Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 16, 2017

5 Review of Root Systems

In this section, let us have a brief introduction to root system and finite Lie type classification using Dynkin diagrams. It follows [Fomin-Reading].

5.1 Reflection groups

Let V be Euclidean space.

Definition 5.1. • A reflection is a linear map $s: V \longrightarrow V$ that fixes a hyperplane, and reverse the direction of the normal vector of the hyperplane.

• A finite reflection group is a finite group generated by some reflections in V.

Figure 1: Orthogonal reflection

^{*}Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

Example 5.2. Symmetry of the pentagon, given by the reflection group $I_2(5)$ (Dihedral group) generated by s and t. Products of odd number of generators are again reflection through some hyperplane (indicated in the picture). Products of even number of generators are rotations by certain angles.

Figure 2: The reflection group $I_2(5)$

In general $I_2(m)$ is a group with 2m elements, generated by reflections s,t such that $(st)^m = 1$ and $s^2 = t^2 = 1$.

Definition 5.3. The set \mathcal{H} of all reflecting hyperplanes is called a Coxeter arrangement. It cuts V into connected components called regions.

Lemma 5.4. Fix an arbitrary region R_1 . Then the map $w \mapsto R_w := w(R_1)$ is a bijection between reflection group W and the set of regions. Reflections by the facet hyperplanes of R_1 generates W.

Let a hyperplane H_{α} given by $\{v : (v, \alpha) = 0\}$ for some vector α (normal vector). Let s_{α} be the reflection in the hyperplane H_{α} . Then

Lemma 5.5. s_{α} is orthogonal linear transformation (i.e. preserving inner product), and

$$s_{\alpha}(\beta) = \beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha$$

5.2 Root system

Definition 5.6. A finite root system is a finite non-empty collection Φ of nonzero vectors in V called roots such that

(1) For all $\alpha \in \Phi$, $span(\alpha) \cap \Phi = \{\pm \alpha\}$.

(2) If $\alpha \in \Phi$, then $s_{\alpha}(\Phi) = \Phi$. In particular if $\alpha \in \Phi$, then $-\alpha \in \Phi$.

Lemma 5.7. Any reflection group W correpsond to a root system Φ_W : The roots correspond to the normal vector of the reflecting hyperplanes.

- **Definition 5.8.** The simple roots $\Pi \subset \Phi$ are the roots normal to the facet hyperplanes of R_1 and pointing into the half-space containing R_1 .
 - The rank of Φ is $n = dim(span(\Phi)) = \#\{simple \ roots\}$. $\Pi = \{\alpha_i : i \in I\}$ for some index set $I = [n] := \{1, 2, ..., n\}$.
 - The set of positive roots Φ_+ (resp. negative roots Φ_-) are the roots $\alpha = \sum_{i \in I} c_i \alpha_i$ such that all $c_i \geq 0$. (resp. $c_i \leq 0$).

Lemma 5.9. Φ is disjoint union of Φ_+ and Φ_- .

We also assume

(3) (Crystallographic condition) $s_{\alpha}(\beta) = \beta - c_{\alpha\beta}\alpha$ with $c_{\alpha\beta} = 2\frac{(\alpha,\beta)}{(\alpha,\alpha)} \in \mathbb{Z}$.

It means that any simple root coordinates of any root are integers. Crystallographic reflection group W is also called the Weyl group of Φ .

Lemma 5.10. $c_{\alpha\beta} \in \{0, \pm 1, \pm 2, \pm 3\}.$

Proof. Let the angle between α and β be θ . Then $(\alpha, \beta) = |\alpha| |\beta| \cos \theta$, hence

$$c_{\alpha\beta} = 2\frac{|\beta|}{|\alpha|}\cos\theta \in \mathbb{Z}$$

and

$$c_{\alpha\beta}c_{\beta\alpha} = 4\cos\theta^2 \in \mathbb{Z}$$

which forces $|\cos \theta| = 0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, 1$. If we assume $|\beta| \ge |\alpha|$, then $\frac{|\beta|}{|\alpha|} = 1, \sqrt{2}, \sqrt{3}$ respectively. (When $|\cos \theta| = 0$ there is no restriction. When $|\cos \theta| = 1, \beta = \pm \alpha$).

Definition 5.11. The ambient space $Q_{\mathbb{R}}(\Phi) := \mathbb{R}$ -span (Φ) . Root systems Φ and Φ' are isomorphic if there is an isometry of $Q_{\mathbb{R}}(\Phi) \longrightarrow Q_{\mathbb{R}}(\Phi')$ that sends Φ to some dilation $c\Phi'$ of Φ .

Definition 5.12. The Cartan matrix of Φ is an integer matrix $C = (c_{ij})_{i,j\in I}$ where $c_{ij} := c_{\alpha_i\alpha_j} = 2\frac{(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}$ with $\alpha_i \in \Pi$.

Lemma 5.13. Root systems Φ and Φ' are isomorphic iff they have same Cartan matrix up to simultaneous rearrangement of rows and columns (i.e. reindexing).

Example 5.14. These are all 4 Cartan matrices of rank 2 and their corresponding root systems:

They correspond to tiling of the plane.

Theorem 5.15. An integer $n \times n$ matrix (c_{ij}) is a Cartan matrix of a root system iff

- (1) $c_{ii} = 2$ for every i
- (2) $c_{ij} \leq 0$ if $i \neq j$, and $c_{ij} = 0 \iff c_{ji} = 0$
- (3) There exists a diagonal matrix D such that DA is symmetric and positive definite (i.e. all eigenvalues > 0)

Definition 5.16. A root system Φ is reducible if $\Phi = \Phi_1 \amalg \Phi_2$ such that $\alpha \in \Phi_1, \beta \in \Phi_2 \Longrightarrow (\alpha, \beta) = 0$, *i.e.* C is block diagonal with > 1 blocks. Otherwise it is irreducible.

Definition 5.17. Cartan matrix of finite type can be encoded by Dynkin diagrams:

$$i \quad j \quad \text{if } a_{ij} = a_{ji} = 0$$

$$if \quad a_{ij} = a_{ji} = -1$$

$$if \quad a_{ij} = -1 \text{ and } a_{ji} = -2$$

$$if \quad a_{ij} = -1 \text{ and } a_{ji} = -3$$

Theorem 5.18 (Cartan-Killing classification of irreducible root system). Any irreducible root system is isomorphic to the root system corresponding to the Dynkin diagram of $A_n (n \ge 1), B_n (n \ge 2), C_n (n \ge 3), D_n (n \ge 4), E_6, E_7, E_8, F_4$ or G_2 .

Example 5.19 (Root systems of type A_n). The root system is realized on the hyperplane $P = \{x_1 + ... + x_n = 0\} \subset \mathbb{R}^{n+1}$. Simple roots are realized as $\alpha_i := e_{i+1} - e_i \in \mathbb{R}^{n+1}$ and positive roots are $e_i - e_j, 1 \leq j < i \leq n+1$.

Example 5.20 (Root systems of type B_n). Simple roots are realized as $\alpha_1 = e_1, \alpha_i = e_i - e_{i-1}, i \ge 2$ in \mathbb{R}^n . Positive roots are e_i and $e_i \pm e_j$ for $1 \le j < i \le n$.

Figure 3: Roots system of type B_3

Example 5.21 (Root systems of type C_n). Simple roots are realized as $\alpha_1 = 2e_1, \alpha_i = e_i - e_{i-1}$ in \mathbb{R}^n . Positive roots are $2e_i$ and $e_i \pm e_j$ for $1 \le j < i \le n$. The reflection group coincide with B_n .

Figure 4: Roots system of type C_3

In type B_n and C_n , the action of W on the roots are not transitive, there are 2 orbits, corresponding to short and long roots.

Example 5.22 (Root system of type D_n). Simple roots are realized as $\alpha_0 = e_1 + e_2$ and $\alpha_i = e_{i+1} - e_i$. Positive roots are $e_i \pm e_j$ for $1 \le j < i \le n$.

5.3 Root Systems in Lie Theory

Root systems are related to representation theory of Lie algebra. Consider simple Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} (i.e. maximal commutative Lie subalgbera consisting of semisimple elements, i.e. diagonalizable in the adjoint representation).

Definition 5.23. Let V be a representation of \mathfrak{g} . For any homomorphism $\lambda : \mathfrak{h} \longrightarrow \mathbb{C}$, *i.e.* $\lambda \in \mathfrak{h}^*$, we can define

$$V_{\lambda} := \{ v \in V : \forall \xi \in \mathfrak{h} : \xi \cdot v = \lambda(\xi)v \}$$

If V_{λ} is nonempty, then V_{λ} is called a weight space of V, and λ is called its weight. We have

$$V = \bigoplus_{\lambda \in \mathfrak{h}^*} V_{\lambda}$$

Definition 5.24. If V is the adjoint representation, i.e. \mathfrak{g} acts on itself $V := \mathfrak{g}$ by $g \cdot v = [g, v]$, then the set of nonzero weights form a root system Φ . i.e. a root $\alpha \in \Phi$ is an element in \mathfrak{h}^* . In this case we have the root space decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\Phi}\mathfrak{g}_lpha$$

Classification of root systems then give a classification of simple Lie algebra. In particular, $A_n = \mathfrak{sl}_{n+1}, B_n = \mathfrak{so}_{2n+1}, C_n = \mathfrak{sp}_{2n}$ and $D_n = \mathfrak{so}_{2n}$.

5.4 Some useful calculations

•
$$\Phi_{A_1}^+ = \{\alpha\}$$

•
$$\Phi_{A_2}^+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}$$

- $\Phi_{A_3}^+ = \{\alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_3\}$
- Let $s_i := s_{\alpha_i}$. Then $s_i(\alpha_i) = -\alpha_i$
- if $c_{ij} = -1$, then $s_i(\alpha_j) = \alpha_i + \alpha_j$
- if $c_{ij} = -2$, then $s_i(\alpha_j) = 2\alpha_i + \alpha_j$

Each element $w \in W$ can be written as product of simple reflections

$$w = s_{i_1} s_{i_2} \dots s_{i_l}$$

Shortest factorization of this form is called a *reduced word* for w, and l is called the *length* of w.

Proposition 5.25. Any Weyl group has a unique element w_0 of maximal length, called the longest element

- $W_{A_1} = \{1, s_1\}$
- $W_{A_2} = \{1, s_1, s_2, s_1s_2, s_2s_1, w_0\}$, longest element is $w_0 = s_1s_2s_1 = s_2s_1s_2$
- $W_{A_3} = S_4$ the permutation group. $w_0 = s_1 s_2 s_1 s_3 s_2 s_1$

- $W_{A_n} = S_{n+1}$ is generated by transposition $s_i = (i, i+1)$. We have $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$.
- $s_1s_2s_1s_3s_2s_3$ is non-reduced: it equals $s_2s_1s_3s_2$.
- In type $A_2, w_0(\alpha_1) = -\alpha_2, w_0(\alpha_2) = -\alpha_1$
- In type $A_3, w_0(\alpha_1) = -\alpha_3, w_0(\alpha_2) = -\alpha_2, w_0(\alpha_3) = -\alpha_1$
- In general, $w_0(\alpha_i) = -\alpha_{i^*}$. The map $i \mapsto i^*$ is called the Dynkin involution.

Definition 5.26. Dynkin diagram has no cycles \implies bipartite. Let $I = I_+ \amalg I_$ where the nodes are marked as + and - alternatively. A Coxeter element is defined as

$$c = \left(\prod_{i \in I_+} s_i\right) \left(\prod_{i \in I_-} s_i\right) :=: t_+ t_-$$

The order h of c (i.e. $c^h = 1$) is called Coxeter number.

Proposition 5.27. The longest element w_0 can be written as

$$w_0 = \underbrace{t_+ t_- t_+ t_- \dots t_\pm}_h$$

In particular if \mathfrak{g} is not of type A_{2n} then h is even and

$$w_0 = c^{\frac{h}{2}}.$$

Theorem 5.28. We have the following table:

Type	$ \Phi_+ $	h	W
A_n	n(n+1)/2	n+1	(n+1)!
B_n, C_n	n^2	2n	$2^n n!$
D_n	n(n-1)	2(n-1)	$2^{n-1}n!$
E_6	36	12	51840
E_7	63	18	2903040
E_8	120	30	696729600
F_4	24	12	1152
G_2	6	6	12