Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 29, 2017

7 Generalized Associahedron

To complete the proof of the classification theorem, we want to construct a polytope $\Delta(\Phi)$ from the root system Φ such that it is isomorphic to the cluster complex $\Delta(\mathcal{A})$. We first establish a general fact.

7.1 Construction of Polytope $\Delta(\mathcal{A})$

Let Ψ be a finite set ("ground set"). Let Δ be a simple convex polytope in \mathbb{R}^n . Assume

- Each vertex $v \in \Delta$ are labeled by *n*-tuple of elements $[v] \subset \Psi$.
- *i*-dimensional faces of Δ corresponds bijectively to maximal subsets of vertices $v \in \Delta$ such that the labels have exactly n i elements in common.
- A sign-skew-symmetric $n \times n$ matrix B_v is attached to each vertex $v \in \Delta$, with label [v].
- For every edge (v, \overline{v}) of Δ , with $[\overline{v}] = [v] \{\gamma\} \cup \{\overline{\gamma}\}$, $B_{\overline{v}}$ is obtained from B_v by matrix mutation at γ and relabeling it by $\overline{\gamma}$.

For any 2-dimensional face $F \in \Delta$, for a vertex $v \in F$, there exists two elements α, β that are not common to the labels of all other vertices in F. Define the type of $F = |b_{\alpha\beta}b_{\beta\alpha}|$, which does not depend on choice of v.

Proposition 7.1. Assume 2-dimensional face of Δ are 4,5,6,8-gons of types 0,1,2,3 respectively. Then the cluster algebra $\mathcal{A} = \mathcal{A}(B, \mathbf{y})$ is of finite type if $B = B_v$ for some $v \in \Delta$.

^{*}Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan

Email: ivan.ip@math.kyoto-u.ac.jp

Example 7.2. This is an example for $\Psi = \{1, 2, 3, 4, 5, 6, 7\}$ and n = 3:

Definition 7.3. Let $\Sigma = (\mathbf{x}, \mathbf{y}, B)$ be a seed of \mathcal{A} .

- A seed attachment of Σ at v is a bijection between labels at v and cluster variables of x, and identifying B and B_v.
- A transport of seed attachment along an edge (v, v̄): the seed Σ attached at v̄ is obtained from Σ by mutation in direction x(γ) where [v̄] = [v] - {γ} ∪ {γ̄}.

Proof. Start with an initial seed attachment at v_0 . We can transport to other vertex v' along a path from v to v'. It does not depend on choice of path, i.e. transport of seed attachment along a loop brings it back unchanged. By our assumption of the faces of Δ , this follows from cluster algebra of rank 2.

Any sequence of mutations of seed is uniquely lifted to a path on Δ , and transporting the initial seed attachment along the path produces the chosen sequence of mutation. Hence we have a map from vertices of Δ surjective onto the set of all seeds of \mathcal{A} .

In fact we have a stronger result, that there is a surjection from Ψ to the set of all cluser variables of \mathcal{A} . Let $v', v'' \in \Delta$ with $[v'] \cap [v''] = \{\alpha\}$. They can be joined by a path $v_1 = v', v_2, ..., v_l = v''$ such that $\alpha \in [v_i]$ for all I. Hence $x'(\alpha) = ... = x''(\alpha)$ and the seed attachment does not depend on the choice of vertex. Hence the attachment of cluster variables to the ground set is a surjection from Ψ to set of all cluster variables of \mathcal{A} . Since Ψ is finite, \mathcal{A} is finite type. \Box

The proof then requires the construction of the polytope Δ for each Cartan-Killing type, which can be described combinatorically by the root systems.

Again let the Dynkin diagram be bipartite into two parts I_+, I_- . Let Π be simple roots, Φ_+ be positive roots, $\Phi_{\geq -1} := \Phi_+ \cup (-\Pi)$ be almost positive roots, $Q = \mathbb{Z}\Pi$ the root lattice, $Q_+ = \mathbb{Z}_{\geq 0}\Pi_+$ the positive root lattice. Let $A = (a_{ij})$ be the Cartan matrix.

Definition 7.4. Sign function $\epsilon : I \longrightarrow \{+, -\}$

$$\epsilon(i) = \left\{ \begin{array}{rr} + & i \in I_+ \\ - & i \in I_- \end{array} \right.$$

Denote by $[\gamma : \alpha_i]$ the coefficient of α_i in the expansion of $\gamma \in Q$ in the basis Π .

Definition 7.5. Piecewise-linear reflection $\tau_{\pm}: \Phi_{\geq -1} \longrightarrow \Phi_{\geq -1}:$

$$\tau_{\epsilon}(\alpha) := \begin{cases} \alpha & \alpha = -\alpha_i, i \in I_{-\epsilon} \\ t_{\epsilon}(\alpha) & otherwise \end{cases}$$

for $\epsilon \in \{+, -\}$, where we recall

$$t_{\epsilon} = \prod_{i \in I_{\epsilon}} s_i.$$

This can be extended to the whole $\gamma \in Q$ as follows: if we let

$$\gamma_{\epsilon} := \sum_{\substack{i \in I_{-\epsilon} \\ k_i < 0}} k_i \alpha_i, \qquad \gamma'_{\epsilon} := \gamma - \gamma_{\epsilon},$$

then

$$\tau_{\epsilon}(\gamma) = \gamma_{\epsilon} + t_{\epsilon}(\gamma_{\epsilon}').$$

Equivalently, in terms of coordinate,

$$[\tau_{\epsilon}(\gamma):\alpha_{i}] = \begin{cases} -[\gamma:\alpha_{i}] - \sum_{i \neq j} a_{ij}[\gamma:\alpha_{j}]_{+} & i \in I_{\epsilon} \\ [\gamma:\alpha_{i}] & i \in I_{-\epsilon} \end{cases}$$

Let \mathcal{D} denote the group generated by $\langle \tau_+, \tau_- \rangle$.

Theorem 7.6. (1) τ_{\pm} is an involution and preserve $\Phi_{\geq -1}$

- (2) $\tau_{\pm}(\alpha) = t_{\pm}(\alpha)$ for any $\alpha \in Q_+$
- (3) The order of $\tau_{-}\tau_{+}$ equals $\frac{h+2}{2}$ if $w_{0} = -1$, and h+2 otherwise. Hence \mathcal{D} is a dihedral group
- (4) Every \mathcal{D} -orbit in $\Phi_{\geq -1}$ has nonempty intersection with $-\Pi$. There is a bijection between \mathcal{D} -orbits in $\Phi_{\geq -1}$ and the $\langle -w_0 \rangle$ -orbits in $(-\Pi)$

Proof. (1) and (2) follows from definition. (3) and (4) see [FZ-YSystem, Theorem 2.6], which describe the orbits explicitly by some patterns. \Box

Example 7.7. One orbit for A_2 :

$$\tau_{-} \circlearrowright -\alpha_{1} \stackrel{\tau_{+}}{\longleftrightarrow} \alpha_{1} \stackrel{\tau_{-}}{\longleftrightarrow} \alpha_{1} + \alpha_{2} \stackrel{\tau_{+}}{\longleftrightarrow} \alpha_{2} \stackrel{\tau_{-}}{\longleftrightarrow} -\alpha_{2} \circlearrowright \tau_{+}$$

Example 7.8. Two orbits for A_3 : We have $\pm \alpha_1 \leftrightarrow \mp \alpha_3$ and $\alpha_2 \leftrightarrow -\alpha_2$ in the w_0 orbit.

$$\tau_{-} \circlearrowright -\alpha_{1} \stackrel{\tau_{+}}{\longleftrightarrow} \alpha_{1} \stackrel{\tau_{-}}{\longleftrightarrow} \alpha_{1} + \alpha_{2} \stackrel{\tau_{+}}{\longleftrightarrow} \alpha_{2} + \alpha_{3} \stackrel{\tau_{-}}{\longleftrightarrow} \alpha_{3} \stackrel{\tau_{+}}{\longleftrightarrow} -\alpha_{3} \circlearrowright \tau_{-}$$
$$\tau_{+} \circlearrowright -\alpha_{2} \stackrel{\tau_{-}}{\longleftrightarrow} \alpha_{2} \stackrel{\tau_{+}}{\longleftrightarrow} \alpha_{1} + \alpha_{2} + \alpha_{3} \circlearrowright \tau_{-}$$

The following result is the most important tools in this section.

Proposition 7.9. There is a unique function called the compatibility degree

$$\Phi_{\geq -1} \times \Phi_{\geq -1} \longrightarrow \mathbb{Z}_{\geq 0}$$
$$(\alpha, \beta) \mapsto (\alpha ||\beta)$$

such that

$$(-\alpha_i || \alpha) = max([\alpha : \alpha_i], 0)$$
$$(\tau_{\epsilon} \alpha || \tau_{\epsilon} \beta) = (\alpha || \beta)$$

Remark 7.10. This proposition is important since most of the proofs below uses the following strategy:

- \mathcal{D} -orbit does not change $(\cdot || \cdot)$.
- Can always apply some element from \mathcal{D} to go back to negative roots.
- We can study the case with negative root explicitly, or we can remove the negative roots and use induction on the positive part.

Definition 7.11. • α and β are compatible if $(\alpha || \beta) = (\beta || \alpha) = 0$.

- α and β are exchangeable if $(\alpha || \beta) = (\beta || \alpha) = 1$.
- Let $\Delta(\Phi)$ be the simplicial complex on the ground set $\Phi_{\geq -1}$ whose simplices are mutually compatible roots. The maximal simplices are called clusters.
- **Theorem 7.12.** (1) Each cluster in $\Delta(\Phi)$ is a \mathbb{Z} -basis for Q. In particular all clusters are of the same size n.
 - (2) Every element of the root lattice has a unique cluster expansion (i.e. linear combinations of mutually compatible roots with nonnegative coefficients).
 - (3) Let $[\gamma : \alpha]_{clus}$ denote the coefficient of α in the cluster expansion. Then the coefficient is invariant under $\sigma \in \mathcal{D}$,

$$[\sigma(\gamma):\sigma(\alpha)]_{clus} = [\gamma:\alpha]_{clus}$$

(4) The cones $\mathcal{C}(\Delta(\Phi))$ spanned by the simplices in $\Delta(\Phi)$ form a complete simplicial fan in $Q_{\mathbb{R}}$

Please see Example 7.16 to understand the statements.

Proof. (1) is [FZ-YSystem, Theorem 1.8] By induction.

- For every $i \in I$, if C is cluster for Φ that contains $-\alpha_i$, then $C \{-\alpha_i\}$ is cluster for $\Phi(I \{i\})$. (all other elements in C does not have component of α_i by definition of compatibility.)
- Hence C is a \mathbb{Z} basis for Q_{Φ} iff $C \{-\alpha_i\}$ is a \mathbb{Z} basis for $Q_{\Phi(I-i)}$.
- Need to consider the case when C are all positive roots only.
- Since $\tau_{\pm}(C) = t_{\pm}(C)$ are also clusters, we can arrive at a cluster C' which is no longer positive.
- Then we can remove the negative root and apply induction.

(2) is [FZ-YSystem, Theorem 3.11] Again by induction.

- Let $S_+(\gamma) = \{i \in I : [\gamma : \alpha_i] > 0\}$ be the positive support.
- If $\alpha \in \Phi_+$ occurs in expansion of γ , then $S_+(\alpha) \subset S_+(\gamma)$.
- If $\alpha \in -\Pi$ occurs in expansion of γ , then $[\gamma : \alpha] < 0$.
- Let $\gamma^{(+)} := \sum_{i \in S_+(\gamma)} [\gamma : \alpha_i] \alpha_i.$
- Then γ has unique cluster expansion in Φ iff $\gamma^{(+)}$ has unique cluster expansion in $\Phi(S_+(\gamma))$.
- Need to consider the case when $\gamma \in Q_+$ only. Then γ has unique cluster expansion iff $t_{\epsilon}(\gamma) = \tau_{\epsilon}(\gamma)$ has unique cluster expansion (all components are +, and t_{ϵ} is linear).
- Move γ outside Q_+ by t_{\pm} , and then can apply induction.
- (3): τ_{\pm} is a linear map in each cluster cone.
- (4) follows from (2).

Definition 7.13. A normal fan $\mathcal{N}(\mathcal{P})$ of a simple convex polytope is a simplicial fan where each maximal cone correspond to a vertex $\phi \in P$ by

$$C_{\phi} := \{ \gamma \in V^* \simeq \mathbb{R}^n : \max_{\psi \in P} \langle \gamma, \psi \rangle = \langle \gamma, \phi \rangle \}$$

Theorem 7.14. The simplicial fan $C(\Delta(\Phi))$ is the normal fan of a simple ndimensional convex polytope, the generalized associahedron.

Hence the generalized associahedron P is the dual complex of the cluster complex. In particular, the exchange graph is the 1-skeleton of P, and the maximal simplex of P is labeled by $\Phi_{\geq -1}$. In particular the cluster complex is topologically homeomorphic to an n dimensional sphere.

The construction of generalized associahedron is given by:

Theorem 7.15. [CFZ, Theorem 1.4, 1.5] Let $F : -\Pi \longrightarrow \mathbb{R}$ satisfies

$$\sum_{i \in I} a_{ij} F(-\alpha_j) > 0 \qquad \forall j \in I$$

and extends uniquely to $\langle \tau_+, \tau_- \rangle$ -invariant function on $\Phi_{\geq -1}$. Then the generalized associahedron \mathcal{P} is given by

$$\langle z, \alpha \rangle \le F(\alpha), \quad \forall \alpha \in \Phi_{>-1}$$

with normal fan $\mathcal{C}(\Delta(\Phi))$.

Example 7.16. [Type A_2]Both exchange graph and cluster complex are pentagons.

$$\max(-z_1, -z_2, z_1, z_2, z_1 + z_2) \le c$$

Figure 1: Type A_2 Associahedron

Example 7.17 (Type A_3). The Associahedron is also called Stasheff polytope. There are two \mathcal{D} -orbits:

 $\{-\alpha_1, -\alpha_3, \alpha_1, \alpha_3, \alpha_1 + \alpha_2, \alpha_2 + \alpha_3\}$ and $\{-\alpha_2, \alpha_2, \alpha_1 + \alpha_2 + \alpha_3\}$

Then for $0 < c_1 < c_2 < 2c_1$ *we have*

$$\max(-z_1, -z_3, z_1, z_3, z_1 + z_2, z_2 + z_3) \le c_1$$
$$\max(-z_2, z_2, z_1 + z_2 + z_3) \le c_2$$

Figure 2: Type A_3 Associahedron, $(c_1, c_2) = (\frac{3}{2}, 2)$

Example 7.18 (Type C_2). It is a hexagon, given by

$$\max(-z_1, z_1, z_1 + z_2) \le c_1$$
$$\max(-z_2, z_2, 2z_1 + z_2) \le c_2$$

for $0 < c_1 < c_2 < 2c_1$.

Figure 3: Type C_2 Associahedron (the intersection), $(c_1, c_2) = (2, 3)$

Example 7.19 (Type C_3). Cyclohedron, also known as Bott-Taubes polytope. There are 3 \mathcal{D} -orbits. Then we have

$$\max(-z_1, z_1, z_1 + z_2, z_2 + z_3) \le c_1$$
$$\max(-z_2, z_2, z_1 + z_2 + z_3, z_1 + 2z_2 + z_3) \le c_2$$
$$\max(-z_3, z_3, 2z_2 + z_3, 2z_1 + 2z_2 + z_3) \le c_3$$

for $c_2 < 2c_1, c_1 + c_3 < 2c_2, c_2 < c_3$.

Figure 4: Type C_3 Generalized Associahedron, $(c_1, c_2, c_3) = (\frac{5}{2}, 4, \frac{9}{2})$

References

- [CFZ] F. Chapoton, S. Fomin, A. Zelevinsky, Polytopal Realization of Generalized Associahedra, Canadian Mathematical Bulletin, 45(4), 537-566.
- [FZ-ClusterII] S. Fomin, A. Zelevinsky, Cluster Algebras II: Finite Type Classification, Inventiones mathematicae 154.1 (2003): 63-121.
- [FZ-YSystem] S. Fomin, A. Zelevinsky, Y System and Generalized Associahedra, Annals of Mathematics 158.3 (2003): 977-1018.