Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Updated: May 7, 2017

3 Definition and Examples of Cluster algebra

3.1 Quivers

We first revisit the notion of a quiver.
Definition 3.1. A quiver is a finite oriented graph. We allow multiple arrows, but no 1-cycles and 2-cycles.

We will let some vertices be frozen, while others be mutable. We assume there are no arrows between frozen vertices.

Definition 3.2. Let k be mutable vertex in a quiver Q. A quiver mutation μ_{k} transforms Q into a new quiver $Q^{\prime}:=\mu_{k}(Q)$ by the three steps:
(1) For each pair of directed edges $i \longrightarrow k \longrightarrow j$, introduce a new edge $i \longrightarrow j$ (unless both i, j are frozen)
(2) Reverse direction of all edges incident to k
(3) Remove all oriented 2-cycles.

Example 3.3. Consider the example: (Let u, v be frozen)

[^0]Proposition 3.4. - Mutation is an involution $\mu_{k}\left(\mu_{k}(Q)\right)=Q$.

- If k and l are two mutable vertices with no arrows between them, then the mutations at k and l commute $\mu_{l}\left(\mu_{k}(Q)\right)=\mu_{k}\left(\mu_{l}(Q)\right)$.
Definition 3.5. Two quivers Q and Q^{\prime} are called mutation equivalent if Q can be transformed into Q^{\prime} by a sequence of mutations. The mutation equivalence class $[Q]$ is the set of all quivers which are mutation equivalent to Q.

A quiver Q is said to have finite mutation type if $[Q]$ is finite.
Example 3.6. - All orientations of a tree are mutation equivalent to each other.

- The mutation equivalence class $[Q]$ of the Markov quiver Q consists of a single element.

Definition 3.7. Let Q be a quiver with m vertices, and n of them mutable. The extended exchange matrix of Q is the $m \times n$ matrix $\widetilde{B}(Q)=\left(b_{i j}\right)$ defined by

$$
b_{i j}= \begin{cases}r & \text { if there are } r \text { arrows from } i \text { to } j \text { in } Q \\ -r & \text { if there are } r \text { arrows from } j \text { to } i \text { in } Q \\ - \text { otherwise } & \end{cases}
$$

The exchange matrix $B(Q)$ is the $n \times n$ skew-symmetric submatrix of $\widetilde{B}(Q)$ occupying the first n rows:

$$
B(Q)=\left(b_{i j}\right)_{i, j \in[1, n]}
$$

Lemma 3.8. The extended exchange matrix $\widetilde{B}^{\prime}=\left(b_{i j}^{\prime}\right)$ of the mutated quiver $\mu_{k}(Q)$ is given by

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & k \in\{i, j\} \tag{3.1}\\ b_{i j}+b_{i k} b_{k j} & b_{i k}>0 \text { and } b_{k j}>0 \\ b_{i j}-b_{i k} b_{k j} & b_{i k}<0 \text { and } b_{k j}<0 \\ b_{i j} & \text { otherwise }\end{cases}
$$

or more compactly:

$$
b_{i j}^{\prime}=\left\{\begin{array}{ll}
-b_{i j} & k \in\{i, j\} \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[-b_{k j}\right]_{+} & \text {otherwise }
\end{array} .\right.
$$

or

$$
b_{i j}^{\prime}=\left\{\begin{array}{ll}
-b_{i j} & k \in\{i, j\} \\
b_{i j}+\frac{\left|b_{i k}\right| b_{k j}+b_{i k}\left|b_{k j}\right|}{2} & \text { otherwise }
\end{array} .\right.
$$

or

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & k \in\{i, j\} \\ b_{i j}+\operatorname{sgn}\left(b_{i k}\right)\left[b_{i k} b_{k j}\right]_{+} & \text {otherwise }\end{cases}
$$

Definition 3.9. $A n n \times n$ matrix B is skew-symmetrizable, if there exists integers d_{1}, \ldots, d_{n} such that $d_{i} b_{i j}=-d_{j} b_{j i}$.

An $m \times n$ integer matrix with top $n \times n$ submatrix skew-symmetrizable is called extended skew-symmetrizable matrix.
Definition 3.10. The diagram of a skew-symmetrizable $n \times n$ matrix B is the weighted directed graph $\Gamma(B)$ such that there is a directed edge from i to j iff $b_{i j}>0$, and this edge is assigned the weight $\left|b_{i j} b_{j i}\right|$.

3.2 Cluster algebra of geometric type

Now we can define algebraically the notion of cluster algebra. We first define cluster algebra of geometric type (without coefficients). Let $m \geq n$ be two positive integers. Let the ambient field \mathcal{F} be the field of rational functions over \mathbb{C} in m independent variables.

Definition 3.11. A labeled seed of geometric type in \mathcal{F} is a pair $(\widetilde{\mathbf{x}}, \widetilde{B})$ where

- $\widetilde{\mathbf{x}}=\left(x_{1}, \ldots, x_{m}\right)$ is an m-tuple of elements of \mathcal{F} forming a free generating set, i.e. x_{1}, \ldots, x_{m} are algebraically independent, and $\mathcal{F}=\mathbb{C}\left(x_{1}, \ldots, x_{m}\right)$
- \widetilde{B} is an $m \times n$ extended skew-symmetrizable integer matrix.

We have the terminology:

- $\widetilde{\mathbf{x}}$ is the (labeled) extended cluster of the labeled seed $(\widetilde{\mathbf{x}}, \widetilde{B})$
- $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is the (labeled) cluster of this seed;
- x_{1}, \ldots, x_{n} are its cluster variables;
- The remaining x_{n+1}, \ldots, x_{m} of $\widetilde{\mathbf{x}}$ are the frozen variables;
- \widetilde{B} is called the extended exchange matrix of the seed
- The top $n \times n$ submatrix B of \widetilde{B} is the exchange matrix
"Labeled" means we also care about the order (index) of the seeds.
Definition 3.12. A seed mutation μ_{k} in direction k transform the labeled seed $(\widetilde{\mathbf{x}}, \widetilde{B})$ into a new labeled seed $\left(\widetilde{\mathbf{x}}^{\prime}, \widetilde{B}^{\prime}\right):=\mu_{k}(\widetilde{\mathbf{x}}, \widetilde{B})$ where \widetilde{B}^{\prime} is defined in (3.1), and $\widetilde{\mathbf{x}}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$ is given by

$$
x_{j}^{\prime}=x_{j}, \quad j \neq k,
$$

and $x_{k}^{\prime} \in \mathcal{F}$ defined by the exchange relation

$$
x_{k} x_{k}^{\prime}=\prod_{b_{i k}>0} x_{i}^{b_{i k}}+\prod_{b_{i k}<0} x_{i}^{\left|b_{i k}\right|}
$$

or equivalently

$$
x_{k} x_{k}^{\prime}=\prod_{i=1}^{m} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{i=1}^{m} x_{i}^{\left[-b_{i k}\right]_{+}}
$$

We say two skew-symmetrizable matrices \widetilde{B} and \widetilde{B}^{\prime} are mutation equivalent if one can get from \widetilde{B} to \widetilde{B}^{\prime} by a sequence of mutations, possibly followed by simultaneous renumbering of rows and columns.

Definition 3.13. Let \mathbb{T}_{n} denote the n-regular tree. A seed pattern is defined by assigning a labeled seed $(\widetilde{\mathbf{x}}(t), \widetilde{B}(t))$ to every vertex $t \in \mathbb{T}_{n}$, so that the seeds assigned to the end points of any edge $t \xrightarrow{k} t^{\prime}$ are obtained from each other by the seed mutation in direction k. To a seed pattern, we can associate an exchange graph which is n-regular, whose vertex are seeds and edges are mutations (the exchange graph is \mathbb{T}_{n} only when no seeds repeat.)

Figure 1: Exchange graph
Definition 3.14. Let $(\widetilde{\mathbf{x}}(t), \widetilde{B}(t))$ be a seed pattern, and let

$$
\mathcal{X}:=\bigcup_{t \in \mathbb{T}_{n}} \mathbf{x}(t)
$$

be the set of all cluster variables appearing in its seeds. Let the ground ring $R=$ $\mathbb{C}\left[x_{n+1}, \ldots, x_{m}\right]$ be the polynomial ring generated by the frozen variables.

The cluster algebra of geometric type \mathcal{A} of rank n is the R-subalgebra of \mathcal{F} generated by all cluster variables

$$
\mathcal{A}=R[\mathcal{X}]
$$

Usually, we pick an initial seed ($\widetilde{\mathbf{x}}_{0}, \widetilde{B}_{0}$), and build a seed pattern out of it. Then the corresponding cluster algebra $\mathcal{A}\left(\widetilde{\mathbf{x}}_{0}, \widetilde{B}_{0}\right)$ is generated over R by all cluster variables appearing in the seeds mutation equivalent to ($\widetilde{\mathbf{x}}_{0}, \widetilde{B}_{0}$). Hence if we let \mathcal{S} denote the set of all seeds, then we can write $\mathcal{A}=\mathcal{A}(\mathcal{S})$.

3.3 Examples

Rank 1 Case. \mathbb{T}_{1} is very simple

We have two seeds and two clusters $\left(x_{1}\right)$ and $\left(x_{1}^{\prime}\right) . \widetilde{B}_{0}$ can be any $m \times 1$ matrix with top entry 0 . $\mathcal{A} \subset \mathcal{F}=\mathbb{C}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is generated by $x_{1}, x_{1}^{\prime}, x_{2}, \ldots, x_{m}$ subject to relation of the form

$$
x_{1} x_{1}^{\prime}=M_{1}+M_{2}
$$

where M_{i} are monomials in the frozen variables x_{2}, \ldots, x_{m} which do not share a common factor.
Example 3.15. $\mathbb{C}\left[S L_{2}\right]=\mathbb{C}[a, b, c, d]$ is a cluster algebra, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with ad $=$ $1+b c$. We have two extended clusters $\{a, b, c\}$ and $\{b, c, d\}$ and clusters $\{a\}$ and $\{d\}$.

Example 3.16. $\mathbb{C}\left[S L_{3} / N\right]$: Recall we have the Plücker relation

$$
\Delta_{2} \Delta_{13}=\Delta_{1} \Delta_{23}+\Delta_{12} \Delta_{3}
$$

Then $\mathbb{C}\left[S L_{3} / N\right]$ has frozen variables $\left\{\Delta_{1}, \Delta_{12}, \Delta_{23}, \Delta_{3}\right\}$ and clusters $\left\{\Delta_{2}\right\},\left\{\Delta_{13}\right\}$.
Rank 2 Case. Any 2×2 skew-symmetrizable matrix look like this:

$$
\pm\left(\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right)
$$

for some positive integers b, c, or both zero. μ_{1} or μ_{2} simply changes its sign.
Example 3.17. $b=c=0$. This reduce to the rank 1 case.
Example 3.18. Let $\mathcal{A}=\mathcal{A}(b, c)$ denote cluster algebra of rank 2 with exchange matrix $\pm\left(\begin{array}{cc}0 & b \\ -c & 0\end{array}\right)$ and no frozen variables. Then we have

$$
x_{k+1} x_{k-1}= \begin{cases}x_{k}^{c}+1 & k \text { is even } \\ x_{k}^{b}+1 & k \text { is odd }\end{cases}
$$

- This is the same as the Conway-Coxeter frieze pattern for $\left(d_{1}, d_{2}\right)=(c, b)$.
- The exchange graph is finite only when $\left(d_{1}, d_{2}\right)=(1,1),(1,2),(1,3)$, such that the graph is pentagon, hexagon and octagon respectively.
- In all other cases, the exchange graph is \mathbb{T}_{2}, which is an infinite line.

Example 3.19. Let us introduce frozen variable. Consider a seed pattern with initial seed $\left\{z_{1}, z_{2}, y\right\}$ and exchange matrix $\widetilde{B}_{0}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ p & q\end{array}\right)$. we get

$$
z_{1}, z_{2}, z_{3}=\frac{z_{2}+y^{p}}{z_{1}}, z_{4}=\frac{y^{p+q} z_{1}+z_{2}+y^{p}}{z_{1} z_{2}}, z_{5}=\frac{y^{q} z_{1}+1}{z_{2}}, z_{6}=z_{1}, z_{7}=z_{2}
$$

Again there are 5 distinct cluster variables. The cluster algebra is then defined to be

$$
\mathcal{A}=R[\mathcal{X}]=\mathbb{C}\left[y^{ \pm 1}\right]\left[z_{1}, z_{2}, \frac{z_{2}+y^{p}}{z_{1}}, \frac{y^{p+q} z_{1}+z_{2}+y^{p}}{z_{1} z_{2}}, \frac{y^{q} z_{1}+1}{z_{2}}\right]
$$

Example 3.20. Grassmannian Comparing the properties, we see that the coordinate ring of the Grassmannian $\mathbb{C}[G r(2, n+3)]$ is a cluster algebra, where

- cluster $=\{2 \times 2$ minors $\}=$ triangulation
- cluster variables $=\Delta_{i, j}=$ diagonals
- frozen variables $=\Delta_{i, i+1}=$ sides
- mutation $=$ Plücker relation $=$ flipping of diagonals

Similarly, $\mathbb{C}\left[S L_{n} / N\right]$ is a cluster algebra.
Example 3.21. Markov triples. Triples of integers satisfying

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=3 x_{1} x_{2} x_{3} .
$$

Consider it as equation in x_{1} :

$$
y^{2}-\left(3 x_{2} x_{3}\right) y+\left(x_{2}^{2}+x_{3}^{2}\right)=0 .
$$

Then it has two roots: $y=x_{1}$ and $x_{1}^{\prime}=\frac{x_{2}^{2}+x_{3}^{2}}{x_{1}}$. Starting with $x_{1}=x_{2}=x_{3}=1$, replacing with another root: Vieta jumping.

$$
\widetilde{B}= \pm\left(\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & 2 \\
2 & -2 & 0
\end{array}\right)
$$

Conjecture 3.22 (Uniqueness). Maximal elements of Markov triples are all distinct.

Figure 2: Markov triples
Example 3.23. Somos-4 sequence.

$$
x_{n} x_{n+4}=x_{n+1} x_{n+3}+x_{n+2}^{2}
$$

Mutate at 1 rotate the graph by 90 degree.

Somos-5 sequence.

$$
x_{n} x_{n+5}=x_{n+1} x_{n+4}+x_{n+2} x_{n+3}
$$

Mutate at 1 rotate the graph by 72 degree.

In both Somos-r sequence, x_{n} will be Laurent polynomials in the initial variables x_{1}, \ldots, x_{r}. In particular they will be integers if $x_{1}=\ldots=x_{r}=1$.
\Longrightarrow Laurent phenomenon!

3.4 Semifields and coefficients

The mutation does not really use the frozen variables. So let us treat them as "coefficients", which leads to a more general notion of cluster algebra with semifields as coefficients.

Let us denote

$$
y_{j}:=\prod_{i=n+1}^{m} x_{i}^{b_{i j}}, \quad j=1, \ldots, n .
$$

Then y_{1}, \ldots, y_{n} encodes the same information as the lower $(n-m) \times n$ submatrix of \widetilde{B}. Hence a labeled seed can equivalently be presented as triples $(\mathbf{x}, \mathbf{y}, B)$ where $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$.

Now the mutation of x_{k} becomes:

$$
\begin{aligned}
x_{k} x_{k}^{\prime} & =\prod_{i=n+1}^{m} x_{i}^{\left[b_{i k}\right]_{+}} \prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\prod_{i=n+1}^{m} x_{i}^{\left[-b_{i k}\right]_{+}} \prod_{i=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}} \\
& =\frac{y_{k}}{y_{k} \oplus 1} \prod_{i=1}^{n} x_{i}^{\left[b_{i k}\right]_{+}}+\frac{1}{y_{k} \oplus 1} \prod_{i=1}^{n} x_{i}^{\left[-b_{i k}\right]_{+}}
\end{aligned}
$$

where the semifield addition is defined by

$$
\prod_{i} x_{i}^{a_{i}} \oplus \prod_{i} x_{i}^{b_{i}}:=\prod_{i} x_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

in particular,

$$
1 \oplus \prod_{i} x_{i}^{b_{i}}:=\prod_{i} x_{i}^{-\left[-b_{i}\right]_{+}}
$$

The mutation of the frozen variables x_{n+1}, \ldots, x_{m} also induces the mutation of the coefficient y-variables:

$$
\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right):=\mu_{k}\left(y_{1}, \ldots, y_{n}\right)
$$

$$
y_{j}^{\prime}:= \begin{cases}y_{k}^{-1} & i=k \\ y_{j}\left(y_{k} \oplus 1\right)^{-b_{k j}} & \text { if } j \neq k \text { and } b_{k j} \leq 0 \\ y_{j}\left(y_{k}^{-1} \oplus 1\right)^{-b_{k j}} & \text { if } j \neq k \text { and } b_{k j} \geq 0\end{cases}
$$

This is called tropical Y-seed mutation rule This is general, we can use any semifield!
Definition 3.24. A semifield $(\mathbb{P}, \circ, \oplus)$ is an abelian group (\mathbb{P}, \circ) (written multiplicatively) together with a binary operator \oplus such that

$$
\begin{aligned}
& \oplus: \mathbb{P} \times \mathbb{P} \longrightarrow \mathbb{P} \\
&(p, q) \mapsto p \oplus q
\end{aligned}
$$

is commutative, associative, and distributive:

$$
p \circ(q \oplus r)=p \circ q \oplus p \circ r
$$

Note: \oplus may not be invertible!
Example 3.25. Examples of semifield $(\mathbb{P}, \circ, \oplus)$:

- $\left(\mathbb{R}_{>0}, \times,+\right)$
- $(\mathbb{R},+, \min)$
- $\left(\mathbb{Q}_{s f}\left(u_{1}, \ldots, u_{m}\right), \cdot,+\right)$ "subtraction-free" rational functions
- $\left(\operatorname{Trop}\left(y_{1}, \ldots, y_{m}\right), \cdot, \oplus\right)$ Laurent monomials with usual multiplication and

$$
\prod_{i} x_{i}^{a_{i}} \oplus \prod_{i} x_{i}^{b_{i}}:=\prod_{i} x_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

\mathbb{P} is called the coefficient group of our cluster algbera.
Proposition 3.26. If $(\mathbb{P}, \circ, \oplus)$ is a semifield, then

- (\mathbb{P}, \circ) is torsion free (if there exists p, m such that $p^{m}=1$, then $p=1$).
- Let $\mathbb{Z P}$ be the group ring of (\mathbb{P}, \circ). Then it is a domain $(p \circ q=0 \Longrightarrow p=0$ or $q=0$).
- Can define field of fractions $\mathbb{Q P}$ of $\mathbb{Z P}$

Proof. (1) If $p^{m}=1$, then note that $1 \oplus p \oplus \ldots \oplus p^{m-1} \in \mathbb{P}$ but $0 \notin \mathbb{P}$, we can write

$$
p=p \frac{1 \oplus p \oplus \ldots \oplus p^{m-1}}{1 \oplus p \oplus \ldots \oplus p^{m-1}}=\frac{p \oplus p^{2} \oplus \ldots \oplus p^{m}}{1 \oplus p \oplus \ldots \oplus p^{m-1}}=1
$$

(2) Let $p, q \in \mathbb{Z P}$ with $p \circ q=0$. Then p and q are contained in $\mathbb{Z} H$ for some finitely generated subgroup H of \mathbb{P}. Since $H \subset \mathbb{P}$ is abelian, $H \simeq \mathbb{Z}^{n}$, hence $\mathbb{Z} H \subset \mathbb{Z}\left(x_{1}, \ldots, x_{n}\right)$ consists of all Laurent polynomials in x_{i}. In particular $\mathbb{Z} H$ is an integral domain, and hence $p=0$ or $q=0$.

Then we can set our ambient field to be $\mathcal{F}:=\mathbb{Q} \mathbb{P}\left(u_{1}, \ldots, u_{n}\right)$. Now we can rewrite previous definitions and results:

Definition 3.27. A labeled seed in \mathcal{F} is $(\mathbf{x}, \boldsymbol{y}, B)$ with

- $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ free generating set of \mathcal{F}
- $\boldsymbol{y}=\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{P}$ any elements
- $B=n \times n$ skew-symmetrizable \mathbb{Z}-matrix

We have mutations for all $\mathbf{x}, \boldsymbol{y}$ and B, together with the exchange patterns.
A cluster algebra with coefficients \mathbb{P} is then

$$
\mathcal{A}(\mathbf{x}, \boldsymbol{y}, B):=\mathbb{Z} \mathbb{P}\left[\bigcup_{t \in \mathbb{T}_{n}} \mathbf{x}(t)\right]
$$

Example 3.28. For rank $n=2$ we have in the most general case:

t	B_{t}	\boldsymbol{y}_{t}		\mathbf{x}_{t}	
0	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	y_{1}	y_{2}	x_{1}	x_{2}
1	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$y_{1}\left(y_{2} \oplus 1\right)$	$\frac{1}{y_{2}}$	x_{1}	$\frac{x_{1} y_{2}+1}{x_{2}\left(y_{2} \oplus 1\right)}$
2	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	$\frac{1}{y_{1}\left(y_{2} \oplus 1\right)}$	$\frac{y_{1} y_{2} \oplus y_{1} \oplus 1}{y_{2}}$	$\frac{x_{1} y_{1} y_{2}+y_{1}+y_{2}}{\left(y_{1} y_{2} \oplus y_{1} \oplus 1\right) x_{1} x_{2}}$	$\frac{x_{1} y_{2}+1}{x_{2}\left(y_{2} \oplus 1\right)}$
$3\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	$\frac{y_{1} \oplus 1}{y_{1} y_{2}}$	$\frac{y_{2}}{y_{1} y_{2} \oplus y_{1} \oplus 1}$	$\frac{x_{1} y_{1} y_{2}+y_{1}+x_{2}}{\left(y_{1} y_{2} \oplus y_{1} \oplus 1\right) x_{1} x_{2}}$	$\frac{y_{1}+x_{2}}{x_{1}\left(y_{1} \oplus 1\right)}$	
4					
$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	$\frac{y_{1} y_{2}}{y_{1} \oplus 1}$	$\frac{1}{y_{1}}$	x_{2}	$\frac{y_{1}+x_{2}}{x_{1}\left(y_{1} \oplus 1\right)}$	
5	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	y_{2}	y_{1}	x_{2}	x_{1}

Remark 3.29. The prevoius cluster algebra of geometric type $=$ cluster algebra with coefficients $\mathbb{P}=\operatorname{Trop}\left(x_{n+1}, \ldots, x_{m}\right)$.

- We only need the $n \times n$ matrix B
- There are no frozen variables
- Mutation of \mathbf{y} only involve two variables
- But we need to mutate all \mathbf{y} variables, there are usually more \mathbf{y} variables than cluster variables
- Y-pattern do not in general exhibit Laurent phenomenon

Definition 3.30. Two cluster algebra $\mathcal{A}(\mathcal{S})$ and $\mathcal{A}\left(\mathcal{S}^{\prime}\right)$ are called strongly isomorphic if there exists a $\mathbb{Z P}$-algebra isomorphism $\mathcal{F} \longrightarrow \mathcal{F}^{\prime}$ sending some seed in \mathcal{S} into a seed in \mathcal{S}^{\prime}, thus inducing a bijection $\mathcal{S} \longrightarrow \mathcal{S}^{\prime}$ of seeds and an algebra isomorphism $\mathcal{A}(\mathcal{S}) \longrightarrow \mathcal{A}\left(\mathcal{S}^{\prime}\right)$

Any cluster algebra \mathcal{A} is uniquely determined by any single seed ($\mathbf{x}, \mathbf{y}, B$). Hence \mathcal{A} is determined by B and \mathbf{y} up to strong isomoprhism, and we can write $\mathcal{A}=$ $\mathcal{A}(B, \mathbf{y})$.

[^0]: *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan
 Email: ivan.ip@math.kyoto-u.ac.jp

