base affine space, and they generate the ring of all such
functions, giving a cluster algebra structure in C[SLn/N ].

In the special case of n = 4, this recursive process produces a finite number of
distinct clusters. There are 14 of them. Altogether, they contain 15 generators:
24 − 2 = 14 flag minors ∆I , and the variable

Ω = ∆2∆134 −∆1∆234

and they form an exchange graph below:
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Figure 7: Exchange graph of C[SL4/N ]

We see that this graph is identical to the triangulations of hexagon described
previously!

To summarize all the examples, we notice some common features:

(1) Each “cluster” is described by finite number of variables

(2) We exchange one cluster with another by changing only one variable

(3) This exchange relation is subtraction free

(4) All other variables can be expressed as Laurent polynomials of the initial
variables

(5) The Laurent polynomials have positive coefficients

This motivates the general definition of a cluster algebra.

9


