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6 Finite Type Classicification

Definition 6.1. A cluster algebra is of finite type if it has finitely many cluster
variables (hence finitely many seeds).

Definition 6.2. A cluster algebra is of finite mutation type if there are only finitely
many quivers appearing in the seeds.

Definition 6.3. Let B be an integer square matriz.

e The Cartan counterpart of B is the matriv A = A(B) = (ai;) defined by

w 2 i=j
Y —|bi;| i#
e B is called sign-skew-symmetric if for every i,j, either

bij = bji =0, or bijbji <0

e B is called 2-finite if any matriz B’ mutation equivalent to B is sign-skew-
symmetric and |b};0%;[ < 3
Theorem 6.4 (Classification). Finite type cluster algebra can be classified by the
classical Dynkin diagrams. More precisely, for a cluster algebra A, the following
are equivalent:

(1) A is of finite type.
(2) For every seed (x,y, B) in A, the entries of B = (b;;) satisfy |b;jb;;] <3
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(3) A= A(By,y) where By is sign-skew-symmetric matriz such that A = A(By)
is a Cartan matriz of finite type, and bijbjr, > 0 for all i, j, k.

If B, B’ are sign-skew-symmetric matrices such that A(B), A(B') are Cartan ma-
trices of finite type, then A(B) and A(B’) are strongly isomorphic (i.e. B ~ B’)
iff A(B) and A(B') are of the same Cartan-Killing type.

Outline of proof. (1) —(2): Reduce to rank 2 case and show that the corre-

b ) must be 2-finite.

sponding exchange matrix ( _OC 0

(2) —(3): A diagram is not 2-finite if it has a subdiagram which is not 2-finite.
Eliminate all the cases that are mutation equivalent to these diagrams.

(3) —(1): Construct a polytope A(®) from the root system with Cartan matrix
A, and show that A(®) is isomorphic to the cluster complex (vertex = cluster
variable, maximal simplex = cluster).

Finally, If A(B) = A(B’), can assume I'(B) = I'(B’) then show B = B’. Con-
versely, if A(B) ~ A(B’), the polytope A(®) ~ A(®') = & and ¥’ has same
rank and cardinality. Only case is (B, C,) and (Bg, Cs, Eg) but the symmetrizing
matrix D is different for all of them. O

In particular, the proof of (3)—(1) gives us an explicit description of the clus-
ters.

Definition 6.5. The almost positive roots are defined by ®>_1 = (—II) I &,..
We write 2 := [[,c; 27" if a =), a;ay.
Theorem 6.6. There is a bijection

a— xla]

between ®>_1 and cluster variables of A such that x|a] is expressed as Laurent
polynomial in the initial cluster Xg:

Pa (Xo)
X

zla) ==

for some polynomial P, over ZP with nonzero constant term. Under this bijection,
x[—oy) = ;.
Example 6.7. Looking at the quiver defining the cluster algbera, we have:

e C[Gr(2,n+ 3)] is cluster algebra of type A, (snake diagram)

e C[SL3/N] is cluster algebra of type Ay

e C[SL4/N] is cluster algebra of type As

e C[SLs5/N] is cluster algebra of type Dg

C[SL,/N] is cluster algebra of infinite type for n > 6



6.1 2-finite matrix

We first discuss (1)—(2). Let A be finite type. To show |b;;b;;] < 3 it suffices to
restrict our attention to mutations in index ¢ and 7, i.e. rank 2 case. Hence let our
mutation be py and po, with exchange matrix

0 b
(%),
We show that if |bc| > 3, then we will obtain infinitely many cluster variables.

Let the initial cluster variable be {x1, 22} and we treat the rest of the variables as

. 1 i . .
coefficients. Let (m) = { m is odd , and we mutate the variables alternatively,

2 m is even
which we know is a Laurent polynomial

Nm($1,$2)

Tm = fim) (Tm-1) =~y 3Gy
(m) £ ) 2 (m)

Consider a lattice with bases {a1, as}, and the Weyl group W generated by simple
reflections s1, s2 given on the basis by

(-1 b (10
100 1) 27 e —1

One can think of this as an abstract root system ® with (generalized) Cartan matrix

( —2c _2b > on simple roots {aq, @s}. Then each element w € W is of the form

w1(m) = 5182...5(m), wa (M) := 5281...8(m41)

and we know that W is finite iff |bc| < 3. We let w(0) = w2 (0) = e.
Finally we let 6(m) := di(m)ay + dz2(m)as.

Theorem 6.8. We have

d(m+3) =wi(m) - a1y,  0(=m) = w2(m) - i)
and they are all distinct. In particular, all x,, for m € Z has different denominators
dl (m) dz(m)
x1 .

We have already verified the denominators in the finite rank 2 case. This can
be treated as an infinite version of the rank 2 case of Theorem 6.6.

Proof. For m =0 and m = 1, we have

(5(1) = —Q (5(2) = —Qg
(5(3) = Q1 (5(4) = bay + g = 53 (042)
5(0) = as 0(—1) = ay + cag = sa(ay)



Now by induction on m, assume m > 2. From

28 +1 misodd

x 1Tm—1 — .
At {xfn—l—l m is even

we have
bé(m) m is odd

S(m+1)+d(m—1)= { c6(m) m is even

If m is odd, we have

d(m+3)=bd(m+2)—d5(m+1)
=induction W1 (m - 1) T — W (m - 2) s Qg
=wi(m—1)-(s1(a2) —az) —wi(m —2) - ay
=wi(m) - az —wi(m —2) - (s2(ag) + ag)
=wi(m) - ag
Similar argument works with m even and m negative. O
Next we discuss the implication of 2-finite matrix.

Proposition 6.9. Every 2-finite matriz is skew-symmetrizable

Definition 6.10. A diagram of a sign-skew-symmetric matrix B is the weighted
bijbjil . .
directed graph T'(B) such that we have weighted arrows i M) J if by; > 0.

Lemma 6.11. Let B be 2-finite matriz. Then
(1) The edges of every triangle in T'(B) are oriented in a cyclic way,
(2) The edge weights are either {1,1,1} or {2,2,1}

Proof. Suppose b;j, bi, by; > 0. Then in B’ = py(B), we have bgj = bi; + birbi; > 2
and b;-i = bj; — bjrbr; < —2 violating 2-finiteness. Hence the triangle are oriented
in a cylic way. Hence we can assume

0 ay —C1
B = —a9 0 bl
C2 —bg 0

all variables positive integers. Let —c; has maximal absolute value. Then

0 —aq a1b1 — C1
/,LQ(B) = ag 0 _bl
7(12[)2 + co b2 0

and by (1) we have
arby —c1 > 0,a2by —ca >0



We show that the inequalities must be equal: Otherwise

agby > co > 1 = max(ag, by) > 2
arby >c1 > max(al,bl) — Cll,bl >2
max(ajag, bibe) > 4(!)

Hence we have ¢; = a1b; and co = agbs. The only choices for {ajag,b1be, c1c2} are
{1,1,1},{2,2,1} and
{3,1,3}={3-1,1-1,3-1}

or
(1,3,3) ={1-1,3-1,3-1}.

In the case {3,1,3}, B’ = u1(B) has |bhsbs,| = 4 violating 2-finiteness. Similarly

for {1,3,3}. O

6.2 Diagram mutation

Lemma 6.12. Let B be 2-finite with diagram T'(B). The diagram I" = T'(ur(B))
can be obtained by

e The orientation of all edges incident to k are reversed, with same weights

e For any path i — k — j, the diagram changes as

40—. .T

Ve+ Ve =Vab

o All the rest of edges and weights remain unchanged.

where

Observation. Any subdiagram of a 2-finite diagram is 2-finite. Equivalently,
any diagram that has a 2-infinite subdiagram is 2-infinite.
6.2.1 Tree diagrams
Proposition 6.13. Let T be a subdiagram of a diagram T such that
(1) T is a tree

(2) T is attached to T' by a single vertex v € T, i.e. T — {v} and T — {v} are
disjoint.



Then any two orientations on T is mutation equivalent.
Proof. Induction on size of T. O
Definition 6.14. A diagram T is called extended Dynkin tree diagram if

o I' is a tree diagram with edge weights < 3

o I' is not Dynkin diagram

o I' every connected subdiagram of T' is a Dynkin diagram

The complete list gives the Dynkin diagrams associated with untwisted affine Lie
algebras except Ag) which is a loop.
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Figure 1: Extended Dynkin tree diagrams

Proposition 6.15. Any 2-finite tree diagram is an orientation of a Dynkin diagram

Proof. Let us show that if it is not Dynkin, then it is not 2-finite. Hence it suffices to
take the minimal subdiagram that is not Dynkin, therefore it is enough to consider
the extended Dynkin tree diagrams, with arbitrary orientations.

For X,(ll) with X = B, C, D, orient the tree from left to right. Mutate at second
1)

vertex from left and consider subdiagram: x — X, ;. Hence only need to

consider Dé(ll) , Bél) , 02(1) .



Cg(l) ~ triangle with weights (2,2,2). ()

B{Y Mutate at branch: subdiagram C}. (!)
o (HW) D{" ~ contain 2-infinite triangle (1)
o (HW) G;l) ~ 2-infinite triangle (!)
e (HW) Fil) ~ subdiagram C3. (!)
Definition 6.16. For p,q,r € Z>( define
o Tree Ty, or: Ap, Aqg, Ay join at one extra vertes.

o S8

o’ Ap—1,Ag—1, Ar—1 joined to 3 consecutive vertices on a cyclically ori-
ented s + 3 cycle.

Figure 2: Tree diagram 75 4 »

Figure 3: Diagram S3 5,
Lemma 6.17. S; . ~ Tpir—1,4.5
Proof. Remove Ag, we get Aptstr. Reorient the tree. Mutate at p1q 0...o54,. O
o Eél) == T2,272 ~ 537271 D Dél)

d Eél) =1T313~ S§,1,1 ) Ef(sl)

° Eél) = T2,1’5 ~ 53,1,1 D) E§1)



6.2.2 Cycles

Proposition 6.18. Fach 2-finite cycle of length n is cyclically oriented, and is
either:

(a) oriented cycle with weights =1: ~ D,,, or
(b) oriented triangle with weights (2,2,1): ~ Bs, or
(c) oreinted 4-cycle with weights (2,1,2,1): ~ Fy.

Proof. e Cyclic oriented: Induction on n. Let v has one incoming and one
outgoing edge. IV = u,(T') has an n — 1 cycle I as subdiagram, which is
cyclic by induction = T" is cyclic.

e I has same edge weights product 7 as T (¢ =0 = ab = ¢’). Hence 7 =1
or 4 (since triangle is (1,1,1) or (2,2,1)).

o Ifm=1,T=5'}~Ti1n3=D,

e If m =4, it has 2 edges with weight 2. If it is not (b) or (c), it contains iy,
O

6.2.3 Remaining cases

n < 3 either tree or cycle, already done. By induction: pick vertex v € T" so that
I'" =T — {v} is connected. We know I" is 2-finite, hence I'' ~ X,,. Now do the
mutation and assume IV ~ X,,, and see how v is connected to I".

Case 1: TV no branch point: A, By, Fy, Gs.

— v connect to one vertex: tree.
— v connect to > 2 vertices: wrong cycles (!)
— v connect to 2 vertices v1,vo: I' has a cycle C which is of the three types
(a)-(c) by Prop 6.18.
(a) - If T' has weight > 2: it contains BY or Gél) (1) unless C is
3-cycle, then p, (") ~ Bpt1.
- If I has unit weight: I' ~ 57 .
(b) - If one of (v,v1), (v,v2) has weight 1, p,(T") ~ tree.
- If both (v,v1), (v,v2) has weight 2, and T' — C has weight > 2,
then T 5 CY or T 5 GV (1)
- Otherwise I' ~ B, 11.
(¢) Any diagram {v’'}UC is 2-infinite. Extra edge weight = 1,2,3: contain
Bél), C’él),Ggl) respectively.

Case 2: IV ~ D,, ~ n-cycle with unit weights.



— v connect to one vertex v;
* (v,v1) has weight > 2: T' D Bél) or Gél).
* (v,v1) has weight 1: T’ ~ tree
— v connect to two adjacent vertices:
x Cis (1,1,1) triangle: p,(I") = cycle ~ Dpt1
x C is (2,2,1) triangle: p,(T") has bad cycle (!)
— v connect to two non-adjacent vertices: bad cycle (!)
Case 3: IV ~ E, =T1 94~ S{’,gﬁ an oriented (n — 1) cycle C with one extra edge
of weight 1 connecting vy ¢ C.
— v connect to v1 only.
* (v,v1) has weight > 2, then ' D Bél), Ggl).
% (v,v1) has weight 1: T ~ tree.
— v connect to vo € C only: I' D Dg), Bél) or Ggl).

v connect to > 2 vertices of C: T' — {v;} ~ D,, Reduce to case 2.

v connect to v; and single vertex vy € C: Let vy be the only vertex on C
adjacent to vq in I".

* vy 7 vg nor connect to v, bad cycles (!)

* Vg = vg: (v,v1,v2) is an oriented triangle. If (v,v;) has weight 1,
o, (T') ~ tree. Otherwise pu,, (I') contains Bél).
% Vg connect to vg: I' — {vp} has no branch point: reduce to Case 1.

This completes the proof of the classification.

6.3 Finite mutation type

A larger class of finiteness of cluster algbera is given by finite mutation type:

Definition 6.19. A skew-symmetric cluster algebra (i.e. defined by a quiver) is of
finite mutation type if the quiver mutation class is finite.

Theorem 6.20. Finite mutation type cluster algebra is classified by

o cluster algebra from surface (quiver arising from the triangulation of surfaces,
following our previous rules)

e cluster algebra of rank n = 2

e cluster algebra from the Eg, E7, Eg and Eél), Eél), Eél) quivers (see Figure 1)
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e cluster algebra from quivers of 5 exceptional types:

Eél,l) M\
o—>\ /«—o ~—e

E§1,1)

—

Eél’l)

—
. /\i/ AN
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