Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Updated: May 7, 2017

3 Definition and Examples of Cluster algebra

3.1 Quivers

We first revisit the notion of a quiver.

Definition 3.1. A quiver is a finite oriented graph. We allow multiple arrows, but no 1-cycles and 2-cycles.

We will let some vertices be *frozen*, while others be *mutable*. We assume there are no arrows between frozen vertices.

Definition 3.2. Let k be mutable vertex in a quiver Q. A quiver mutation μ_k transforms Q into a new quiver $Q' := \mu_k(Q)$ by the three steps:

- (1) For each pair of directed edges $i \longrightarrow k \longrightarrow j$, introduce a new edge $i \longrightarrow j$ (unless both i, j are frozen)
- (2) Reverse direction of all edges incident to k
- (3) Remove all oriented 2-cycles.

Example 3.3. Consider the example: (Let u, v be frozen)

*Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp **Proposition 3.4.** • Mutation is an involution $\mu_k(\mu_k(Q)) = Q$.

• If k and l are two mutable vertices with no arrows between them, then the mutations at k and l commute $\mu_l(\mu_k(Q)) = \mu_k(\mu_l(Q))$.

Definition 3.5. Two quivers Q and Q' are called mutation equivalent if Q can be transformed into Q' by a sequence of mutations. The mutation equivalence class [Q] is the set of all quivers which are mutation equivalent to Q.

A quiver Q is said to have finite mutation type if [Q] is finite.

- **Example 3.6.** All orientations of a tree are mutation equivalent to each other.
 - The mutation equivalence class [Q] of the Markov quiver Q consists of a single element.

Definition 3.7. Let Q be a quiver with m vertices, and n of them mutable. The extended exchange matrix of Q is the $m \times n$ matrix $\widetilde{B}(Q) = (b_{ij})$ defined by

 $b_{ij} = \begin{cases} r & \text{if there are } r \text{ arrows from } i \text{ to } j \text{ in } Q \\ -r & \text{if there are } r \text{ arrows from } j \text{ to } i \text{ in } Q \\ -otherwise \end{cases}$

The exchange matrix B(Q) is the $n \times n$ skew-symmetric submatrix of $\widetilde{B}(Q)$ occupying the first n rows:

$$B(Q) = (b_{ij})_{i,j \in [1,n]}$$

Lemma 3.8. The extended exchange matrix $\widetilde{B}' = (b'_{ij})$ of the mutated quiver $\mu_k(Q)$ is given by

$$b'_{ij} = \begin{cases} -b_{ij} & k \in \{i, j\} \\ b_{ij} + b_{ik}b_{kj} & b_{ik} > 0 \text{ and } b_{kj} > 0 \\ b_{ij} - b_{ik}b_{kj} & b_{ik} < 0 \text{ and } b_{kj} < 0 \\ b_{ij} & otherwise \end{cases}$$
(3.1)

or more compactly:

$$b'_{ij} = \begin{cases} -b_{ij} & k \in \{i, j\} \\ b_{ij} + [b_{ik}]_+ b_{kj} + b_{ik} [-b_{kj}]_+ & otherwise \end{cases}$$

or

$$b'_{ij} = \begin{cases} -b_{ij} & k \in \{i, j\} \\ b_{ij} + \frac{|b_{ik}|b_{kj} + b_{ik}|b_{kj}|}{2} & otherwise \end{cases}$$

or

$$b'_{ij} = \begin{cases} -b_{ij} & k \in \{i, j\} \\ b_{ij} + sgn(b_{ik})[b_{ik}b_{kj}]_+ & otherwise \end{cases}$$

Definition 3.9. An $n \times n$ matrix B is skew-symmetrizable, if there exists integers $d_1, ..., d_n$ such that $d_i b_{ij} = -d_j b_{ji}$.

An $m \times n$ integer matrix with top $n \times n$ submatrix skew-symmetrizable is called extended skew-symmetrizable matrix.

Definition 3.10. The diagram of a skew-symmetrizable $n \times n$ matrix B is the weighted directed graph $\Gamma(B)$ such that there is a directed edge from i to j iff $b_{ij} > 0$, and this edge is assigned the weight $|b_{ij}b_{ji}|$.

3.2 Cluster algebra of geometric type

Now we can define algebraically the notion of cluster algebra. We first define cluster algebra of geometric type (without coefficients). Let $m \ge n$ be two positive integers. Let the *ambient field* \mathcal{F} be the field of rational functions over \mathbb{C} in m independent variables.

Definition 3.11. A labeled seed of geometric type in \mathcal{F} is a pair $(\widetilde{\mathbf{x}}, \widetilde{B})$ where

- $\widetilde{\mathbf{x}} = (x_1, ..., x_m)$ is an *m*-tuple of elements of \mathcal{F} forming a free generating set, i.e. $x_1, ..., x_m$ are algebraically independent, and $\mathcal{F} = \mathbb{C}(x_1, ..., x_m)$
- B is an $m \times n$ extended skew-symmetrizable integer matrix.

We have the terminology:

- $\widetilde{\mathbf{x}}$ is the (labeled) extended cluster of the labeled seed $(\widetilde{\mathbf{x}}, \widetilde{B})$
- $\mathbf{x} = (x_1, ..., x_n)$ is the (labeled) *cluster* of this seed;
- $x_1, ..., x_n$ are its cluster variables;
- The remaining $x_{n+1}, ..., x_m$ of $\tilde{\mathbf{x}}$ are the *frozen variables*;
- \widetilde{B} is called the *extended exchange matrix* of the seed
- The top $n \times n$ submatrix B of \widetilde{B} is the exchange matrix

"Labeled" means we also care about the order (index) of the seeds.

Definition 3.12. A seed mutation μ_k in direction k transform the labeled seed $(\widetilde{\mathbf{x}}, \widetilde{B})$ into a new labeled seed $(\widetilde{\mathbf{x}}', \widetilde{B}') := \mu_k(\widetilde{\mathbf{x}}, \widetilde{B})$ where \widetilde{B}' is defined in (3.1), and $\widetilde{\mathbf{x}}' = (x'_1, ..., x'_m)$ is given by

$$x'_j = x_j, \qquad j \neq k,$$

and $x'_k \in \mathcal{F}$ defined by the exchange relation

$$x_k x'_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{|b_{ik}|}$$

or equivalently

$$x_k x'_k = \prod_{i=1}^m x_i^{[b_{ik}]_+} + \prod_{i=1}^m x_i^{[-b_{ik}]_+}$$

We say two skew-symmetrizable matrices \tilde{B} and \tilde{B}' are mutation equivalent if one can get from \tilde{B} to \tilde{B}' by a sequence of mutations, possibly followed by simultaneous renumbering of rows and columns.

Definition 3.13. Let \mathbb{T}_n denote the n-regular tree. A seed pattern is defined by assigning a labeled seed $(\widetilde{\mathbf{x}}(t), \widetilde{B}(t))$ to every vertex $t \in \mathbb{T}_n$, so that the seeds assigned to the end points of any edge $t \xrightarrow{k} t'$ are obtained from each other by the seed mutation in direction k. To a seed pattern, we can associate an exchange graph which is n-regular, whose vertex are seeds and edges are mutations (the exchange graph is \mathbb{T}_n only when no seeds repeat.)

Figure 1: Exchange graph

Definition 3.14. Let $(\widetilde{\mathbf{x}}(t), \widetilde{B}(t))$ be a seed pattern, and let

$$\mathcal{X} := \bigcup_{t \in \mathbb{T}_n} \mathbf{x}(t)$$

be the set of all cluster variables appearing in its seeds. Let the ground ring $R = \mathbb{C}[x_{n+1}, ..., x_m]$ be the polynomial ring generated by the frozen variables.

The cluster algebra of geometric type \mathcal{A} of rank n is the R-subalgebra of \mathcal{F} generated by all cluster variables

$$\mathcal{A} = R[\mathcal{X}]$$

Usually, we pick an initial seed $(\tilde{\mathbf{x}}_0, \tilde{B}_0)$, and build a seed pattern out of it. Then the corresponding cluster algebra $\mathcal{A}(\tilde{\mathbf{x}}_0, \tilde{B}_0)$ is generated over R by all cluster variables appearing in the seeds mutation equivalent to $(\tilde{\mathbf{x}}_0, \tilde{B}_0)$. Hence if we let Sdenote the set of all seeds, then we can write $\mathcal{A} = \mathcal{A}(S)$.

3.3 Examples

Rank 1 Case. \mathbb{T}_1 is very simple

We have two seeds and two clusters (x_1) and (x'_1) . \tilde{B}_0 can be any $m \times 1$ matrix with top entry 0. $\mathcal{A} \subset \mathcal{F} = \mathbb{C}(x_1, x_2, ..., x_m)$ is generated by $x_1, x'_1, x_2, ..., x_m$ subject to relation of the form

$$x_1 x_1' = M_1 + M_2$$

where M_i are monomials in the frozen variables $x_2, ..., x_m$ which do not share a common factor.

Example 3.15. $\mathbb{C}[SL_2] = \mathbb{C}[a, b, c, d]$ is a cluster algebra, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with ad = 1 + bc. We have two extended clusters $\{a, b, c\}$ and $\{b, c, d\}$ and clusters $\{a\}$ and $\{d\}$.

Example 3.16. $\mathbb{C}[SL_3/N]$: Recall we have the Plücker relation

$$\Delta_2 \Delta_{13} = \Delta_1 \Delta_{23} + \Delta_{12} \Delta_3$$

Then $\mathbb{C}[SL_3/N]$ has frozen variables $\{\Delta_1, \Delta_{12}, \Delta_{23}, \Delta_3\}$ and clusters $\{\Delta_2\}, \{\Delta_{13}\}$.

Rank 2 Case. Any 2×2 skew-symmetrizable matrix look like this:

$$\pm \left(\begin{array}{cc} 0 & b \\ -c & 0 \end{array}\right)$$

for some positive integers b, c, or both zero. μ_1 or μ_2 simply changes its sign.

Example 3.17. b = c = 0. This reduce to the rank 1 case.

Example 3.18. Let $\mathcal{A} = \mathcal{A}(b,c)$ denote cluster algebra of rank 2 with exchange matrix $\pm \begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$ and no frozen variables. Then we have

$$x_{k+1}x_{k-1} = \begin{cases} x_k^c + 1 & k \text{ is even} \\ x_k^b + 1 & k \text{ is odd} \end{cases}$$

- This is the same as the Conway-Coxeter frieze pattern for $(d_1, d_2) = (c, b)$.
- The exchange graph is finite only when $(d_1, d_2) = (1, 1), (1, 2), (1, 3)$, such that the graph is pentagon, hexagon and octagon respectively.
- In all other cases, the exchange graph is \mathbb{T}_2 , which is an infinite line.

Example 3.19. Let us introduce frozen variable. Consider a seed pattern with initial seed $\{z_1, z_2, y\}$ and exchange matrix $\widetilde{B}_0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ p & q \end{pmatrix}$. we get

$$z_1, z_2, z_3 = \frac{z_2 + y^p}{z_1}, z_4 = \frac{y^{p+q}z_1 + z_2 + y^p}{z_1 z_2}, z_5 = \frac{y^q z_1 + 1}{z_2}, z_6 = z_1, z_7 = z_2$$

Again there are 5 distinct cluster variables. The cluster algebra is then defined to be

$$\mathcal{A} = R[\mathcal{X}] = \mathbb{C}[y^{\pm 1}] \left[z_1, z_2, \frac{z_2 + y^p}{z_1}, \frac{y^{p+q}z_1 + z_2 + y^p}{z_1 z_2}, \frac{y^q z_1 + 1}{z_2} \right]$$

Example 3.20. Grassmannian Comparing the properties, we see that the coordinate ring of the Grassmannian $\mathbb{C}[Gr(2, n+3)]$ is a cluster algebra, where

- $cluster = \{2 \times 2 \ minors\} = triangulation$
- cluster variables = $\Delta_{i,j}$ = diagonals
- frozen variables = $\Delta_{i,i+1}$ = sides
- mutation = Plücker relation = flipping of diagonals

Similarly, $\mathbb{C}[SL_n/N]$ is a cluster algebra.

Example 3.21. Markov triples. Triples of integers satisfying

$$x_1^2 + x_2^2 + x_3^2 = 3x_1x_2x_3.$$

Consider it as equation in x_1 :

$$y^{2} - (3x_{2}x_{3})y + (x_{2}^{2} + x_{3}^{2}) = 0.$$

Then it has two roots: $y = x_1$ and $x'_1 = \frac{x_2^2 + x_3^2}{x_1}$. Starting with $x_1 = x_2 = x_3 = 1$, replacing with another root: Vieta jumping.

$$\widetilde{B} = \pm \left(\begin{array}{ccc} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{array} \right)$$

Conjecture 3.22 (Uniqueness). *Maximal elements of Markov triples are all distinct.*

Figure 2: Markov triples

Example 3.23. Somos-4 sequence.

 $x_n x_{n+4} = x_{n+1} x_{n+3} + x_{n+2}^2$

Mutate at 1 rotate the graph by 90 degree.

Somos-5 sequence.

 $x_n x_{n+5} = x_{n+1} x_{n+4} + x_{n+2} x_{n+3}$

Mutate at 1 rotate the graph by 72 degree.

In both Somos-r sequence, x_n will be Laurent polynomials in the initial variables $x_1, ..., x_r$. In particular they will be integers if $x_1 = ... = x_r = 1$. \implies Laurent phenomenon!

3.4 Semifields and coefficients

The mutation does not really use the frozen variables. So let us treat them as "coefficients", which leads to a more general notion of cluster algebra with semifields as coefficients.

Let us denote

$$y_j := \prod_{i=n+1}^m x_i^{b_{ij}}, \quad j = 1, ..., n.$$

Then $y_1, ..., y_n$ encodes the same information as the lower $(n - m) \times n$ submatrix of \widetilde{B} . Hence a labeled seed can equivalently be presented as triples $(\mathbf{x}, \mathbf{y}, B)$ where $\mathbf{x} = (x_1, ..., x_n), \mathbf{y} = (y_1, ..., y_n).$

Now the mutation of x_k becomes:

$$x_k x'_k = \prod_{i=n+1}^m x_i^{[b_{ik}]_+} \prod_{i=1}^n x_i^{[b_{ik}]_+} + \prod_{i=n+1}^m x_i^{[-b_{ik}]_+} \prod_{i=1}^n x_i^{[-b_{ik}]_+}$$
$$= \frac{y_k}{y_k \oplus 1} \prod_{i=1}^n x_i^{[b_{ik}]_+} + \frac{1}{y_k \oplus 1} \prod_{i=1}^n x_i^{[-b_{ik}]_+}$$

where the *semifield addition* is defined by

$$\prod_{i} x_i^{a_i} \oplus \prod_{i} x_i^{b_i} := \prod_{i} x_i^{\min(a_i, b_i)}$$

in particular,

$$1 \oplus \prod_i x_i^{b_i} := \prod_i x_i^{-[-b_i]_+}$$

The mutation of the frozen variables $x_{n+1}, ..., x_m$ also induces the mutation of the coefficient y-variables:

$$(y'_1, ..., y'_n) := \mu_k(y_1, ..., y_n)$$

$$y'_j := \begin{cases} y_k^{-1} & i = k \\ y_j (y_k \oplus 1)^{-b_{kj}} & \text{if } j \neq k \text{ and } b_{kj} \leq 0 \\ y_j (y_k^{-1} \oplus 1)^{-b_{kj}} & \text{if } j \neq k \text{ and } b_{kj} \geq 0 \end{cases}$$

This is called *tropical Y-seed mutation rule* This is general, we can use any semifield!

Definition 3.24. A semifield $(\mathbb{P}, \circ, \oplus)$ is an abelian group (\mathbb{P}, \circ) (written multiplicatively) together with a binary operator \oplus such that

$$\begin{array}{c} \oplus: \mathbb{P} \times \mathbb{P} \longrightarrow \mathbb{P} \\ (p,q) \mapsto p \oplus q \end{array}$$

is commutative, associative, and distributive:

$$p \circ (q \oplus r) = p \circ q \oplus p \circ r$$

Note: \oplus may not be invertible!

Example 3.25. *Examples of semifield* $(\mathbb{P}, \circ, \oplus)$ *:*

- $(\mathbb{R}_{>0}, \times, +)$
- $(\mathbb{R}, +, \min)$
- $(\mathbb{Q}_{sf}(u_1, ..., u_m), \cdot, +)$ "subtraction-free" rational functions
- $(Trop(y_1,...,y_m),\cdot,\oplus)$ Laurent monomials with usual multiplication and

$$\prod_i x_i^{a_i} \oplus \prod_i x_i^{b_i} := \prod_i x_i^{\min(a_i, b_i)}$$

 \mathbb{P} is called the *coefficient group* of our cluster algebra.

Proposition 3.26. If $(\mathbb{P}, \circ, \oplus)$ is a semifield, then

- (\mathbb{P}, \circ) is torsion free (if there exists p, m such that $p^m = 1$, then p = 1).
- Let \mathbb{ZP} be the group ring of (\mathbb{P}, \circ) . Then it is a domain $(p \circ q = 0 \Longrightarrow p = 0$ or q = 0).
- Can define field of fractions \mathbb{QP} of \mathbb{ZP}

Proof. (1) If $p^m = 1$, then note that $1 \oplus p \oplus ... \oplus p^{m-1} \in \mathbb{P}$ but $0 \notin \mathbb{P}$, we can write

$$p = p \frac{1 \oplus p \oplus \dots \oplus p^{m-1}}{1 \oplus p \oplus \dots \oplus p^{m-1}} = \frac{p \oplus p^2 \oplus \dots \oplus p^m}{1 \oplus p \oplus \dots \oplus p^{m-1}} = 1$$

(2) Let $p, q \in \mathbb{ZP}$ with $p \circ q = 0$. Then p and q are contained in $\mathbb{Z}H$ for some finitely generated subgroup H of \mathbb{P} . Since $H \subset \mathbb{P}$ is abelian, $H \simeq \mathbb{Z}^n$, hence $\mathbb{Z}H \subset \mathbb{Z}(x_1, ..., x_n)$ consists of all Laurent polynomials in x_i . In particular $\mathbb{Z}H$ is an integral domain, and hence p = 0 or q = 0.

Then we can set our ambient field to be $\mathcal{F} := \mathbb{QP}(u_1, ..., u_n)$. Now we can rewrite previous definitions and results:

Definition 3.27. A labeled seed in \mathcal{F} is $(\mathbf{x}, \mathbf{y}, B)$ with

- $\mathbf{x} = \{x_1, ..., x_n\}$ free generating set of \mathcal{F}
- $\boldsymbol{y} = \{y_1, ..., y_n\} \subset \mathbb{P}$ any elements
- $B = n \times n$ skew-symmetrizable \mathbb{Z} -matrix

We have mutations for all \mathbf{x}, \mathbf{y} and B, together with the exchange patterns. A cluster algebra with coefficients \mathbb{P} is then

$$\mathcal{A}(\mathbf{x}, \boldsymbol{y}, B) := \mathbb{ZP}\left[\bigcup_{t \in \mathbb{T}_n} \mathbf{x}(t)\right]$$

Example 3.28. For rank n = 2 we have in the most general case:

t	B_t	$oldsymbol{y}_t$		\mathbf{x}_t	
0	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	y_1	y_2	x_1	x_2
1	$\left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array}\right)$	$y_1(y_2\oplus 1)$	$\frac{1}{y_2}$	x_1	$\tfrac{x_1y_2+1}{x_2(y_2\oplus 1)}$
2	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	$rac{1}{y_1(y_2\oplus 1)}$	$\frac{y_1y_2\oplus y_1\oplus 1}{y_2}$	$\frac{x_1y_1y_2 + y_1 + y_2}{(y_1y_2 \oplus y_1 \oplus 1)x_1x_2}$	$\tfrac{x_1y_2+1}{x_2(y_2\oplus 1)}$
3	$\left(\begin{array}{rrr} 0 & -1 \\ 1 & 0 \end{array}\right)$	$rac{y_1\oplus 1}{y_1y_2}$	$rac{y_2}{y_1y_2\oplus y_1\oplus 1}$	$\frac{x_1y_1y_2 + y_1 + x_2}{(y_1y_2 \oplus y_1 \oplus 1)x_1x_2}$	$\frac{y_1 + x_2}{x_1(y_1 \oplus 1)}$
4	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	$rac{y_1y_2}{y_1\oplus 1}$	$\frac{1}{y_1}$	x_2	$\tfrac{y_1+x_2}{x_1(y_1\oplus 1)}$
5	$\left(\begin{array}{rrr} 0 & -1 \\ 1 & 0 \end{array}\right)$	y_2	y_1	x_2	x_1

Remark 3.29. The prevoius cluster algebra of geometric type = cluster algebra with coefficients $\mathbb{P} = Trop(x_{n+1}, ..., x_m)$.

- We only need the $n \times n$ matrix B
- There are no frozen variables
- Mutation of **y** only involve two variables
- But we need to mutate all **y** variables, there are usually more **y** variables than cluster variables
- Y-pattern do not in general exhibit Laurent phenomenon

Definition 3.30. Two cluster algebra $\mathcal{A}(\mathcal{S})$ and $\mathcal{A}(\mathcal{S}')$ are called strongly isomorphic if there exists a \mathbb{ZP} -algebra isomorphism $\mathcal{F} \longrightarrow \mathcal{F}'$ sending some seed in \mathcal{S} into a seed in \mathcal{S}' , thus inducing a bijection $\mathcal{S} \longrightarrow \mathcal{S}'$ of seeds and an algebra isomorphism $\mathcal{A}(\mathcal{S}) \longrightarrow \mathcal{A}(\mathcal{S}')$

Any cluster algebra \mathcal{A} is uniquely determined by any single seed $(\mathbf{x}, \mathbf{y}, B)$. Hence \mathcal{A} is determined by B and \mathbf{y} up to strong isomorphism, and we can write $\mathcal{A} = \mathcal{A}(B, \mathbf{y})$.