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7 Generalized Associahedron

To complete the proof of the classification theorem, we want to construct a polytope
∆(Φ) from the root system Φ such that it is isomorphic to the cluster complex ∆(A).
We first establish a general fact.

7.1 Construction of Polytope ∆(A)

Let Ψ be a finite set (“ground set”). Let ∆ be a simple convex polytope in Rn.
Assume

• Each vertex v ∈ ∆ are labeled by n-tuple of elements [v] ⊂ Ψ.

• i-dimensional faces of ∆ corresponds bijectively to maximal subsets of vertices
v ∈ ∆ such that the labels have exactly n− i elements in common.

• A sign-skew-symmetric n × n matrix Bv is attached to each vertex v ∈ ∆,
with label [v].

• For every edge (v, v) of ∆, with [v] = [v]−{γ}∪ {γ}, Bv is obtained from Bv
by matrix mutation at γ and relabeling it by γ.

For any 2-dimensional face F ∈ ∆, for a vertex v ∈ F , there exists two elements
α, β that are not common to the labels of all other vertices in F . Define the type
of F = |bαβbβα|, which does not depend on choice of v.

Proposition 7.1. Assume 2-dimensional face of ∆ are 4,5,6,8-gons of types 0,1,2,3
respectively. Then the cluster algebra A = A(B,y) is of finite type if B = Bv for
some v ∈ ∆.
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Example 7.2. This is an example for Ψ = {1, 2, 3, 4, 5, 6, 7} and n = 3:

{1,2,6}

{2,3,6} {3,4,6}

{4,5,6}

{1,5,6}

{1,2,7}

{2,3,7} {3,4,7}

{4,5,7}

{1,5,7}

Definition 7.3. Let Σ = (x,y, B) be a seed of A.

• A seed attachment of Σ at v is a bijection between labels at v and cluster
variables of x, and identifying B and Bv.

• A transport of seed attachment along an edge (v, v): the seed Σ attached at v
is obtained from Σ by mutation in direction x(γ) where [v] = [v]− {γ} ∪ {γ}.

Proof. Start with an initial seed attachment at v0. We can transport to other vertex
v′ along a path from v to v′. It does not depend on choice of path, i.e. transport of
seed attachment along a loop brings it back unchanged. By our assumption of the
faces of ∆, this follows from cluster algebra of rank 2.

Any sequence of mutations of seed is uniquely lifted to a path on ∆, and trans-
porting the initial seed attachment along the path produces the chosen sequence of
mutation. Hence we have a map from vertices of ∆ surjective onto the set of all
seeds of A.

In fact we have a stronger result, that there is a surjection from Ψ to the set of
all cluser variables of A. Let v′, v′′ ∈ ∆ with [v′]∩[v′′] = {α}. They can be joined by
a path v1 = v′, v2, ..., vl = v′′ such that α ∈ [vi] for all I. Hence x′(α) = ... = x′′(α)
and the seed attachement does not depend on the choice of vertex. Hence the
attachment of cluster variables to the ground set is a surjection from Ψ to set of all
cluster variables of A. Since Ψ is finite, A is finite type.

The proof then requires the construction of the polytope ∆ for each Cartan-
Killing type, which can be described combinatorically by the root systems.

Again let the Dynkin diagram be bipartite into two parts I+, I−. Let Π be
simple roots, Φ+ be positive roots, Φ≥−1 := Φ+ ∪ (−Π) be almost positive roots,
Q = ZΠ the root lattice, Q+ = Z≥0Π+ the positive root lattice. Let A = (aij) be
the Cartan matrix.
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Definition 7.4. Sign function ε : I −→ {+,−}

ε(i) =

{
+ i ∈ I+
− i ∈ I−

.

Denote by [γ : αi] the coefficient of αi in the expansion of γ ∈ Q in the basis Π.

Definition 7.5. Piecewise-linear reflection τ± : Φ≥−1 −→ Φ≥−1:

τε(α) :=

{
α α = −αi, i ∈ I−ε
tε(α) otherwise

for ε ∈ {+,−}, where we recall

tε =
∏
i∈Iε

si.

This can be extended to the whole γ ∈ Q as follows: if we let

γε :=
∑
i∈I−ε
ki<0

kiαi, γ′ε := γ − γε,

then
τε(γ) = γε + tε(γ

′
ε).

Equivalently, in terms of coordinate,

[τε(γ) : αi] =

{
−[γ : αi]−

∑
i6=j aij [γ : αj ]+ i ∈ Iε

[γ : αi] i ∈ I−ε
.

Let D denote the group generated by 〈τ+, τ−〉.

Theorem 7.6. (1) τ± is an involution and preserve Φ≥−1

(2) τ±(α) = t±(α) for any α ∈ Q+

(3) The order of τ−τ+ equals h+2
2 if w0 = −1, and h + 2 otherwise. Hence D is

a dihedral group

(4) Every D-orbit in Φ≥−1 has nonempty intersection with −Π. There is a bijec-
tion between D-orbits in Φ≥−1 and the 〈−w0〉-orbits in (−Π)

Proof. (1) and (2) follows from definition. (3) and (4) see [FZ-YSystem, Theorem
2.6], which describe the orbits explicitly by some patterns.

Example 7.7. One orbit for A2:

τ− � −α1
τ+←→ α1

τ−←→ α1 + α2
τ+←→ α2

τ−←→ −α2 � τ+
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Example 7.8. Two orbits for A3: We have ±α1 ←→ ∓α3 and α2 ←→ −α2 in the
w0 orbit.

τ− � −α1
τ+←→ α1

τ−←→ α1 + α2
τ+←→ α2 + α3

τ−←→ α3
τ+←→ −α3 � τ−

τ+ � −α2
τ−←→ α2

τ+←→ α1 + α2 + α3 � τ−

The following result is the most important tools in this section.

Proposition 7.9. There is a unique function called the compatibility degree

Φ≥−1 × Φ≥−1 −→ Z≥0

(α, β) 7→ (α||β)

such that
(−αi||α) = max([α : αi], 0)

(τεα||τεβ) = (α||β)

Remark 7.10. This proposition is important since most of the proofs below uses
the following strategy:

• D-orbit does not change (·||·).

• Can always apply some element from D to go back to negative roots.

• We can study the case with negative root explicitly, or we can remove the
negative roots and use induction on the positive part.

Definition 7.11. • α and β are compatible if (α||β) = (β||α) = 0.

• α and β are exchangeable if (α||β) = (β||α) = 1.

• Let ∆(Φ) be the simplicial complex on the ground set Φ≥−1 whose simplices
are mutually compatible roots. The maximal simplices are called clusters.

Theorem 7.12. (1) Each cluster in ∆(Φ) is a Z-basis for Q. In particular all
clusters are of the same size n.

(2) Every element of the root lattice has a unique cluster expansion (i.e. linear
combinations of mutually compatible roots with nonnegative coefficients).

(3) Let [γ : α]clus denote the coefficient of α in the cluster expansion. Then the
coefficient is invariant under σ ∈ D,

[σ(γ) : σ(α)]clus = [γ : α]clus

(4) The cones C(∆(Φ)) spanned by the simplices in ∆(Φ) form a complete sim-
plicial fan in QR
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Please see Example 7.16 to understand the statements.

Proof. (1) is [FZ-YSystem, Theorem 1.8] By induction.

• For every i ∈ I, if C is cluster for Φ that contains −αi, then C − {−αi} is
cluster for Φ(I − {i}). (all other elements in C does not have component of
αi by definition of compatibility.)

• Hence C is a Z basis for QΦ iff C − {−αi} is a Z basis for QΦ(I−i).

• Need to consider the case when C are all positive roots only.

• Since τ±(C) = t±(C) are also clusters, we can arrive at a cluster C ′ which is
no longer positive.

• Then we can remove the negative root and apply induction.

(2) is [FZ-YSystem, Theorem 3.11] Again by induction.

• Let S+(γ) = {i ∈ I : [γ : αi] > 0} be the positive support.

• If α ∈ Φ+ occurs in expansion of γ, then S+(α) ⊂ S+(γ).

• If α ∈ −Π occurs in expansion of γ, then [γ : α] < 0.

• Let γ(+) :=
∑
i∈S+(γ)[γ : αi]αi.

• Then γ has unique cluster expansion in Φ iff γ(+) has unique cluster expansion
in Φ(S+(γ)).

• Need to consider the case when γ ∈ Q+ only. Then γ has unique cluster
expansion iff tε(γ) = τε(γ) has unique cluster expansion (all components are
+, and tε is linear).

• Move γ outside Q+ by t±, and then can apply induction.

(3): τ± is a linear map in each cluster cone.
(4) follows from (2).

Definition 7.13. A normal fan N (P) of a simple convex polytope is a simplicial
fan where each maximal cone correspond to a vertex φ ∈ P by

Cφ := {γ ∈ V ∗ ' Rn : max
ψ∈P
〈γ, ψ〉 = 〈γ, φ〉}

Theorem 7.14. The simplicial fan C(∆(Φ)) is the normal fan of a simple n-
dimensional convex polytope, the generalized associahedron.

Hence the generalized associahedron P is the dual complex of the cluster com-
plex. In particular, the exchange graph is the 1-skeleton of P , and the maximal
simplex of P is labeled by Φ≥−1. In particular the cluster complex is topologically
homeomorphic to an n dimensional sphere.

The construction of generalized associahedron is given by:
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Theorem 7.15. [CFZ, Theorem 1.4,1.5] Let F : −Π −→ R satisfies∑
i∈I

aijF (−αj) > 0 ∀j ∈ I

and extends uniquely to 〈τ+, τ−〉-invariant function on Φ≥−1. Then the generalized
associahedron P is given by

〈z, α〉 ≤ F (α), ∀α ∈ Φ≥−1

with normal fan C(∆(Φ)).

Example 7.16. [Type A2]Both exchange graph and cluster complex are pentagons.

max(−z1,−z2, z1, z2, z1 + z2) ≤ c

Figure 1: Type A2 Associahedron

Example 7.17 (Type A3). The Associahedron is also called Stasheff polytope.
There are two D-orbits:

{−α1,−α3, α1, α3, α1 + α2, α2 + α3} and {−α2, α2, α1 + α2 + α3}

Then for 0 < c1 < c2 < 2c1 we have

max(−z1,−z3, z1, z3, z1 + z2, z2 + z3) ≤ c1
max(−z2, z2, z1 + z2 + z3) ≤ c2
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Figure 2: Type A3 Associahedron, (c1, c2) = ( 3
2 , 2)

Example 7.18 (Type C2). It is a hexagon, given by

max(−z1, z1, z1 + z2) ≤ c1
max(−z2, z2, 2z1 + z2) ≤ c2

for 0 < c1 < c2 < 2c1.
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Figure 3: Type C2 Associahedron (the intersection), (c1, c2) = (2, 3)

Example 7.19 (Type C3). Cyclohedron, also known as Bott-Taubes polytope.
There are 3 D-orbits. Then we have

max(−z1, z1, z1 + z2, z2 + z3) ≤ c1
max(−z2, z2, z1 + z2 + z3, z1 + 2z2 + z3) ≤ c2

max(−z3, z3, 2z2 + z3, 2z1 + 2z2 + z3) ≤ c3

for c2 < 2c1, c1 + c3 < 2c2, c2 < c3.
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Figure 4: Type C3 Generalized Associahedron, (c1, c2, c3) = (5
2 , 4,

9
2 )
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