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7 Generalized Associahedron

To complete the proof of the classification theorem, we want to construct a polytope
A(®D) from the root system ® such that it is isomorphic to the cluster complex A(A).
We first establish a general fact.

7.1 Construction of Polytope A(A)

Let ¥ be a finite set (“ground set”). Let A be a simple convex polytope in R™.
Assume

e Each vertex v € A are labeled by n-tuple of elements [v] C U.

e j-dimensional faces of A corresponds bijectively to maximal subsets of vertices
v € A such that the labels have exactly n — i elements in common.

A sign-skew-symmetric n X n matrix B, is attached to each vertex v € A,
with label [v].

For every edge (v,7) of A, with [v] = [v] — {7y} U{7}, By is obtained from B,
by matrix mutation at v and relabeling it by 7.

For any 2-dimensional face F' € A, for a vertex v € F, there exists two elements
a, f that are not common to the labels of all other vertices in F'. Define the type
of F' = |bagbga|, which does not depend on choice of v.

Proposition 7.1. Assume 2-dimensional face of A are 4,5,6,8-gons of types 0,1,2,3
respectively. Then the cluster algebra A = A(B,y) is of finite type if B = B, for
some v € A.
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Example 7.2. This is an example for ¥ = {1,2,3,4,5,6,7} and n = 3:

{1,5,6}

/ \
{1,2,6} {4,5,6}
AN /
{2.5.6} {3.4.6}

{1,5,7}
{1,2,7} {4,5,7}
AN /

{2;3; 7} - {374}7}

Definition 7.3. Let ¥ = (x,y, B) be a seed of A.

e A seed attachment of ¥ at v is a bijection between labels at v and cluster
variables of x, and identifying B and B,.

e A transport of seed attachment along an edge (v,v): the seed ¥ attached at ©
is obtained from ¥ by mutation in direction x(y) where [0] = [v] — {v} U {F}.

Proof. Start with an initial seed attachment at vy. We can transport to other vertex
v’ along a path from v to v’. It does not depend on choice of path, i.e. transport of
seed attachment along a loop brings it back unchanged. By our assumption of the
faces of A, this follows from cluster algebra of rank 2.

Any sequence of mutations of seed is uniquely lifted to a path on A, and trans-
porting the initial seed attachment along the path produces the chosen sequence of
mutation. Hence we have a map from vertices of A surjective onto the set of all
seeds of A.

In fact we have a stronger result, that there is a surjection from ¥ to the set of
all cluser variables of A. Let v/, v” € A with [v']N[v”] = {a}. They can be joined by
a path v; = v/, vg, ..., = v" such that « € [v;] for all I. Hence 2/(a) = ... = 2" ()
and the seed attachement does not depend on the choice of vertex. Hence the
attachment of cluster variables to the ground set is a surjection from ¥ to set of all
cluster variables of A. Since V¥ is finite, A is finite type. O

The proof then requires the construction of the polytope A for each Cartan-
Killing type, which can be described combinatorically by the root systems.

Again let the Dynkin diagram be bipartite into two parts I, I_. Let II be
simple roots, &1 be positive roots, ®>_; := &4 U (—II) be almost positive roots,
@ = ZII the root lattice, Q4 = Z>oIl; the positive root lattice. Let A = (a;5) be
the Cartan matrix.



Definition 7.4. Sign function e : I — {+,—}

‘ +oiel
E(Z):{ ~ el

Denote by [y : ;] the coefficient of a; in the expansion of v € Q in the basis IL.

Definition 7.5. Piecewise-linear reflection 74 : ®>_1 — ®>_;:

te(a)  otherwise

for e € {+,—}, where we recall

tE: HSi.

iel.
This can be extended to the whole v € @ as follows: if we let
Ye ‘= Z kiai7 Vé = Ye
iel_.

ki <0

then
Te(’Y) =%+ te(’}/é)'

Equivalently, in terms of coordinate,

[Te(7) : ay] = { [_7[70:%?”] = Dinj @iy oyl Z 2 ﬁ;

Let D denote the group generated by (T4, 7_).
Theorem 7.6. (1) 7+ is an involution and preserve ®>_q
(2) T+(a) = ts(@) for any o € Q4

(3) The order of T_T4 equals % if wo = —1, and h + 2 otherwise. Hence D 1is
a dihedral group

(4) Every D-orbit in ®>_1 has nonempty intersection with —IL. There is a bijec-
tion between D-orbits in ®>_1 and the (—wy)-orbits in (—II)

Proof. (1) and (2) follows from definition. (3) and (4) see [FZ-YSystem, Theorem
2.6], which describe the orbits explicitly by some patterns. O

Example 7.7. One orbit for As:

T. T— T. T—
7',O—a1<—+>a1<—>a1+a2<—+>a2<—>—a2()7+



Example 7.8. Two orbits for Az: We have £a1 +— Fagz and as — —aq in the
wq orbit.

T+ T— T+ T— 7'+
T_O—ap+— a1 —a;F+as+—astaz+—a3+— —agz O T1_

T+O—&2<T;>QQ<T—+>Q1+&2+Q3OT_
The following result is the most important tools in this section.

Proposition 7.9. There is a unique function called the compatibility degree

@2,1 X @2,1 — ZZO
(a, B) = (al|B)

such that
(—ai]la) = maz (o : a4],0)

(real|7e) = (al|B)

Remark 7.10. This proposition is important since most of the proofs below uses
the following strategy:

e D-orbit does not change (+||-).

o Can always apply some element from D to go back to negative roots.

o We can study the case with negative root explicitly, or we can remove the

negative roots and use induction on the positive part.

Definition 7.11. e « and B are compatible if (a]|B) = (B]|a) = 0.

e « and (3 are exchangeable if (a||B) = (B||a) = 1.

o Let A(®) be the simplicial complex on the ground set ®>_1 whose simplices
are mutually compatible roots. The mazimal simplices are called clusters.

Theorem 7.12. (1) Each cluster in A(®) is a Z-basis for Q. In particular all
clusters are of the same size n.

(2) Ewery element of the root lattice has a unique cluster expansion (i.e. linear
combinations of mutually compatible roots with nonnegative coefficients).

(8) Let [y : &]cus denote the coefficient of a in the cluster expansion. Then the
coefficient is invariant under o € D,

[0(7) : U(O‘)}clus = [7 : a]clus

(4) The cones C(A(®)) spanned by the simplices in A(®) form a complete sim-
plicial fan in Qg



Please see Example 7.16 to understand the statements.

Proof. (1) is [FZ-YSystem, Theorem 1.8] By induction.

For every i € I, if C is cluster for ® that contains —a;, then C — {—q;} is
cluster for ®(I — {i}). (all other elements in C' does not have component of
«; by definition of compatibility.)

Hence C'is a Z basis for Qg iff C — {—a;} is a Z basis for Qa1—)-
Need to consider the case when C' are all positive roots only.

Since 74 (C) = t4(C) are also clusters, we can arrive at a cluster C’ which is
no longer positive.

Then we can remove the negative root and apply induction.

(2) is [FZ-YSystem, Theorem 3.11] Again by induction.

Let Sy(y) ={i € I:[y:a;] > 0} be the positive support.
If « € & occurs in expansion of 7, then Si (o) C S (7).
If & € —TI occurs in expansion of v, then [y : a] < 0.

Let (t) := Dies, (Y T aila.

Then ~ has unique cluster expansion in ® iff v(+) has unique cluster expansion

in ®(S (7).

Need to consider the case when v € @4 only. Then 7 has unique cluster
expansion iff ¢.(y) = 7.(y) has unique cluster expansion (all components are
+, and ¢ is linear).

Move v outside @4 by t4, and then can apply induction.

(3): 74 is a linear map in each cluster cone.
(4) follows from (2). O

Definition 7.13. A normal fan N (P) of a simple convex polytope is a simplicial
fan where each mazimal cone correspond to a vertex ¢ € P by

Cypi={yeV =R": glggmw = (7,9}

Theorem 7.14. The simplicial fan C(A(P)) is the normal fan of a simple n-
dimensional convex polytope, the generalized associahedron.

Hence the generalized associahedron P is the dual complex of the cluster com-

plex.

In particular, the exchange graph is the 1-skeleton of P, and the maximal

simplex of P is labeled by ®>_;. In particular the cluster complex is topologically
homeomorphic to an n dimensional sphere.
The construction of generalized associahedron is given by:



Theorem 7.15. [CFZ, Theorem 1.4,1.5] Let F : —I1 — R satisfies

ZaijF(—ozj) >0 VJ el
icl

and extends uniquely to (T4, T7_)-invariant function on ®>_y. Then the generalized
associahedron P is given by

(z,0) < F(a), VYae®>_4
with normal fan C(A(D)).
Example 7.16. [Type As]Both exchange graph and cluster complex are pentagons.

max(—z1, —22, 21, 22,21 + 22) < ¢

o2 o+

—] = - (]

Figure 1: Type Ay Associahedron

Example 7.17 (Type Asz). The Associahedron is also called Stasheff polytope.
There are two D-orbits:

{—a1, —as, a1, a3,a1 + ag, a0 + az} and {—ag, s, 1 + az +az}
Then for 0 < ¢1 < ca < 2¢1 we have

max(—zl, —RZ3,%1,%3, %1 + 292,22 + 23)

<
max(—z9, 29,21 + 22 + 23) < ¢



compatible

exchangeable
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3 2)

Figure 2: Type A3 Associahedron, (c1,c2) = (3,
Example 7.18 (Type Cs). It is a hexagon, given by

max(—z1,21,21 + 22) < ¢

max(—zz, 22,221 + 22) < C2

for 0 <c1 <ca < 2¢.
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Figure 3: Type Cs Associahedron (the intersection), (c1, c2) = (2,3)

Example 7.19 (Type Cs). Cyclohedron, also known as Bott-Taubes polytope.
There are 3 D-orbits. Then we have

max(—z1, 21,21 + 22,22 + 23) < 1
HlaX(—ZQ, 29,21+ 22 + 23,21 + 220 + 23) < o
max(—zs, 23, 222 + 23,221 + 220 + 23) < ¢3

for co < 2c1,c1 + c3 < 2¢9,c0 < c3.
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Figure 4: Type C3 Generalized Associahedron, (c1,cz,c3) = (3
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