Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 19, 2017

6 Finite Type Classicification

Definition 6.1. A cluster algebra is of finite type if it has finitely many cluster variables (hence finitely many seeds).

Definition 6.2. A cluster algebra is of finite mutation type if there are only finitely many quivers appearing in the seeds.

Definition 6.3. Let B be an integer square matrix.

- The Cartan counterpart of B is the matrix $A=A(B)=\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}2 & i=j \\ -\left|b_{i j}\right| & i \neq j\end{cases}
$$

- B is called sign-skew-symmetric if for every i, j, either

$$
b_{i j}=b_{j i}=0, \quad \text { or } \quad b_{i j} b_{j i}<0
$$

- B is called 2-finite if any matrix B^{\prime} mutation equivalent to B is sign-skewsymmetric and $\left|b_{i j}^{\prime} b_{j i}^{\prime}\right| \leq 3$
Theorem 6.4 (Classification). Finite type cluster algebra can be classified by the classical Dynkin diagrams. More precisely, for a cluster algebra \mathcal{A}, the following are equivalent:
(1) \mathcal{A} is of finite type.
(2) For every seed $(\mathbf{x}, \boldsymbol{y}, B)$ in \mathcal{A}, the entries of $B=\left(b_{i j}\right)$ satisfy $\left|b_{i j} b_{j i}\right| \leq 3$

[^0](3) $\mathcal{A}=\mathcal{A}\left(B_{0}, \boldsymbol{y}\right)$ where B_{0} is sign-skew-symmetric matrix such that $A=A\left(B_{0}\right)$ is a Cartan matrix of finite type, and $b_{i j} b_{j k} \geq 0$ for all i, j, k.

If B, B^{\prime} are sign-skew-symmetric matrices such that $A(B), A\left(B^{\prime}\right)$ are Cartan matrices of finite type, then $\mathcal{A}(B)$ and $\mathcal{A}\left(B^{\prime}\right)$ are strongly isomorphic (i.e. $B \sim B^{\prime}$) iff $A(B)$ and $A\left(B^{\prime}\right)$ are of the same Cartan-Killing type.

Outline of proof. (1) $\longrightarrow(2)$: Reduce to rank 2 case and show that the corresponding exchange matrix $\left(\begin{array}{cc}0 & b \\ -c & 0\end{array}\right)$ must be 2-finite.
$(2) \longrightarrow(3)$: A diagram is not 2 -finite if it has a subdiagram which is not 2-finite. Eliminate all the cases that are mutation equivalent to these diagrams.
$(3) \longrightarrow(1)$: Construct a polytope $\Delta(\Phi)$ from the root system with Cartan matrix A, and show that $\Delta(\Phi)$ is isomorphic to the cluster complex (vertex $=$ cluster variable, maximal simplex $=$ cluster).
Finally, If $A(B)=A\left(B^{\prime}\right)$, can assume $\Gamma(B)=\Gamma\left(B^{\prime}\right)$ then show $B=B^{\prime}$. Conversely, if $\mathcal{A}(B) \simeq \mathcal{A}\left(B^{\prime}\right)$, the polytope $\Delta(\Phi) \simeq \Delta\left(\Phi^{\prime}\right) \Longrightarrow \Phi$ and Φ^{\prime} has same rank and cardinality. Only case is $\left(B_{n}, C_{n}\right)$ and $\left(B_{6}, C_{6}, E_{6}\right)$ but the symmetrizing matrix D is different for all of them.

In particular, the proof of $(3) \longrightarrow(1)$ gives us an explicit description of the clusters.

Definition 6.5. The almost positive roots are defined by $\Phi_{\geq-1}=(-\Pi) \amalg \Phi_{+}$.
We write $x^{\alpha}:=\prod_{i \in I} x_{i}^{a_{i}}$ if $\alpha=\sum_{i \in I} a_{i} \alpha_{i}$.
Theorem 6.6. There is a bijection

$$
\alpha \mapsto x[\alpha]
$$

between $\Phi_{\geq-1}$ and cluster variables of \mathcal{A} such that $x[\alpha]$ is expressed as Laurent polynomial in the initial cluster \mathbf{x}_{0} :

$$
x[\alpha]:=\frac{P_{\alpha}\left(\mathbf{x}_{0}\right)}{\mathbf{x}_{0}^{\alpha}}
$$

for some polynomial P_{α} over $\mathbb{Z} \mathbb{P}$ with nonzero constant term. Under this bijection, $x\left[-\alpha_{i}\right]:=x_{i}$.

Example 6.7. Looking at the quiver defining the cluster algbera, we have:

- $\mathbb{C}[\operatorname{Gr}(2, n+3)]$ is cluster algebra of type A_{n} (snake diagram)
- $\mathbb{C}\left[S L_{3} / N\right]$ is cluster algebra of type A_{1}
- $\mathbb{C}\left[S L_{4} / N\right]$ is cluster algebra of type A_{3}
- $\mathbb{C}\left[S L_{5} / N\right]$ is cluster algebra of type D_{6}
- $\mathbb{C}\left[S L_{n} / N\right]$ is cluster algebra of infinite type for $n \geq 6$

6.1 2-finite matrix

We first discuss $(1) \longrightarrow(2)$. Let \mathcal{A} be finite type. To show $\left|b_{i j} b_{j i}\right| \leq 3$ it suffices to restrict our attention to mutations in index i and j, i.e. rank 2 case. Hence let our mutation be μ_{1} and μ_{2}, with exchange matrix

$$
B=\left(\begin{array}{cc}
0 & b \\
-c & 0
\end{array}\right) .
$$

We show that if $|b c|>3$, then we will obtain infinitely many cluster variables. Let the initial cluster variable be $\left\{x_{1}, x_{2}\right\}$ and we treat the rest of the variables as coefficients. Let $\langle m\rangle=\left\{\begin{array}{ll}1 & m \text { is odd } \\ 2 & m \text { is even }\end{array}\right.$, and we mutate the variables alternatively, which we know is a Laurent polynomial

$$
x_{m}:=\mu_{\langle m\rangle}\left(x_{m-1}\right)=\frac{N_{m}\left(x_{1}, x_{2}\right)}{x_{1}^{d_{1}(m)} x_{2}^{d_{2}(m)}}
$$

Consider a lattice with bases $\left\{\alpha_{1}, \alpha_{2}\right\}$, and the Weyl group W generated by simple reflections s_{1}, s_{2} given on the basis by

$$
s_{1}=\left(\begin{array}{cc}
-1 & b \\
0 & 1
\end{array}\right), \quad s_{2}=\left(\begin{array}{cc}
1 & 0 \\
c & -1
\end{array}\right)
$$

One can think of this as an abstract root system Φ with (generalized) Cartan matrix $\left(\begin{array}{cc}2 & -b \\ -c & 2\end{array}\right)$ on simple roots $\left\{\alpha_{1}, \alpha_{2}\right\}$. Then each element $w \in W$ is of the form

$$
w_{1}(m):=s_{1} s_{2} \ldots s_{\langle m\rangle}, \quad w_{2}(m):=s_{2} s_{1} \ldots s_{\langle m+1\rangle}
$$

and we know that W is finite iff $|b c| \leq 3$. We let $w_{1}(0)=w_{2}(0)=e$.
Finally we let $\delta(m):=d_{1}(m) \alpha_{1}+d_{2}(m) \alpha_{2}$.
Theorem 6.8. We have

$$
\delta(m+3)=w_{1}(m) \cdot \alpha_{\langle m+1\rangle}, \quad \delta(-m)=w_{2}(m) \cdot \alpha_{\langle m+2\rangle}
$$

and they are all distinct. In particular, all x_{m} for $m \in \mathbb{Z}$ has different denominators $x_{1}^{d_{1}(m)} x_{2}^{d_{2}(m)}$.

We have already verified the denominators in the finite rank 2 case. This can be treated as an infinite version of the rank 2 case of Theorem 6.6.

Proof. For $m=0$ and $m=1$, we have

$$
\begin{aligned}
& \delta(1)=-\alpha_{1} \\
& \delta(3)=\alpha_{1} \\
& \delta(0)=\alpha_{2}
\end{aligned}
$$

$$
\delta(2)=-\alpha_{2}
$$

$$
\delta(4)=b \alpha_{1}+\alpha_{2}=s_{1}\left(\alpha_{2}\right)
$$

$$
\delta(-1)=\alpha_{1}+c \alpha_{2}=s_{2}\left(\alpha_{1}\right)
$$

Now by induction on m, assume $m \geq 2$. From

$$
x_{m+1} x_{m-1}= \begin{cases}x_{m}^{b}+1 & m \text { is odd } \\ x_{m}^{c}+1 & m \text { is even }\end{cases}
$$

we have

$$
\delta(m+1)+\delta(m-1)=\left\{\begin{array}{ll}
b \delta(m) & m \text { is odd } \\
c \delta(m) & m \text { is even }
\end{array} .\right.
$$

If m is odd, we have

$$
\begin{aligned}
\delta(m+3) & =b \delta(m+2)-\delta(m+1) \\
& ={ }_{\text {induction }} b w_{1}(m-1) \cdot \alpha_{1}-w_{1}(m-2) \cdot \alpha_{2} \\
& =w_{1}(m-1) \cdot\left(s_{1}\left(\alpha_{2}\right)-\alpha_{2}\right)-w_{1}(m-2) \cdot \alpha_{2} \\
& =w_{1}(m) \cdot \alpha_{2}-w_{1}(m-2) \cdot\left(s_{2}\left(\alpha_{2}\right)+\alpha_{2}\right) \\
& =w_{1}(m) \cdot \alpha_{2}
\end{aligned}
$$

Similar argument works with m even and m negative.
Next we discuss the implication of 2-finite matrix.
Proposition 6.9. Every 2-finite matrix is skew-symmetrizable
Definition 6.10. A diagram of a sign-skew-symmetric matrix B is the weighted directed graph $\Gamma(B)$ such that we have weighted arrows $i \xrightarrow{\left|b_{i j} b_{j i}\right|} j$ if $b_{i j}>0$.

Lemma 6.11. Let B be 2-finite matrix. Then
(1) The edges of every triangle in $\Gamma(B)$ are oriented in a cyclic way,
(2) The edge weights are either $\{1,1,1\}$ or $\{2,2,1\}$

Proof. Suppose $b_{i j}, b_{i k}, b_{k j}>0$. Then in $B^{\prime}=\mu_{k}(B)$, we have $b_{i j}^{\prime}=b_{i j}+b_{i k} b_{k j} \geq 2$ and $b_{j i}^{\prime}=b_{j i}-b_{j k} b_{k i} \leq-2$ violating 2 -finiteness. Hence the triangle are oriented in a cylic way. Hence we can assume

$$
B=\left(\begin{array}{ccc}
0 & a_{1} & -c_{1} \\
-a_{2} & 0 & b_{1} \\
c_{2} & -b_{2} & 0
\end{array}\right)
$$

all variables positive integers. Let $-c_{1}$ has maximal absolute value. Then

$$
\mu_{2}(B)=\left(\begin{array}{ccc}
0 & -a_{1} & a_{1} b_{1}-c_{1} \\
a_{2} & 0 & -b_{1} \\
-a_{2} b_{2}+c_{2} & b_{2} & 0
\end{array}\right)
$$

and by (1) we have

$$
a_{1} b_{1}-c_{1} \geq 0, a_{2} b_{2}-c_{2} \geq 0
$$

We show that the inequalities must be equal: Otherwise

$$
\begin{aligned}
& a_{2} b_{2}>c_{2} \geq 1 \Longrightarrow \max \left(a_{2}, b_{2}\right) \geq 2 \\
& a_{1} b_{1}>c_{1} \geq \max \left(a_{1}, b_{1}\right) \Longrightarrow a_{1}, b_{1} \geq 2 \\
& \max \left(a_{1} a_{2}, b_{1} b_{2}\right) \geq 4(!)
\end{aligned}
$$

Hence we have $c_{1}=a_{1} b_{1}$ and $c_{2}=a_{2} b_{2}$. The only choices for $\left\{a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}\right\}$ are $\{1,1,1\},\{2,2,1\}$ and

$$
\{3,1,3\}=\{3 \cdot 1,1 \cdot 1,3 \cdot 1\}
$$

or

$$
\{1,3,3\}=\{1 \cdot 1,3 \cdot 1,3 \cdot 1\} .
$$

In the case $\{3,1,3\}, B^{\prime}=\mu_{1}(B)$ has $\left|b_{23}^{\prime} b_{32}^{\prime}\right|=4$ violating 2-finiteness. Similarly for $\{1,3,3\}$.

6.2 Diagram mutation

Lemma 6.12. Let B be 2-finite with diagram $\Gamma(B)$. The diagram $\Gamma^{\prime}=\Gamma\left(\mu_{k}(B)\right)$ can be obtained by

- The orientation of all edges incident to k are reversed, with same weights
- For any path $i \longrightarrow k \longrightarrow j$, the diagram changes as

where

$$
\sqrt{c}+\sqrt{c^{\prime}}=\sqrt{a b}
$$

- All the rest of edges and weights remain unchanged.

Observation. Any subdiagram of a 2-finite diagram is 2-finite. Equivalently, any diagram that has a 2 -infinite subdiagram is 2 -infinite.

6.2.1 Tree diagrams

Proposition 6.13. Let T be a subdiagram of a diagram Γ such that
(1) T is a tree
(2) T is attached to Γ by a single vertex $v \in T$, i.e. $\Gamma-\{v\}$ and $T-\{v\}$ are disjoint.

Then any two orientations on T is mutation equivalent.
Proof. Induction on size of T.
Definition 6.14. A diagram Γ is called extended Dynkin tree diagram if

- Γ is a tree diagram with edge weights ≤ 3
- Γ is not Dynkin diagram
- Γ every connected subdiagram of Γ is a Dynkin diagram

The complete list gives the Dynkin diagrams associated with untwisted affine Lie algebras except $A_{n}^{(1)}$ which is a loop.

Figure 1: Extended Dynkin tree diagrams
Proposition 6.15. Any 2-finite tree diagram is an orientation of a Dynkin diagram
Proof. Let us show that if it is not Dynkin, then it is not 2-finite. Hence it suffices to take the minimal subdiagram that is not Dynkin, therefore it is enough to consider the extended Dynkin tree diagrams, with arbitrary orientations.

For $X_{n}^{(1)}$ with $X=B, C, D$, orient the tree from left to right. Mutate at second vertex from left and consider subdiagram: $X_{n}^{(1)} \longrightarrow X_{n-1}^{(1)}$. Hence only need to consider $D_{4}^{(1)}, B_{3}^{(1)}, C_{2}^{(1)}$.

- $C_{2}^{(1)} \sim$ triangle with weights $(2,2,2)$. (!)
- $B_{3}^{(1)}$ Mutate at branch: subdiagram C_{2}^{1}. (!)
- (HW) $D_{4}^{(1)} \sim$ contain 2-infinite triangle (!)
- (HW) $G_{2}^{(1)} \sim 2$-infinite triangle (!)
- (HW) $F_{4}^{(1)} \sim$ subdiagram C_{2}^{1}. (!)

Definition 6.16. For $p, q, r \in \mathbb{Z}_{\geq 0}$ define

- Tree $T_{p, q, r}: A_{p}, A_{q}, A_{r}$ join at one extra vertex.
- $S_{p, q, r}^{s}: A_{p-1}, A_{q-1}, A_{r-1}$ joined to 3 consecutive vertices on a cyclically oriented $s+3$ cycle.

Figure 2: Tree diagram $T_{5,4,2}$

Figure 3: Diagram $S_{4,3,2}^{3}$
Lemma 6.17. $S_{p, q, r}^{s} \sim T_{p+r-1, q, s}$
Proof. Remove A_{q}, we get A_{p+s+r}. Reorient the tree. Mutate at $\mu_{1} \circ \ldots \circ_{s+r}$.

- $E_{6}^{(1)}=T_{2,2,2} \sim S_{2,2,1}^{2} \supset D_{5}^{(1)}$
- $E_{7}^{(1)}=T_{3,1,3} \sim S_{3,1,1}^{3} \supset E_{6}^{(1)}$
- $E_{8}^{(1)}=T_{2,1,5} \sim S_{2,1,1}^{5} \supset E_{7}^{(1)}$

6.2.2 Cycles

Proposition 6.18. Each 2-finite cycle of length n is cyclically oriented, and is either:
(a) oriented cycle with weights $=1: \sim D_{n}$, or
(b) oriented triangle with weights $(2,2,1): \sim B_{3}$, or
(c) oreinted 4 -cycle with weights $(2,1,2,1): \sim F_{4}$.

Proof. - Cyclic oriented: Induction on n. Let v has one incoming and one outgoing edge. $\Gamma^{\prime}=\mu_{v}(\Gamma)$ has an $n-1$ cycle $\Gamma^{\prime \prime}$ as subdiagram, which is cyclic by induction $\Longrightarrow \Gamma$ is cyclic.

- $\Gamma^{\prime \prime}$ has same edge weights product π as $\Gamma\left(c=0 \Longrightarrow a b=c^{\prime}\right)$. Hence $\pi=1$ or 4 (since triangle is $(1,1,1)$ or $(2,2,1))$.
- If $\pi=1, \Gamma=S_{1,1,1}^{n-3} \sim T_{1,1, n-3}=D_{n}$
- If $\pi=4$, it has 2 edges with weight 2 . If it is not (b) or (c), it contains $C_{m}^{(1)}$.

6.2.3 Remaining cases

$n \leq 3$ either tree or cycle, already done. By induction: pick vertex $v \in \Gamma$ so that $\Gamma^{\prime}=\Gamma-\{v\}$ is connected. We know Γ^{\prime} is 2-finite, hence $\Gamma^{\prime} \sim X_{n}$. Now do the mutation and assume $\Gamma^{\prime} \simeq X_{n}$, and see how v is connected to Γ^{\prime}.

Case 1: Γ^{\prime} no branch point: $A_{n}, B_{n}, F_{4}, G_{2}$.
$-v$ connect to one vertex: tree.
$-v$ connect to >2 vertices: wrong cycles (!)

- v connect to 2 vertices v_{1}, v_{2} : Γ has a cycle \mathcal{C} which is of the three types (a)-(c) by Prop 6.18.
(a) - If Γ has weight ≥ 2 : it contains $B_{m}^{(1)}$ or $G_{2}^{(1)}$ (!) unless \mathcal{C} is 3-cycle, then $\mu_{v}(\Gamma) \simeq B_{n+1}$.
- If Γ has unit weight: $\Gamma \sim S_{p, 0, r}^{s}$
(b) . If one of $\left(v, v_{1}\right),\left(v, v_{2}\right)$ has weight $1, \mu_{v}(\Gamma) \sim$ tree.
- If both $\left(v, v_{1}\right),\left(v, v_{2}\right)$ has weight 2 , and $\Gamma-\mathcal{C}$ has weight ≥ 2, then $\Gamma \supset C_{m}^{(1)}$ or $\Gamma \supset G_{2}^{(1)}(!)$
- Otherwise $\Gamma \sim B_{n+1}$.
(c) Any diagram $\left\{v^{\prime}\right\} \cup \mathcal{C}$ is 2-infinite. Extra edge weight $=1,2,3$: contain $B_{3}^{(1)}, C_{2}^{(1)}, G_{2}^{(1)}$ respectively.

Case 2: $\Gamma^{\prime} \sim D_{n} \sim n$-cycle with unit weights.

- v connect to one vertex v_{1}
* $\left(v, v_{1}\right)$ has weight $\geq 2: \Gamma \supset B_{3}^{(1)}$ or $G_{2}^{(1)}$.
* $\left(v, v_{1}\right)$ has weight $1: \Gamma \sim$ tree
$-v$ connect to two adjacent vertices:
$* \mathcal{C}$ is $(1,1,1)$ triangle: $\mu_{v}(\Gamma)=$ cycle $\sim D_{n+1}$
* \mathcal{C} is $(2,2,1)$ triangle: $\mu_{v}(\Gamma)$ has bad cycle (!)
- v connect to two non-adjacent vertices: bad cycle (!)

Case 3: $\Gamma^{\prime} \sim E_{n}=T_{1,2, n-4} \sim S_{1,2,1}^{n-4}$ an oriented $(n-1)$ cycle \mathcal{C} with one extra edge of weight 1 connecting $v_{1} \notin \mathcal{C}$.

- v connect to v_{1} only.
* $\left(v, v_{1}\right)$ has weight ≥ 2, then $\Gamma \supset B_{3}^{(1)}, G_{2}^{(1)}$.
* $\left(v, v_{1}\right)$ has weight $1: \Gamma \sim$ tree.
$-v$ connect to $v_{2} \in \mathcal{C}$ only: $\Gamma \supset D_{m}^{(1)}, B_{3}^{(1)}$ or $G_{2}^{(1)}$.
$-v$ connect to ≥ 2 vertices of $\mathcal{C}: \Gamma-\left\{v_{1}\right\} \sim D_{n}$ Reduce to case 2 .
$-v$ connect to v_{1} and single vertex $v_{2} \in \mathcal{C}$: Let v_{0} be the only vertex on \mathcal{C} adjacent to v_{1} in Γ^{\prime}.
* $v_{2} \neq v_{0}$ nor connect to v_{0}, bad cycles (!)
* $v_{2}=v_{0}:\left(v, v_{1}, v_{2}\right)$ is an oriented triangle. If $\left(v, v_{1}\right)$ has weight 1 , $\mu_{v_{1}}(\Gamma) \sim$ tree. Otherwise $\mu_{v_{1}}(\Gamma)$ contains $B_{3}^{(1)}$.
* v_{2} connect to $v_{0}: \Gamma-\left\{v_{0}\right\}$ has no branch point: reduce to Case 1 .

This completes the proof of the classification.

6.3 Finite mutation type

A larger class of finiteness of cluster algbera is given by finite mutation type:
Definition 6.19. A skew-symmetric cluster algebra (i.e. defined by a quiver) is of finite mutation type if the quiver mutation class is finite.

Theorem 6.20. Finite mutation type cluster algebra is classified by

- cluster algebra from surface (quiver arising from the triangulation of surfaces, following our previous rules)
- cluster algebra of rank $n=2$
- cluster algebra from the E_{6}, E_{7}, E_{8} and $E_{6}^{(1)}, E_{7}^{(1)}, E_{8}^{(1)}$ quivers (see Figure 1)
- cluster algebra from quivers of 5 exceptional types:

[^0]: *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

