Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Updated: May 7, 2017

3.4 Semifields and coefficients

The mutation does not really use the frozen variables. So let us treat them as "coefficients", which leads to a more general notion of cluster algebra with semifields as coefficients.

Let us denote

$$y_j := \prod_{i=n+1}^m x_i^{b_{ij}}, \qquad j = 1, ..., n.$$

Then $y_1, ..., y_n$ encodes the same information as the lower $(n - m) \times n$ submatrix of \tilde{B} . Hence a labeled seed can equivalently be presented as triples $(\mathbf{x}, \mathbf{y}, B)$ where $\mathbf{x} = (x_1, ..., x_n), \mathbf{y} = (y_1, ..., y_n).$

Now the mutation of x_k becomes:

$$x_k x'_k = \prod_{i=n+1}^m x_i^{[b_{ik}]_+} \prod_{i=1}^n x_i^{[b_{ik}]_+} + \prod_{i=n+1}^m x_i^{[-b_{ik}]_+} \prod_{i=1}^n x_i^{[-b_{ik}]_+}$$
$$= \frac{y_k}{y_k \oplus 1} \prod_{i=1}^n x_i^{[b_{ik}]_+} + \frac{1}{y_k \oplus 1} \prod_{i=1}^n x_i^{[-b_{ik}]_+}$$

where the *semifield addition* is defined by

$$\prod_{i} x_i^{a_i} \oplus \prod_{i} x_i^{b_i} := \prod_{i} x_i^{\min(a_i, b_i)}$$

in particular,

$$1 \oplus \prod_i x_i^{b_i} := \prod_i x_i^{-[-b_i]_+}$$

^{*}Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

The mutation of the frozen variables $x_{n+1}, ..., x_m$ also induces the mutation of the coefficient *y*-variables:

$$\begin{aligned} (y'_1, ..., y'_n) &:= \mu_k(y_1, ..., y_n) \\ y'_j &:= \begin{cases} y_k^{-1} & i = k \\ y_j(y_k \oplus 1)^{-b_{kj}} & \text{if } j \neq k \text{ and } b_{kj} \leq 0 \\ y_j(y_k^{-1} \oplus 1)^{-b_{kj}} & \text{if } j \neq k \text{ and } b_{kj} \geq 0 \end{cases} \end{aligned}$$

This is called *tropical Y-seed mutation rule* This is general, we can use any semifield!

Definition 3.1. A semifield $(\mathbb{P}, \circ, \oplus)$ is an abelian group (\mathbb{P}, \circ) (written multiplicatively) together with a binary operator \oplus such that

$$\oplus : \mathbb{P} \times \mathbb{P} \longrightarrow \mathbb{P} \\
 (p,q) \mapsto p \oplus q$$

is commutative, associative, and distributive:

$$p \circ (q \oplus r) = p \circ q \oplus p \circ r$$

Note: \oplus may not be invertible!

Example 3.2. Examples of semifield $(\mathbb{P}, \circ, \oplus)$:

- $(\mathbb{R}_{>0}, \times, +)$
- $(\mathbb{R}, +, \min)$
- $(\mathbb{Q}_{sf}(u_1, ..., u_m), \cdot, +)$ "subtraction-free" rational functions
- $(Trop(y_1,...,y_m),\cdot,\oplus)$ Laurent monomials with usual multiplication and

$$\prod_{i} x_i^{a_i} \oplus \prod_{i} x_i^{b_i} := \prod_{i} x_i^{\min(a_i, b_i)}$$

 \mathbb{P} is called the *coefficient group* of our cluster algebra.

Proposition 3.3. If $(\mathbb{P}, \circ, \oplus)$ is a semifield, then

- (\mathbb{P}, \circ) is torsion free (if there exists p, m such that $p^m = 1$, then p = 1).
- Let ZP be the group ring of (P, ◦). Then it is a domain (p q = 0 ⇒ p = 0 or q = 0).
- Can define field of fractions \mathbb{QP} of \mathbb{ZP}

Proof. (1) If $p^m = 1$, then note that $1 \oplus p \oplus ... \oplus p^{m-1} \in \mathbb{P}$ but $0 \notin \mathbb{P}$, we can write

$$p = p \frac{1 \oplus p \oplus \dots \oplus p^{m-1}}{1 \oplus p \oplus \dots \oplus p^{m-1}} = \frac{p \oplus p^2 \oplus \dots \oplus p^m}{1 \oplus p \oplus \dots \oplus p^{m-1}} = 1$$

(2) Let $p, q \in \mathbb{ZP}$ with $p \circ q = 0$. Then p and q are contained in $\mathbb{Z}H$ for some finitely generated subgroup H of \mathbb{P} . Since $H \subset \mathbb{P}$ is abelian, $H \simeq \mathbb{Z}^n$, hence $\mathbb{Z}H \subset \mathbb{Z}(x_1, ..., x_n)$ consists of all Laurent polynomials in x_i . In particular $\mathbb{Z}H$ is an integral domain, and hence p = 0 or q = 0.

Then we can set our ambient field to be $\mathcal{F} := \mathbb{QP}(u_1, ..., u_n)$. Now we can rewrite previous definitions and results:

Definition 3.4. A labeled seed in \mathcal{F} is $(\mathbf{x}, \mathbf{y}, B)$ with

- $\mathbf{x} = \{x_1, ..., x_n\}$ free generating set of \mathcal{F}
- $\boldsymbol{y} = \{y_1, ..., y_n\} \subset \mathbb{P}$ any elements
- $B = n \times n$ skew-symmetrizable \mathbb{Z} -matrix

We have mutations for all \mathbf{x}, \mathbf{y} and B, together with the exchange patterns. A cluster algebra with coefficients \mathbb{P} is then

$$\mathcal{A}(\mathbf{x}, \boldsymbol{y}, B) := \mathbb{ZP}\left[\bigcup_{t \in \mathbb{T}_n} \mathbf{x}(t)\right]$$

Example 3.5. For rank n = 2 we have in the most general case:

t	B_t	$oldsymbol{y}_t$		\mathbf{x}_t	
0	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	y_1	y_2	x_1	x_2
1	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	$y_1(y_2\oplus 1)$	$\frac{1}{y_2}$	x_1	$\tfrac{x_1y_2+1}{x_2(y_2\oplus 1)}$
2	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	$rac{1}{y_1(y_2\oplus 1)}$	$\frac{y_1y_2\oplus y_1\oplus 1}{y_2}$	$\frac{x_1y_1y_2 + y_1 + y_2}{(y_1y_2 \oplus y_1 \oplus 1)x_1x_2}$	$\frac{x_1y_2+1}{x_2(y_2\oplus 1)}$
3	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	$rac{y_1\oplus 1}{y_1y_2}$	$\frac{y_2}{y_1y_2\oplus y_1\oplus 1}$	$\frac{x_1y_1y_2 + y_1 + x_2}{(y_1y_2 \oplus y_1 \oplus 1)x_1x_2}$	$\tfrac{y_1+x_2}{x_1(y_1\oplus 1)}$
4	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	$rac{y_1y_2}{y_1\oplus 1}$	$\frac{1}{y_1}$	x_2	$\tfrac{y_1+x_2}{x_1(y_1\oplus 1)}$
5	$ \left(\begin{array}{rrr} 0 & -1 \\ 1 & 0 \end{array}\right) $	y_2	\overline{y}_1	x_2	$\overline{x_1}$

Remark 3.6. The prevoius cluster algebra of geometric type = cluster algebra with coefficients $\mathbb{P} = Trop(x_{n+1}, ..., x_m)$.

- We only need the $n \times n$ matrix B
- There are no frozen variables
- Mutation of **y** only involve two variables

- But we need to mutate all ${\bf y}$ variables, there are usually more ${\bf y}$ variables than cluster variables
- Y-pattern do not in general exhibit Laurent phenomenon

Definition 3.7. Two cluster algebra $\mathcal{A}(S)$ and $\mathcal{A}(S')$ are called strongly isomorphic if there exists a \mathbb{ZP} -algebra isomorphism $\mathcal{F} \longrightarrow \mathcal{F}'$ sending some seed in S into a seed in S', thus inducing a bijection $S \longrightarrow S'$ of seeds and an algebra isomorphism $\mathcal{A}(S) \longrightarrow \mathcal{A}(S')$

Any cluster algebra \mathcal{A} is uniquely determined by any single seed $(\mathbf{x}, \mathbf{y}, B)$. Hence \mathcal{A} is determined by B and \mathbf{y} up to strong isomorphism, and we can write $\mathcal{A} = \mathcal{A}(B, \mathbf{y})$.