# Lecture Notes Introduction to Cluster Algebra 

Ivan C.H. Ip*

Updated: May 11, 2017

## 4 Laurent phenomenon

We now state the Laurent phenomenon of cluster algebra with coefficients in the semifield $\mathbb{P}$.

Theorem 4.1. Any cluster variable can be expressed in terms of any given cluster as a Laurent polynomial with coefficients in the group ring $\mathbb{Z P}$, i.e.

$$
\mathcal{A}(\mathbf{x}, \boldsymbol{y}, B) \subset \mathbb{Z} \mathbb{P}\left[\mathbf{x}^{ \pm 1}\right]
$$

The proof follows from the Key Lemma and the Caterpillar Lemma. Let us introduce some notation.

Consider the seed pattern $\mathbf{x}(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ associated to $\mathbb{T}_{n}$. Generalizing the exchange relation, we consider the more general mutation in direction $k$.

$$
\begin{aligned}
x_{i}(t) & =x_{i}\left(t^{\prime}\right) \quad i \neq k \\
x_{k}(t) x_{k}\left(t^{\prime}\right) & =P(\mathbf{x}(t))
\end{aligned}
$$

where $P$ is a polynomial in $n$ variables, and $P(\mathbf{x})$ does not contain the variable $x_{k}$. We write this as

$$
\bullet \xrightarrow[P]{\stackrel{k}{\longrightarrow}} \bullet
$$

Note that in the case of cluster algebra, $P$ is of the form

$$
P(\mathbf{x})=M_{1}(\mathbf{x})+M_{2}(\mathbf{x})
$$

for some monomials $M_{1}$ and $M_{2}$ of $\mathbf{x}$ that does not contain $x_{k}$ and does not share a common cluster variable, and satisfies some other axioms.

Let $\mathbb{T}_{n, m}$ be the tree with $m$ spine vertices, each with degree $n$ :

[^0]

Figure 1: The caterpillar tree $\mathbb{T}_{n, m}$ for $n=4$
Lemma 4.2 (The Caterpillar Lemma). Let $\mathbb{A}$ be a UFD (i.e. with gcd, e.g. $\mathbb{Z}$ ), and $\mathcal{L}_{0}=\mathbb{A}\left[\mathbf{x}\left(t_{0}\right)^{ \pm}\right]$be Laurent polynomial in $\mathbf{x}\left(t_{0}\right)$ with coefficients in $\mathbb{A}$. Assume the exchange pattern $\mathbb{T}_{n, m}$ satisfies
(i) For any edge $\bullet \underset{P}{k} \bullet$, the polynomial $P$ does not depend on $x_{k}$, and is not divisible by any $x_{i}$.
(ii) For any two edges $\bullet \underset{P}{i} \bullet \xrightarrow[Q]{\underset{Q}{\longrightarrow}} \bullet$, the polynomial $P$ and $Q_{0}=\left.Q\right|_{x_{i}=0}$ is coprime in $\mathcal{L}_{0}$.
(iii) For any three edges $\bullet \xrightarrow[P]{i} \bullet \xrightarrow[Q]{\underset{P}{p}} \bullet \stackrel{i}{R} \bullet$, we have

$$
L \cdot Q_{0}^{b} \cdot P=\left.R\right|_{x_{j} \leftarrow \frac{Q_{0}}{x_{j}}}
$$

where $b \in \mathbb{Z}_{\geq 0}$, $L$ is a Laurent monomial and is coprime with $P$.
Then each element $x_{i}(t)$ is a Laurent polynomial in $x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}\right)$ with coefficients in $\mathbb{A}$.

Lemma 4.3 (Key Lemma). Assume (i)-(iii) hold. Then $\mathbf{x}\left(t_{1}\right), \mathbf{x}\left(t_{2}\right), \mathbf{x}\left(t_{3}\right)$ are contained in $\mathcal{L}_{0}$. Furthermore, in the case $\bullet \underset{P}{\stackrel{i}{\longrightarrow}} \bullet \underset{Q}{j} \bullet \xrightarrow[R]{i} \bullet$, we have

$$
\operatorname{gcd}\left(x_{i}\left(t_{3}\right), x_{i}\left(t_{1}\right)\right)=\operatorname{gcd}\left(x_{j}\left(t_{2}\right), x_{i}\left(t_{1}\right)\right)=1
$$

as elements of $\mathcal{L}_{0}$.
Proof. It is clear that all elements in $\mathbf{x}\left(t_{1}\right), \mathbf{x}\left(t_{2}\right), \mathbf{x}\left(t_{3}\right)$ are in $\mathcal{L}_{0}$, except $x_{i}\left(t_{3}\right)$ from the case

$$
\bullet_{t_{0}} \xrightarrow[P]{\stackrel{i}{\longrightarrow}} \bullet_{t_{1}} \xrightarrow[Q]{\vec{p}} \bullet_{t_{2}} \xrightarrow[R]{i} \bullet_{t_{3}}
$$

To simplify notation, let us write

$$
\begin{aligned}
x & :=x_{i}\left(t_{0}\right), \\
y & :=x_{j}\left(t_{0}\right), \\
z & :=x_{i}\left(t_{1}\right)=x_{i}\left(t_{2}\right), \\
u & :=x_{j}\left(t_{2}\right)=x_{j}\left(t_{3}\right), \\
v & :=x_{i}\left(t_{3}\right)
\end{aligned}
$$

such that $\mathcal{L}_{0}=\mathbb{A}\left[x_{k}\left(t_{0}\right)^{ \pm}\right]_{k \neq i, j}\left[x^{ \pm}, y^{ \pm}\right]$. Note that the variables $x_{k}$ for $k \notin\{i, j\}$ do not change in all four clusters. Then we have to show

$$
\begin{align*}
v & \in \mathcal{L}_{0}  \tag{4.1}\\
\operatorname{gcd}(z, u) & =1  \tag{4.2}\\
\operatorname{gcd}(z, v) & =1 \tag{4.3}
\end{align*}
$$

Also recall that $P, R$ only depend on $x_{j}$ and do not depend on $x_{i}$, while $Q$ only depends on $x_{i}$ and does not depend on $x_{j}$. So let us write it as polynomial in one variable (where we treat the rest of the common variables as coefficients).

Then for example the assumption is

$$
R\left(\frac{Q(0)}{y}\right)=L(y) Q(0)^{b} P(y)
$$

We have

$$
\begin{aligned}
& z=\frac{P(y)}{x} \\
& u=\frac{Q(z)}{y}=\frac{Q\left(\frac{P(y)}{x}\right)}{y} \\
& v=\frac{R(u)}{z}=\frac{R\left(\frac{Q(z)}{y}\right)}{z}=\frac{R\left(\frac{Q(z)}{y}\right)-R\left(\frac{Q(0)}{y}\right)}{z}+\frac{R\left(\frac{Q(0)}{y}\right)}{z}
\end{aligned}
$$

Since

$$
\frac{R\left(\frac{Q(z)}{y}\right)-R\left(\frac{Q(0)}{y}\right)}{z} \in \mathcal{L}_{0}
$$

and

$$
\frac{R\left(\frac{Q(0)}{y}\right)}{z}=\frac{L(y) Q(0)^{b} P(y)}{z}=L(y) Q(0)^{b} x \in \mathcal{L}_{0}
$$

(4.1) follows. Next we have

$$
u=\frac{Q(z)}{y} \equiv \frac{Q(0)}{y} \quad \bmod z
$$

Since $z=\frac{P(y)}{x}$, and $x, y$ are units in $\mathcal{L}_{0}$, we have $\operatorname{gcd}(z, u)=\operatorname{gcd}(P(y), Q(0))=1$ proving (4.2). Finally, let $f(z)=R\left(\frac{Q(z)}{y}\right)$. Then

$$
v=\frac{f(z)-f(0)}{z}+L(y) Q(0)^{b} x
$$

We have

$$
\frac{f(z)-f(0)}{z} \equiv f^{\prime}(0)=R^{\prime}\left(\frac{Q(0)}{y}\right) \cdot \frac{Q^{\prime}(0)}{y} \bmod z
$$

Hence

$$
v \equiv R^{\prime}\left(\frac{Q(0)}{y}\right) \cdot \frac{Q^{\prime}(0)}{y}+L(y) Q(0)^{b} x \bmod z
$$

This is a linear polynomial in $x$, with coefficients in the rest of the variables of the cluster $\mathbf{x}\left(t_{0}\right)$. Hence (4.3) follows from $\operatorname{gcd}\left(L(y) Q(0)^{b}, P(y)\right)=1$.

Proof of Caterpilla Lemma. We use induction on $m$. The case of $m=2$ is trivial, while we have shown $m=3$ from the Key Lemma. Let $t_{3}$ be the vertex such that

$$
t_{0} \xrightarrow{i} t_{1} \xrightarrow{j} t_{2} \xrightarrow{i} t_{3}
$$

Then the path $t_{3} \longrightarrow \ldots \longrightarrow t_{\text {head }}$ and $t_{1} \longrightarrow \ldots \longrightarrow t_{\text {head }}$ is shorter than the path $t_{0} \longrightarrow \ldots \longrightarrow t_{\text {head }}$, hence by induction we have

$$
\begin{aligned}
& \mathbf{x}\left(t_{\text {head }}\right) \in \mathcal{L}\left(\mathbf{x}\left(t_{1}\right)\right) \\
& \mathbf{x}\left(t_{\text {head }}\right) \in \mathcal{L}\left(\mathbf{x}\left(t_{3}\right)\right)
\end{aligned}
$$

where we denote $\mathcal{L}(\mathbf{x})=\mathbb{A}\left[\mathbf{x}^{ \pm}\right]$. Now

$$
\begin{aligned}
& \mathbf{x}\left(t_{1}\right)=\left\{x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}\right)\right\} \backslash\left\{x_{i}\left(t_{0}\right)\right\} \cup\left\{x_{i}\left(t_{1}\right)\right\} \\
& \mathbf{x}\left(t_{3}\right)=\left\{x_{1}\left(t_{0}\right), \ldots, x_{n}\left(t_{0}\right)\right\} \backslash\left\{x_{i}\left(t_{0}\right), x_{j}\left(t_{0}\right)\right\} \cup\left\{x_{j}\left(t_{2}\right), x_{i}\left(t_{3}\right)\right\}
\end{aligned}
$$

Let $x_{k}^{\prime}:=x_{k}\left(t_{\text {head }}\right)$, then

$$
x_{k}^{\prime}=\frac{f}{x_{i}\left(t_{1}\right)^{a}}=\frac{g}{x_{j}\left(t_{2}\right)^{b} x_{i}\left(t_{3}\right)^{c}}
$$

for $f, g \in \mathcal{L}_{0}, a, b, c \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{gcd}\left(f, x_{i}\left(t_{1}\right)\right)=\operatorname{gcd}\left(g, x_{j}\left(t_{2}\right) x_{i}\left(t_{3}\right)\right)=1$. Hence

$$
\left(x_{j}\left(t_{2}\right)^{b} x_{i}\left(t_{3}\right)^{c}\right) f=\left(x_{i}\left(t_{1}\right)^{a}\right) g \in \mathcal{L}_{0}
$$

and by the Key Lemma, we must have $a=b=c=0$, hence $x_{k}^{\prime} \in \mathcal{L}_{0}$ for all $k$.
Proof of Laurent Phenomenon for cluster algebra. We want to show that the exchange relations of the cluster algebra with coefficients in $\mathbb{A}=\mathbb{Z} \mathbb{P}$ satisfy the conditions of the Caterpillar Lemma. Note that in the Caterpillar Lemma, we can assume $i$ and $j$ are connected (i.e. $b_{i j} \neq 0$ ), since otherwise we have $\mu_{i} \circ \mu_{j} \circ \mu_{i}=$ $\mu_{i} \circ \mu_{i} \circ \mu_{j}=\mu_{j}$ and we can reduce the situation by induction. Hence we assume $b_{i j}=b$ and $b_{j i}=-c$ for some integers $b, c \in \mathbb{Z}_{\neq 0}$.

For cluster algebra, the exchange polynomial for edge $k$ is of the form $P(\mathbf{x})=$ $M_{1}\left(\mathbf{x}^{\prime}\right)+M_{2}\left(\mathbf{x}^{\prime}\right)$ where $\mathbf{x}^{\prime}=\mathbf{x} \backslash\left\{x_{k}\right\}$. In particular (i) is satisfied.

For condition (ii), we note that $Q$ is of the form $Q=x_{i}^{c} \star+\star$, in particular, $Q_{0}$ is a monomial, hence it is coprime with $P$.

The exchange relation implies condition (iii). To see this, let us write

$$
P=M_{i}\left(t_{0}\right)+M_{i}\left(t_{1}\right), \quad R=M_{i}\left(t_{2}\right)+M_{i}\left(t_{3}\right)
$$

where

$$
M_{i}\left(t_{k}\right)=\prod_{b_{i j}\left(t_{k}\right)>0} x_{i}\left(t_{k}\right)^{b_{i j}\left(t_{k}\right)}
$$

Then we see that

$$
\begin{equation*}
\frac{M_{i}\left(t_{1}\right)}{M_{i}\left(t_{0}\right)}=\left.\frac{M_{i}\left(t_{2}\right)}{M_{i}\left(t_{3}\right)}\right|_{x_{j} \leftarrow \frac{Q_{0}}{x_{j}}} \tag{4.4}
\end{equation*}
$$

implies condition (iii). (Adding 1 on both sides, and simplify, with $L \cdot Q_{0}^{b}=\frac{M_{i}\left(\frac{Q_{0}}{x_{j}}\right)}{M_{i}\left(t_{0}\right)}$. Again $L$ is monomial, hence $\operatorname{gcd}(P, L)=1$.) We can show (4.4) directly by the exchange relation. Using the seed $\mathbf{x}\left(t_{1}\right)$ as base, (4.4) can be written as

$$
\begin{equation*}
\prod_{i \in I} x_{i}^{b_{i j}}=\left.\prod_{i \in I} x_{i}^{b_{b_{j i}^{\prime}}^{\prime}}\right|_{x_{j} \leftarrow \frac{Q_{0}}{x_{j}}} \tag{4.5}
\end{equation*}
$$

where $x_{i}=x_{i}\left(t_{1}\right)=x_{i}\left(t_{2}\right), b_{i j}=b_{i j}\left(t_{1}\right), b_{i j}^{\prime}=b_{i j}\left(t_{2}\right)$, and

$$
Q_{0}=\left.\left(\prod_{k \in I} x_{k}^{\left[b_{j k}\right]_{+}}+\prod_{k \in I} x_{k}^{\left[-b_{j k}\right]_{+}}\right)\right|_{x_{i}=0}
$$

Then we can check case by case (assuming $b_{j i} \neq 0$ ) that $Q_{0}$ is a monomial given by

$$
Q_{0}=\prod_{k \in I, b_{i j} b_{j k}>0} x_{k}^{\left|b_{j k}\right|}
$$

Then it is not difficult to see that the substitution in (4.5) is equivalent to the mutation rule $B=\mu_{j}\left(B^{\prime}\right)$.

Example 4.4. To illustrate the proof of the Key Lemma, consider the cluster algebra defined by the leftmost quiver:


Then we have

$$
\begin{aligned}
& x=x_{1} \\
& y=x_{2} \\
& z=x_{1}^{\prime}=\frac{x_{2}+x_{3}}{x_{1}} \\
& u=x_{2}^{\prime}=\frac{1+x_{1}^{\prime}}{x_{2}}=\frac{x_{1}+x_{2}+x_{3}}{x_{1} x_{2}} \\
& v=x_{1}^{\prime \prime}=\frac{1+x_{2}^{\prime} x_{3}}{x_{1}^{\prime}}=\frac{x_{1}+x_{3}}{x_{2}}
\end{aligned}
$$

$$
\operatorname{gcd}(z, u)=\operatorname{gcd}(z, v)=1
$$

$$
\begin{array}{lll}
P=x_{2}+x_{3}, & P(\alpha)=\alpha+x_{3} & \\
Q=1+x_{1}, & Q(\alpha)=1+\alpha, & Q(0)=1 \\
R=1+x_{2} x_{3}, & R(\alpha)=1+\alpha x_{3} &
\end{array}
$$

$$
R\left(\frac{Q(0)}{y}\right)=1+\frac{1}{x_{2}} x_{3}=\frac{1}{x_{2}} \cdot 1 \cdot P\left(x_{2}\right)
$$

Finally, the positive conjecture is proved in most situation.
Theorem 4.5 (Lee-Schiffler (2015)). For any skew-symmetric cluster algebra $\mathcal{A}$, any seed ( $\mathbf{x}, \boldsymbol{y}, B$ ), and any cluster variable $u$, the Laurent polynomial expansion of $u$ in the cluster $\mathbf{x}$ has coefficients in $\mathbb{Z}_{>0} \mathbb{P}$.

The case for cluster algebra coming from acyclic quiver is proven by Kimura-Qin (2014) and the case from surface by Musiker-Schiffler-Williams (2011).


[^0]:    *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

