Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 19, 2017

6 Finite Type Classicification

Definition 6.1. A cluster algebra is of finite type if it has finitely many cluster variables (hence finitely many seeds).

Definition 6.2. A cluster algebra is of finite mutation type if there are only finitely many quivers appearing in the seeds.

Definition 6.3. Let B be an integer square matrix.

• The Cartan counterpart of B is the matrix $A = A(B) = (a_{ij})$ defined by

$$a_{ij} = \begin{cases} 2 & i = j \\ -|b_{ij}| & i \neq j \end{cases}$$

• B is called sign-skew-symmetric if for every i, j, either

$$b_{ij} = b_{ji} = 0, \quad or \quad b_{ij}b_{ji} < 0$$

• B is called 2-finite if any matrix B' mutation equivalent to B is sign-skew-symmetric and $|b'_{ij}b'_{ji}| \leq 3$

Theorem 6.4 (Classification). Finite type cluster algebra can be classified by the classical Dynkin diagrams. More precisely, for a cluster algebra \mathcal{A} , the following are equivalent:

- (1) \mathcal{A} is of finite type.
- (2) For every seed $(\mathbf{x}, \mathbf{y}, B)$ in \mathcal{A} , the entries of $B = (b_{ij})$ satisfy $|b_{ij}b_{ji}| \leq 3$

^{*}Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

(3) $\mathcal{A} = \mathcal{A}(B_0, \boldsymbol{y})$ where B_0 is sign-skew-symmetric matrix such that $A = A(B_0)$ is a Cartan matrix of finite type, and $b_{ij}b_{jk} \ge 0$ for all i, j, k.

If B, B' are sign-skew-symmetric matrices such that A(B), A(B') are Cartan matrices of finite type, then $\mathcal{A}(B)$ and $\mathcal{A}(B')$ are strongly isomorphic (i.e. $B \sim B'$) iff A(B) and A(B') are of the same Cartan-Killing type.

- *Outline of proof.* (1) \longrightarrow (2): Reduce to rank 2 case and show that the corresponding exchange matrix $\begin{pmatrix} 0 & b \\ -c & 0 \end{pmatrix}$ must be 2-finite.
 - (2) \rightarrow (3): A diagram is not 2-finite if it has a subdiagram which is not 2-finite. Eliminate all the cases that are mutation equivalent to these diagrams.
 - (3) \rightarrow (1): Construct a polytope $\Delta(\Phi)$ from the root system with Cartan matrix A, and show that $\Delta(\Phi)$ is isomorphic to the cluster complex (vertex = cluster variable, maximal simplex = cluster).

Finally, If A(B) = A(B'), can assume $\Gamma(B) = \Gamma(B')$ then show B = B'. Conversely, if $\mathcal{A}(B) \simeq \mathcal{A}(B')$, the polytope $\Delta(\Phi) \simeq \Delta(\Phi') \Longrightarrow \Phi$ and Φ' has same rank and cardinality. Only case is (B_n, C_n) and (B_6, C_6, E_6) but the symmetrizing matrix D is different for all of them.

In particular, the proof of $(3) \longrightarrow (1)$ gives us an explicit description of the clusters.

Definition 6.5. The almost positive roots are defined by $\Phi_{\geq -1} = (-\Pi) \amalg \Phi_+$.

We write $x^{\alpha} := \prod_{i \in I} x_i^{a_i}$ if $\alpha = \sum_{i \in I} a_i \alpha_i$.

Theorem 6.6. There is a bijection

$$\alpha \mapsto x[\alpha]$$

between $\Phi_{\geq -1}$ and cluster variables of \mathcal{A} such that $x[\alpha]$ is expressed as Laurent polynomial in the initial cluster \mathbf{x}_0 :

$$x[\alpha] := \frac{P_{\alpha}(\mathbf{x}_0)}{\mathbf{x}_0^{\alpha}}$$

for some polynomial P_{α} over \mathbb{ZP} with nonzero constant term. Under this bijection, $x[-\alpha_i] := x_i$.

Example 6.7. Looking at the quiver defining the cluster algebra, we have:

- $\mathbb{C}[Gr(2, n+3)]$ is cluster algebra of type A_n (snake diagram)
- $\mathbb{C}[SL_3/N]$ is cluster algebra of type A_1
- $\mathbb{C}[SL_4/N]$ is cluster algebra of type A_3
- $\mathbb{C}[SL_5/N]$ is cluster algebra of type D_6
- $\mathbb{C}[SL_n/N]$ is cluster algebra of infinite type for $n \ge 6$

6.1 2-finite matrix

We first discuss $(1) \rightarrow (2)$. Let \mathcal{A} be finite type. To show $|b_{ij}b_{ji}| \leq 3$ it suffices to restrict our attention to mutations in index *i* and *j*, i.e. rank 2 case. Hence let our mutation be μ_1 and μ_2 , with exchange matrix

$$B = \left(\begin{array}{cc} 0 & b \\ -c & 0 \end{array}\right).$$

We show that if |bc| > 3, then we will obtain infinitely many cluster variables. Let the initial cluster variable be $\{x_1, x_2\}$ and we treat the rest of the variables as coefficients. Let $\langle m \rangle = \begin{cases} 1 & m \text{ is odd} \\ 2 & m \text{ is even} \end{cases}$, and we mutate the variables alternatively, which we know is a Laurent polynomial

$$x_m := \mu_{\langle m \rangle}(x_{m-1}) = \frac{N_m(x_1, x_2)}{x_1^{d_1(m)} x_2^{d_2(m)}}$$

Consider a lattice with bases $\{\alpha_1, \alpha_2\}$, and the Weyl group W generated by simple reflections s_1, s_2 given on the basis by

$$s_1 = \begin{pmatrix} -1 & b \\ 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 0 \\ c & -1 \end{pmatrix}$$

One can think of this as an abstract root system Φ with (generalized) Cartan matrix $\begin{pmatrix} 2 & -b \\ -c & 2 \end{pmatrix}$ on simple roots $\{\alpha_1, \alpha_2\}$. Then each element $w \in W$ is of the form

$$w_1(m) := s_1 s_2 \dots s_{\langle m \rangle}, \qquad w_2(m) := s_2 s_1 \dots s_{\langle m+1 \rangle}$$

and we know that W is finite iff $|bc| \leq 3$. We let $w_1(0) = w_2(0) = e$. Finally we let $\delta(m) := d_1(m)\alpha_1 + d_2(m)\alpha_2$.

Theorem 6.8. We have

$$\delta(m+3) = w_1(m) \cdot \alpha_{(m+1)}, \qquad \delta(-m) = w_2(m) \cdot \alpha_{(m+2)}$$

and they are all distinct. In particular, all x_m for $m \in \mathbb{Z}$ has different denominators $x_1^{d_1(m)} x_2^{d_2(m)}$.

We have already verified the denominators in the finite rank 2 case. This can be treated as an infinite version of the rank 2 case of Theorem 6.6.

Proof. For m = 0 and m = 1, we have

$$\begin{split} \delta(1) &= -\alpha_1 & \delta(2) &= -\alpha_2 \\ \delta(3) &= \alpha_1 & \delta(4) &= b\alpha_1 + \alpha_2 = s_1(\alpha_2) \\ \delta(0) &= \alpha_2 & \delta(-1) &= \alpha_1 + c\alpha_2 = s_2(\alpha_1) \end{split}$$

Now by induction on m, assume $m \ge 2$. From

$$x_{m+1}x_{m-1} = \begin{cases} x_m^b + 1 & m \text{ is odd} \\ x_m^c + 1 & m \text{ is even} \end{cases}$$

we have

$$\delta(m+1) + \delta(m-1) = \begin{cases} b\delta(m) & m \text{ is odd} \\ c\delta(m) & m \text{ is even} \end{cases}$$

If m is odd, we have

$$\delta(m+3) = b\delta(m+2) - \delta(m+1)$$

= induction $bw_1(m-1) \cdot \alpha_1 - w_1(m-2) \cdot \alpha_2$
= $w_1(m-1) \cdot (s_1(\alpha_2) - \alpha_2) - w_1(m-2) \cdot \alpha_2$
= $w_1(m) \cdot \alpha_2 - w_1(m-2) \cdot (s_2(\alpha_2) + \alpha_2)$
= $w_1(m) \cdot \alpha_2$

Similar argument works with m even and m negative.

Next we discuss the implication of 2-finite matrix.

Proposition 6.9. Every 2-finite matrix is skew-symmetrizable

Definition 6.10. A diagram of a sign-skew-symmetric matrix B is the weighted directed graph $\Gamma(B)$ such that we have weighted arrows i $\xrightarrow{|b_{ij}b_{ji}|} j$ if $b_{ij} > 0$.

Lemma 6.11. Let B be 2-finite matrix. Then

- (1) The edges of every triangle in $\Gamma(B)$ are oriented in a cyclic way,
- (2) The edge weights are either $\{1,1,1\}$ or $\{2,2,1\}$

Proof. Suppose $b_{ij}, b_{ik}, b_{kj} > 0$. Then in $B' = \mu_k(B)$, we have $b'_{ij} = b_{ij} + b_{ik}b_{kj} \ge 2$ and $b'_{ji} = b_{ji} - b_{jk}b_{ki} \le -2$ violating 2-finiteness. Hence the triangle are oriented in a cylic way. Hence we can assume

$$B = \begin{pmatrix} 0 & a_1 & -c_1 \\ -a_2 & 0 & b_1 \\ c_2 & -b_2 & 0 \end{pmatrix}$$

all variables positive integers. Let $-c_1$ has maximal absolute value. Then

$$\mu_2(B) = \begin{pmatrix} 0 & -a_1 & a_1b_1 - c_1 \\ a_2 & 0 & -b_1 \\ -a_2b_2 + c_2 & b_2 & 0 \end{pmatrix}$$

and by (1) we have

$$a_1b_1 - c_1 \ge 0, a_2b_2 - c_2 \ge 0$$

We show that the inequalities must be equal: Otherwise

$$a_2b_2 > c_2 \ge 1 \Longrightarrow max(a_2, b_2) \ge 2$$
$$a_1b_1 > c_1 \ge max(a_1, b_1) \Longrightarrow a_1, b_1 \ge 2$$
$$max(a_1a_2, b_1b_2) \ge 4(!)$$

Hence we have $c_1 = a_1b_1$ and $c_2 = a_2b_2$. The only choices for $\{a_1a_2, b_1b_2, c_1c_2\}$ are $\{1, 1, 1\}, \{2, 2, 1\}$ and

$$\{3,1,3\} = \{3 \cdot 1, 1 \cdot 1, 3 \cdot 1\}$$

or

$$\{1,3,3\} = \{1 \cdot 1, 3 \cdot 1, 3 \cdot 1\}.$$

In the case $\{3, 1, 3\}$, $B' = \mu_1(B)$ has $|b'_{23}b'_{32}| = 4$ violating 2-finiteness. Similarly for $\{1, 3, 3\}$.

6.2 Diagram mutation

Lemma 6.12. Let B be 2-finite with diagram $\Gamma(B)$. The diagram $\Gamma' = \Gamma(\mu_k(B))$ can be obtained by

- The orientation of all edges incident to k are reversed, with same weights
- For any path $i \longrightarrow k \longrightarrow j$, the diagram changes as

where

$$\sqrt{c} + \sqrt{c'} = \sqrt{ab}$$

• All the rest of edges and weights remain unchanged.

Observation. Any subdiagram of a 2-finite diagram is 2-finite. Equivalently, any diagram that has a 2-infinite subdiagram is 2-infinite.

6.2.1 Tree diagrams

Proposition 6.13. Let T be a subdiagram of a diagram Γ such that

- (1) T is a tree
- (2) T is attached to Γ by a single vertex $v \in T$, i.e. $\Gamma \{v\}$ and $T \{v\}$ are disjoint.

Then any two orientations on T is mutation equivalent.

Proof. Induction on size of T.

Definition 6.14. A diagram Γ is called extended Dynkin tree diagram if

- Γ is a tree diagram with edge weights ≤ 3
- Γ is not Dynkin diagram
- Γ every connected subdiagram of Γ is a Dynkin diagram

The complete list gives the Dynkin diagrams associated with untwisted affine Lie algebras except $A_n^{(1)}$ which is a loop.

Figure 1: Extended Dynkin tree diagrams

Proposition 6.15. Any 2-finite tree diagram is an orientation of a Dynkin diagram

Proof. Let us show that if it is not Dynkin, then it is not 2-finite. Hence it suffices to take the minimal subdiagram that is not Dynkin, therefore it is enough to consider the extended Dynkin tree diagrams, with arbitrary orientations.

For $X_n^{(1)}$ with X = B, C, D, orient the tree from left to right. Mutate at second vertex from left and consider subdiagram: $X_n^{(1)} \to X_{n-1}^{(1)}$. Hence only need to consider $D_4^{(1)}, B_3^{(1)}, C_2^{(1)}$.

- $C_2^{(1)} \sim$ triangle with weights (2,2,2). (!)
- $B_3^{(1)}$ Mutate at branch: subdiagram C_2^1 . (!)
- (HW) $D_4^{(1)} \sim$ contain 2-infinite triangle (!)
- (HW) $G_2^{(1)} \sim$ 2-infinite triangle (!)
- (HW) $F_4^{(1)} \sim \text{subdiagram } C_2^1$. (!)

Definition 6.16. For $p, q, r \in \mathbb{Z}_{\geq 0}$ define

- Tree $T_{p,q,r}$: A_p, A_q, A_r join at one extra vertex.
- $S_{p,q,r}^s$: $A_{p-1}, A_{q-1}, A_{r-1}$ joined to 3 consecutive vertices on a cyclically oriented s + 3 cycle.

Figure 2: Tree diagram $T_{5,4,2}$

Figure 3: Diagram $S^3_{4,3,2}$

Lemma 6.17. $S^{s}_{p,q,r} \sim T_{p+r-1,q,s}$

Proof. Remove A_q , we get A_{p+s+r} . Reorient the tree. Mutate at $\mu_1 \circ ... \circ_{s+r}$. \Box

- $E_6^{(1)} = T_{2,2,2} \sim S_{2,2,1}^2 \supset D_5^{(1)}$
- $E_7^{(1)} = T_{3,1,3} \sim S_{3,1,1}^3 \supset E_6^{(1)}$
- $E_8^{(1)} = T_{2,1,5} \sim S_{2,1,1}^5 \supset E_7^{(1)}$

6.2.2 Cycles

Proposition 6.18. Each 2-finite cycle of length n is cyclically oriented, and is either:

- (a) oriented cycle with weights =1: $\sim D_n$, or
- (b) oriented triangle with weights (2,2,1): ~ B_3 , or
- (c) oriented 4-cycle with weights (2, 1, 2, 1): ~ F_4 .
- *Proof.* Cyclic oriented: Induction on n. Let v has one incoming and one outgoing edge. $\Gamma' = \mu_v(\Gamma)$ has an n-1 cycle Γ'' as subdiagram, which is cyclic by induction $\Longrightarrow \Gamma$ is cyclic.
 - Γ'' has same edge weights product π as Γ ($c = 0 \Longrightarrow ab = c'$). Hence $\pi = 1$ or 4 (since triangle is (1,1,1) or (2,2,1)).
 - If $\pi = 1$, $\Gamma = S_{1,1,1}^{n-3} \sim T_{1,1,n-3} = D_n$
 - If $\pi = 4$, it has 2 edges with weight 2. If it is not (b) or (c), it contains $C_m^{(1)}$.

6.2.3 Remaining cases

 $n \leq 3$ either tree or cycle, already done. By induction: pick vertex $v \in \Gamma$ so that $\Gamma' = \Gamma - \{v\}$ is connected. We know Γ' is 2-finite, hence $\Gamma' \sim X_n$. Now do the mutation and assume $\Gamma' \simeq X_n$, and see how v is connected to Γ' .

Case 1: Γ' no branch point: A_n, B_n, F_4, G_2 .

- -v connect to one vertex: tree.
- -v connect to > 2 vertices: wrong cycles (!)
- v connect to 2 vertices v_1, v_2 : Γ has a cycle C which is of the three types (a)-(c) by Prop 6.18.
 - (a) \cdot If Γ has weight ≥ 2 : it contains $B_m^{(1)}$ or $G_2^{(1)}$ (!) unless C is 3-cycle, then $\mu_v(\Gamma) \simeq B_{n+1}$.
 - · If Γ has unit weight: $\Gamma \sim S_{p,0,r}^s$
 - (b) · If one of $(v, v_1), (v, v_2)$ has weight $1, \mu_v(\Gamma) \sim$ tree.
 - If both $(v, v_1), (v, v_2)$ has weight 2, and ΓC has weight ≥ 2 , then $\Gamma \supset C_m^{(1)}$ or $\Gamma \supset G_2^{(1)}$ (!)
 - Otherwise $\Gamma \sim B_{n+1}$.
 - (c) Any diagram $\{v'\} \cup C$ is 2-infinite. Extra edge weight = 1,2,3: contain $B_3^{(1)}, C_2^{(1)}, G_2^{(1)}$ respectively.

Case 2: $\Gamma' \sim D_n \sim n$ -cycle with unit weights.

- -v connect to one vertex v_1
 - * (v, v_1) has weight ≥ 2 : $\Gamma \supset B_3^{(1)}$ or $G_2^{(1)}$.
 - * (v, v_1) has weight 1: $\Gamma \sim$ tree
- -v connect to two adjacent vertices:
 - * \mathcal{C} is (1,1,1) triangle: $\mu_v(\Gamma) = cycle \sim D_{n+1}$
 - * \mathcal{C} is (2,2,1) triangle: $\mu_v(\Gamma)$ has bad cycle (!)

-v connect to two non-adjacent vertices: bad cycle (!)

Case 3: $\Gamma' \sim E_n = T_{1,2,n-4} \sim S_{1,2,1}^{n-4}$ an oriented (n-1) cycle \mathcal{C} with one extra edge of weight 1 connecting $v_1 \notin \mathcal{C}$.

- -v connect to v_1 only.
 - * (v, v_1) has weight ≥ 2 , then $\Gamma \supset B_3^{(1)}, G_2^{(1)}$.
 - * (v, v_1) has weight 1: $\Gamma \sim$ tree.
- v connect to $v_2 \in \mathcal{C}$ only: $\Gamma \supset D_m^{(1)}, B_3^{(1)}$ or $G_2^{(1)}$.
- -v connect to ≥ 2 vertices of \mathcal{C} : $\Gamma \{v_1\} \sim D_n$ Reduce to case 2.
- -v connect to v_1 and single vertex $v_2 \in \mathcal{C}$: Let v_0 be the only vertex on \mathcal{C} adjacent to v_1 in Γ' .
 - * $v_2 \neq v_0$ nor connect to v_0 , bad cycles (!)
 - * $v_2 = v_0$: (v, v_1, v_2) is an oriented triangle. If (v, v_1) has weight 1, $\mu_{v_1}(\Gamma) \sim$ tree. Otherwise $\mu_{v_1}(\Gamma)$ contains $B_3^{(1)}$.
 - * v_2 connect to v_0 : $\Gamma \{v_0\}$ has no branch point: reduce to Case 1.

This completes the proof of the classification.

6.3 Finite mutation type

A larger class of finiteness of cluster algebra is given by finite mutation type:

Definition 6.19. A skew-symmetric cluster algebra (i.e. defined by a quiver) is of finite mutation type if the quiver mutation class is finite.

Theorem 6.20. Finite mutation type cluster algebra is classified by

- cluster algebra from surface (quiver arising from the triangulation of surfaces, following our previous rules)
- cluster algebra of rank n = 2
- cluster algebra from the E_6, E_7, E_8 and $E_6^{(1)}, E_7^{(1)}, E_8^{(1)}$ quivers (see Figure 1)

• cluster algebra from quivers of 5 exceptional types: