Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 16, 2017

5 Review of Root Systems

In this section, let us have a brief introduction to root system and finite Lie type classification using Dynkin diagrams. It follows [Fomin-Reading].

5.1 Reflection groups

Let V be Euclidean space.
Definition 5.1. - A reflection is a linear map $s: V \longrightarrow V$ that fixes a hyperplane, and reverse the direction of the normal vector of the hyperplane.

- A finite reflection group is a finite group generated by some reflections in V.

Figure 1: Orthogonal reflection

[^0]Example 5.2. Symmetry of the pentagon, given by the reflection group $I_{2}(5)$ (Dihedral group) generated by s and t. Products of odd number of generators are again reflection through some hyperplane (indicated in the picture). Products of even number of generators are rotations by certain angles.

Figure 2: The reflection group $I_{2}(5)$
In general $I_{2}(m)$ is a group with $2 m$ elements, generated by reflections s, t such that $(s t)^{m}=1$ and $s^{2}=t^{2}=1$.

Definition 5.3. The set \mathcal{H} of all reflecting hyperplanes is called a Coxeter arrangement. It cuts V into connected components called regions.

Lemma 5.4. Fix an arbitrary region R_{1}. Then the map $w \mapsto R_{w}:=w\left(R_{1}\right)$ is a bijection between reflection group W and the set of regions. Reflections by the facet hyperplanes of R_{1} generates W.

Let a hyperplane H_{α} given by $\{v:(v, \alpha)=0\}$ for some vector α (normal vector). Let s_{α} be the reflection in the hyperplane H_{α}. Then

Lemma 5.5. s_{α} is orthogonal linear transformation (i.e. preserving inner product), and

$$
s_{\alpha}(\beta)=\beta-\frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha
$$

5.2 Root system

Definition 5.6. A finite root system is a finite non-empty collection Φ of nonzero vectors in V called roots such that
(1) For all $\alpha \in \Phi, \operatorname{span}(\alpha) \cap \Phi=\{ \pm \alpha\}$.
(2) If $\alpha \in \Phi$, then $s_{\alpha}(\Phi)=\Phi$. In particular if $\alpha \in \Phi$, then $-\alpha \in \Phi$.

Lemma 5.7. Any reflection group W correpsond to a root system Φ_{W} : The roots correspond to the normal vector of the reflecting hyperplanes.

Definition 5.8. - The simple roots $\Pi \subset \Phi$ are the roots normal to the facet hyperplanes of R_{1} and pointing into the half-space containing R_{1}.

- The rank of Φ is $n=\operatorname{dim}(\operatorname{span}(\Phi))=\#\{$ simple roots $\}$. $\Pi=\left\{\alpha_{i}: i \in I\right\}$ for some index set $I=[n]:=\{1,2, \ldots, n\}$.
- The set of positive roots Φ_{+}(resp. negative roots Φ_{-}) are the roots $\alpha=$ $\sum_{i \in I} c_{i} \alpha_{i}$ such that all $c_{i} \geq 0$. (resp. $c_{i} \leq 0$).

Lemma 5.9. Φ is disjoint union of Φ_{+}and Φ_{-}.
We also assume
(3) (Crystallographic condition) $s_{\alpha}(\beta)=\beta-c_{\alpha \beta} \alpha$ with $c_{\alpha \beta}=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \in \mathbb{Z}$.

It means that any simple root coordinates of any root are integers. Crystallographic reflection group W is also called the Weyl group of Φ.

Lemma 5.10. $c_{\alpha \beta} \in\{0, \pm 1, \pm 2, \pm 3\}$.
Proof. Let the angle between α and β be θ. Then $(\alpha, \beta)=|\alpha||\beta| \cos \theta$, hence

$$
c_{\alpha \beta}=2 \frac{|\beta|}{|\alpha|} \cos \theta \in \mathbb{Z}
$$

and

$$
c_{\alpha \beta} c_{\beta \alpha}=4 \cos \theta^{2} \in \mathbb{Z}
$$

which forces $|\cos \theta|=0, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}, 1$. If we assume $|\beta| \geq|\alpha|$, then $\frac{|\beta|}{|\alpha|}=1, \sqrt{2}, \sqrt{3}$ respectively. (When $|\cos \theta|=0$ there is no restriction. When $|\cos \theta|=1, \beta=$ $\pm \alpha$).

Definition 5.11. The ambient space $Q_{\mathbb{R}}(\Phi):=\mathbb{R}-\operatorname{span}(\Phi)$. Root systems Φ and Φ^{\prime} are isomorphic if there is an isometry of $Q_{\mathbb{R}}(\Phi) \longrightarrow Q_{\mathbb{R}}\left(\Phi^{\prime}\right)$ that sends Φ to some dilation $c \Phi^{\prime}$ of Φ.

Definition 5.12. The Cartan matrix of Φ is an integer matrix $C=\left(c_{i j}\right)_{i, j \in I}$ where $c_{i j}:=c_{\alpha_{i} \alpha_{j}}=2 \frac{\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ with $\alpha_{i} \in \Pi$.

Lemma 5.13. Root systems Φ and Φ^{\prime} are isomorphic iff they have same Cartan matrix up to simultaneous rearrangement of rows and columns (i.e. reindexing).

Example 5.14. These are all 4 Cartan matrices of rank 2 and their corresponding root systems:

Type $A_{1} \times A_{1}$
C $=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Type A_{2}

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Type B_{2}
$C=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)$

Type G_{2}
C $=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$

They correspond to tiling of the plane.
Theorem 5.15. An integer $n \times n$ matrix $\left(c_{i j}\right)$ is a Cartan matrix of a root system iff
(1) $c_{i i}=2$ for every i
(2) $c_{i j} \leq 0$ if $i \neq j$, and $c_{i j}=0 \Longleftrightarrow c_{j i}=0$
(3) There exists a diagonal matrix D such that $D A$ is symmetric and positive definite (i.e. all eigenvalues >0)

Definition 5.16. A root system Φ is reducible if $\Phi=\Phi_{1} \amalg \Phi_{2}$ such that $\alpha \in$ $\Phi_{1}, \beta \in \Phi_{2} \Longrightarrow(\alpha, \beta)=0$, i.e. C is block diagonal with >1 blocks. Otherwise it is irreducible.
Definition 5.17. Cartan matrix of finite type can be encoded by Dynkin diagrams:

$$
\begin{array}{ll}
\bullet & \bullet \bullet \\
\bullet & \text { if } a_{i j}=a_{j i}=0 \\
\bullet & \text { if } a_{i j}=a_{j i}=-1 \\
\Longleftrightarrow & \text { if } a_{i j}=-1 \text { and } a_{j i}=-2 \\
\Longleftrightarrow & \text { if } a_{i j}=-1 \text { and } a_{j i}=-3
\end{array}
$$

Theorem 5.18 (Cartan-Killing classification of irreducible root system). Any irreducible root system is isomorphic to the root system corresponding to the Dynkin diagram of $A_{n}(n \geq 1), B_{n}(n \geq 2), C_{n}(n \geq 3), D_{n}(n \geq 4), E_{6}, E_{7}, E_{8}, F_{4}$ or G_{2}.

Example 5.19 (Root systems of type A_{n}). The root system is realized on the hyperplane $P=\left\{x_{1}+\ldots+x_{n}=0\right\} \subset \mathbb{R}^{n+1}$. Simple roots are realized as $\alpha_{i}:=$ $e_{i+1}-e_{i} \in \mathbb{R}^{n+1}$ and positive roots are $e_{i}-e_{j}, 1 \leq j<i \leq n+1$.

Example 5.20 (Root systems of type B_{n}). Simple roots are realized as $\alpha_{1}=$ $e_{1}, \alpha_{i}=e_{i}-e_{i-1}, i \geq 2$ in \mathbb{R}^{n}. Positive roots are e_{i} and $e_{i} \pm e_{j}$ for $1 \leq j<i \leq n$.

Figure 3: Roots system of type B_{3}
Example 5.21 (Root systems of type C_{n}). Simple roots are realized as $\alpha_{1}=$ $2 e_{1}, \alpha_{i}=e_{i}-e_{i-1}$ in \mathbb{R}^{n}. Positive roots are $2 e_{i}$ and $e_{i} \pm e_{j}$ for $1 \leq j<i \leq n$. The reflection group coincide with B_{n}.

Figure 4: Roots system of type C_{3}
In type B_{n} and C_{n}, the action of W on the roots are not transitive, there are 2 orbits, corresponding to short and long roots.

Example 5.22 (Root system of type D_{n}). Simple roots are realized as $\alpha_{0}=e_{1}+e_{2}$ and $\alpha_{i}=e_{i+1}-e_{i}$. Positive roots are $e_{i} \pm e_{j}$ for $1 \leq j<i \leq n$.

5.3 Root Systems in Lie Theory

Root systems are related to representation theory of Lie algebra. Consider simple Lie algebra \mathfrak{g} with Cartan subalgebra \mathfrak{h} (i.e. maximal commutative Lie subalgbera consisting of semisimple elements, i.e. diagonalizable in the adjoint representation).

Definition 5.23. Let V be a representation of \mathfrak{g}. For any homomorphism $\lambda: \mathfrak{h} \longrightarrow$ \mathbb{C}, i.e. $\lambda \in \mathfrak{h}^{*}$, we can define

$$
V_{\lambda}:=\{v \in V: \forall \xi \in \mathfrak{h}: \xi \cdot v=\lambda(\xi) v\}
$$

If V_{λ} is nonempty, then V_{λ} is called a weight space of V, and λ is called its weight. We have

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}
$$

Definition 5.24. If V is the adjoint representation, i.e. \mathfrak{g} acts on itself $V:=\mathfrak{g}$ by $g \cdot v=[g, v]$, then the set of nonzero weights form a root system Φ. i.e. a root $\alpha \in \Phi$ is an element in \mathfrak{h}^{*}. In this case we have the root space decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

Classification of root systems then give a classification of simple Lie algebra. In particular, $A_{n}=\mathfrak{s l}_{n+1}, B_{n}=\mathfrak{s o}_{2 n+1}, C_{n}=\mathfrak{s p}_{2 n}$ and $D_{n}=\mathfrak{s o}_{2 n}$.

5.4 Some useful calculations

- $\Phi_{A_{1}}^{+}=\{\alpha\}$
- $\Phi_{A_{2}}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$
- $\Phi_{A_{3}}^{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$
- Let $s_{i}:=s_{\alpha_{i}}$. Then $s_{i}\left(\alpha_{i}\right)=-\alpha_{i}$
- if $c_{i j}=-1$, then $s_{i}\left(\alpha_{j}\right)=\alpha_{i}+\alpha_{j}$
- if $c_{i j}=-2$, then $s_{i}\left(\alpha_{j}\right)=2 \alpha_{i}+\alpha_{j}$

Each element $w \in W$ can be written as product of simple reflections

$$
w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{l}}
$$

Shortest factorization of this form is called a reduced word for w, and l is called the length of w.

Proposition 5.25. Any Weyl group has a unique element w_{0} of maximal length, called the longest element

- $W_{A_{1}}=\left\{1, s_{1}\right\}$
- $W_{A_{2}}=\left\{1, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, w_{0}\right\}$, longest element is $w_{0}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$
- $W_{A_{3}}=\mathcal{S}_{4}$ the permutation group. $w_{0}=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}$
- $W_{A_{n}}=\mathcal{S}_{n+1}$ is generated by transposition $s_{i}=(i, i+1)$. We have $s_{i} s_{i+1} s_{i}=$ $s_{i+1} s_{i} s_{i+1}$.
- $s_{1} s_{2} s_{1} s_{3} s_{2} s_{3}$ is non-reduced: it equals $s_{2} s_{1} s_{3} s_{2}$.
- In type $A_{2}, w_{0}\left(\alpha_{1}\right)=-\alpha_{2}, w_{0}\left(\alpha_{2}\right)=-\alpha_{1}$
- In type $A_{3}, w_{0}\left(\alpha_{1}\right)=-\alpha_{3}, w_{0}\left(\alpha_{2}\right)=-\alpha_{2}, w_{0}\left(\alpha_{3}\right)=-\alpha_{1}$
- In general, $w_{0}\left(\alpha_{i}\right)=-\alpha_{i^{*}}$. The map $i \mapsto i^{*}$ is called the Dynkin involution.

Definition 5.26. Dynkin diagram has no cycles \Longrightarrow bipartite. Let $I=I_{+} \amalg I_{-}$ where the nodes are marked as + and - alternatively. A Coxeter element is defined as

$$
c=\left(\prod_{i \in I_{+}} s_{i}\right)\left(\prod_{i \in I_{-}} s_{i}\right):=: t_{+} t_{-}
$$

The order h of c (i.e. $c^{h}=1$) is called Coxeter number.
Proposition 5.27. The longest element w_{0} can be written as

$$
w_{0}=\underbrace{t_{+} t_{-} t_{+} t_{-} \ldots t_{ \pm}}_{h}
$$

In particular if \mathfrak{g} is not of type $A_{2 n}$ then h is even and

$$
w_{0}=c^{\frac{h}{2}} .
$$

Theorem 5.28. We have the following table:

Type	$\left\|\Phi_{+}\right\|$	h	$\|W\|$
A_{n}	$n(n+1) / 2$	$n+1$	$(n+1)!$
B_{n}, C_{n}	n^{2}	$2 n$	$2^{n} n!$
D_{n}	$n(n-1)$	$2(n-1)$	$2^{n-1} n!$
E_{6}	36	12	51840
E_{7}	63	18	2903040
E_{8}	120	30	696729600
F_{4}	24	12	1152
G_{2}	6	6	12

[^0]: *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan
 Email: ivan.ip@math.kyoto-u.ac.jp

