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4 Laurent phenomenon

We now state the Laurent phenomenon of cluster algebra with coefficients in the
semifield P.

Theorem 4.1. Any cluster variable can be expressed in terms of any given cluster
as a Laurent polynomial with coefficients in the group ring ZP, i.e.

A(x,y, B) ⊂ ZP[x±1]

The proof follows from the Key Lemma and the Caterpillar Lemma. Let us
introduce some notation.

Consider the seed pattern x(t) = (x1(t), ..., xn(t)) associated to Tn. Generalizing
the exchange relation, we consider the more general mutation in direction k.

xi(t) = xi(t
′) i 6= k

xk(t)xk(t′) = P (x(t))

where P is a polynomial in n variables, and P (x) does not contain the variable xk.
We write this as

• k−→
P
•

Note that in the case of cluster algebra, P is of the form

P (x) = M1(x) +M2(x)

for some monomials M1 and M2 of x that does not contain xk and does not share
a common cluster variable, and satisfies some other axioms.

Let Tn,m be the tree with m spine vertices, each with degree n:
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Figure 1: The caterpillar tree Tn,m for n = 4

Lemma 4.2 (The Caterpillar Lemma). Let A be a UFD (i.e. with gcd, e.g. Z),
and L0 = A[x(t0)±] be Laurent polynomial in x(t0) with coefficients in A. Assume
the exchange pattern Tn,m satisfies

(i) For any edge • k−→
P
•, the polynomial P does not depend on xk, and is not

divisible by any xi.

(ii) For any two edges • i−→
P
• j−→

Q
•, the polynomial P and Q0 = Q|xi=0 is coprime

in L0.

(iii) For any three edges • i−→
P
• j−→

Q
• i−→

R
•, we have

L ·Qb
0 · P = R|

xj←Q0
xj

where b ∈ Z≥0, L is a Laurent monomial and is coprime with P .

Then each element xi(t) is a Laurent polynomial in x1(t0), ..., xn(t0) with coefficients
in A.

Lemma 4.3 (Key Lemma). Assume (i)-(iii) hold. Then x(t1),x(t2),x(t3) are

contained in L0. Furthermore, in the case • i−→
P
• j−→

Q
• i−→

R
•, we have

gcd(xi(t3), xi(t1)) = gcd(xj(t2), xi(t1)) = 1

as elements of L0.

Proof. It is clear that all elements in x(t1),x(t2),x(t3) are in L0, except xi(t3) from
the case

•t0
i−→
P
•t1

j−→
Q
•t2

i−→
R
•t3

To simplify notation, let us write

x := xi(t0),

y := xj(t0),

z := xi(t1) = xi(t2),

u := xj(t2) = xj(t3),

v := xi(t3)
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such that L0 = A[xk(t0)±]k 6=i,j [x
±, y±]. Note that the variables xk for k /∈ {i, j}

do not change in all four clusters. Then we have to show

v ∈ L0 (4.1)

gcd(z, u) = 1 (4.2)

gcd(z, v) = 1 (4.3)

Also recall that P,R only depend on xj and do not depend on xi, while Q only
depends on xi and does not depend on xj . So let us write it as polynomial in one
variable (where we treat the rest of the common variables as coefficients).

Then for example the assumption is

R

(
Q(0)

y

)
= L(y)Q(0)bP (y)

We have

z =
P (y)

x

u =
Q(z)

y
=
Q
(

P (y)
x

)
y

v =
R(u)

z
=
R
(

Q(z)
y

)
z

=
R
(

Q(z)
y

)
−R

(
Q(0)
y

)
z

+
R
(

Q(0)
y

)
z

Since

R
(

Q(z)
y

)
−R

(
Q(0)
y

)
z

∈ L0

and

R
(

Q(0)
y

)
z

=
L(y)Q(0)bP (y)

z
= L(y)Q(0)bx ∈ L0

(4.1) follows. Next we have

u =
Q(z)

y
≡ Q(0)

y
mod z

Since z = P (y)
x , and x, y are units in L0, we have gcd(z, u) = gcd(P (y), Q(0)) = 1

proving (4.2). Finally, let f(z) = R
(

Q(z)
y

)
. Then

v =
f(z)− f(0)

z
+ L(y)Q(0)bx

We have
f(z)− f(0)

z
≡ f ′(0) = R′

(
Q(0)

y

)
· Q
′(0)

y
mod z
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Hence

v ≡ R′
(
Q(0)

y

)
· Q
′(0)

y
+ L(y)Q(0)bx mod z.

This is a linear polynomial in x, with coefficients in the rest of the variables of the
cluster x(t0). Hence (4.3) follows from gcd(L(y)Q(0)b, P (y)) = 1.

Proof of Caterpilla Lemma. We use induction on m. The case of m = 2 is trivial,
while we have shown m = 3 from the Key Lemma. Let t3 be the vertex such that

t0
i−→ t1

j−→ t2
i−→ t3

Then the path t3 −→ ... −→ thead and t1 −→ ... −→ thead is shorter than the path
t0 −→ ... −→ thead, hence by induction we have

x(thead) ∈ L(x(t1))

x(thead) ∈ L(x(t3))

where we denote L(x) = A[x±]. Now

x(t1) = {x1(t0), ..., xn(t0)} \ {xi(t0)} ∪ {xi(t1)}
x(t3) = {x1(t0), ..., xn(t0)} \ {xi(t0), xj(t0)} ∪ {xj(t2), xi(t3)}

Let x′k := xk(thead), then

x′k =
f

xi(t1)a
=

g

xj(t2)bxi(t3)c

for f, g ∈ L0, a, b, c ∈ Z≥0 such that gcd(f, xi(t1)) = gcd(g, xj(t2)xi(t3)) = 1. Hence

(xj(t2)bxi(t3)c)f = (xi(t1)a)g ∈ L0

and by the Key Lemma, we must have a = b = c = 0, hence x′k ∈ L0 for all k.

Proof of Laurent Phenomenon for cluster algebra. We want to show that the ex-
change relations of the cluster algebra with coefficients in A = ZP satisfy the con-
ditions of the Caterpillar Lemma. Note that in the Caterpillar Lemma, we can
assume i and j are connected (i.e. bij 6= 0), since otherwise we have µi ◦ µj ◦ µi =
µi ◦ µi ◦ µj = µj and we can reduce the situation by induction. Hence we assume
bij = b and bji = −c for some integers b, c ∈ Z6=0.

For cluster algebra, the exchange polynomial for edge k is of the form P (x) =
M1(x′) +M2(x′) where x′ = x \ {xk}. In particular (i) is satisfied.

For condition (ii), we note that Q is of the form Q = xci ?+?, in particular, Q0

is a monomial, hence it is coprime with P .
The exchange relation implies condition (iii). To see this, let us write

P = Mi(t0) +Mi(t1), R = Mi(t2) +Mi(t3)
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where
Mi(tk) =

∏
bij(tk)>0

xi(tk)bij(tk)

Then we see that

Mi(t1)

Mi(t0)
=
Mi(t2)

Mi(t3)

∣∣∣∣
xj←Q0

xj

(4.4)

implies condition (iii). (Adding 1 on both sides, and simplify, with L ·Qb
0 =

Mi(
Q0
xj

)

Mi(t0)
.

Again L is monomial, hence gcd(P,L) = 1.) We can show (4.4) directly by the
exchange relation. Using the seed x(t1) as base, (4.4) can be written as∏

i∈I
x
bij
i =

∏
i∈I

x
b′ij
i

∣∣∣∣∣
xj←Q0

xj

(4.5)

where xi = xi(t1) = xi(t2), bij = bij(t1), b′ij = bij(t2), and

Q0 =

(∏
k∈I

x
[bjk]+
k +

∏
k∈I

x
[−bjk]+
k

)∣∣∣∣∣
xi=0

.

Then we can check case by case (assuming bji 6= 0) that Q0 is a monomial given by

Q0 =
∏

k∈I,bijbjk>0

x
|bjk|
k .

Then it is not difficult to see that the substitution in (4.5) is equivalent to the
mutation rule B = µj(B

′).

Example 4.4. To illustrate the proof of the Key Lemma, consider the cluster al-
gebra defined by the leftmost quiver:

1 2

3

1−→
P

1 2

3

2−→
Q

1 2

3

1−→
R

1 2

3

Then we have

x = x1

y = x2

z = x′1 =
x2 + x3
x1

u = x′2 =
1 + x′1
x2

=
x1 + x2 + x3

x1x2

v = x′′1 =
1 + x′2x3

x′1
=
x1 + x3
x2
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gcd(z, u) = gcd(z, v) = 1

P = x2 + x3, P (α) = α+ x3

Q = 1 + x1, Q(α) = 1 + α, Q(0) = 1

R = 1 + x2x3, R(α) = 1 + αx3

R

(
Q(0)

y

)
= 1 +

1

x2
x3 =

1

x2
· 1 · P (x2)

Finally, the positive conjecture is proved in most situation.

Theorem 4.5 (Lee-Schiffler (2015)). For any skew-symmetric cluster algebra A,
any seed (x,y, B), and any cluster variable u, the Laurent polynomial expansion of
u in the cluster x has coefficients in Z>0P.

The case for cluster algebra coming from acyclic quiver is proven by Kimura-Qin
(2014) and the case from surface by Musiker-Schiffler-Williams (2011).
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