Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: May 29, 2017

7.2 Properties of Exchangeable roots

The notion of exchangeable is explained as follows
Proposition 7.20. If C and $C^{\prime}=C-\{\beta\} \cup\left\{\beta^{\prime}\right\}$ are two adjacent clusters, then β, β^{\prime} are exchangeable
Proof. - We have single linear relation

$$
m_{\beta} \beta+m_{\beta^{\prime}} \beta^{\prime}=\sum_{\gamma \in C \cap C^{\prime}} m_{\gamma} \gamma, \quad m_{\beta}, m_{\beta^{\prime}}, m_{\gamma} \in \mathbb{Z}_{\geq 0}
$$

- Since cluster is \mathbb{Z} basis, $m_{\beta}=m_{\beta^{\prime}}=1$.
- Use τ to bring $\beta=-\alpha_{i}$.
- Then $\gamma \in C \cap C^{\prime}$ has no α_{i} components since it is compatible with $-\alpha_{i}$.
- Hence $\left(\beta \| \beta^{\prime}\right)={ }_{\tau}\left(-\alpha_{i} \| \beta^{\prime \prime}\right)=1$

The exchange relation of two exchangeable roots in the clusters C, C^{\prime} with $C^{\prime}=$ $C-\{\beta\} \cup\left\{\beta^{\prime}\right\}$ are of the form

$$
x[\beta] x\left[\beta^{\prime}\right]=p X[\gamma]+p^{\prime} X\left[\gamma^{\prime}\right]
$$

for some polynomials in $\mathbf{x}\left(C \cap C^{\prime}\right)$ and some coefficients (depending on β, β^{\prime}, C) $p, p^{\prime} \in \mathbb{P}$. We can think of it as represented by some elements in the root lattice Q :

$$
X[\gamma]=x_{1}^{m_{1}} \ldots x_{k}^{m_{k}} \mapsto \gamma=m_{1} \gamma_{1}+\ldots+m_{k} \gamma_{k}
$$

where γ_{i} are the elements of $C \cap C^{\prime}$ and $m_{i} \geq 0$. It turns out that one can describe γ and γ^{\prime} explicitly.

[^0]Theorem 7.21. Let β, β^{\prime} be exchangeable. Define

$$
\beta+{ }_{\sigma} \beta^{\prime}:=\sigma^{-1}\left(\sigma(\beta)+\sigma\left(\beta^{\prime}\right)\right)
$$

If Φ is not of type A_{1}, then the set

$$
E\left(\beta, \beta^{\prime}\right):=\left\{\beta+{ }_{\sigma} \beta^{\prime}: \sigma \in \mathcal{D}\right\}
$$

consists of two elements $\left\{\beta+\beta^{\prime}, \beta \uplus \beta^{\prime}\right\}$. If $\Phi=A_{1}, E(-\alpha, \alpha)=\{0\}$.
Lemma 7.22. If β, β^{\prime} are both positive, or $\tau_{\epsilon}(\beta), \tau_{\epsilon}\left(\beta^{\prime}\right)$ are both positive, then

$$
\beta+{\tau_{\epsilon}} \beta^{\prime}=\beta+\beta^{\prime}
$$

since $\tau_{\epsilon}=t_{\epsilon}$ is linear when the root is positive.
Example 7.23. In the special case where $\beta^{\prime}=-\alpha_{j}$,

$$
\left(-\alpha_{j}\right) \uplus \beta=\beta-\alpha_{j}+\sum_{i \neq j} a_{i j} \alpha_{i}
$$

Using this Lemma, one can determine when $\beta+{ }_{\sigma} \beta^{\prime}$ is $\beta+\beta^{\prime}$ or $\beta \uplus \beta^{\prime}$.
We list some properties of $\beta+\beta^{\prime}$ and $\beta \uplus \beta^{\prime}$:
Lemma 7.24. Let β, β^{\prime} be exchangeable.
(1) No negative simple root can be cluster component of $\beta+\beta^{\prime}$.
(2) The vectors $\beta+\beta^{\prime}$ and $\beta \uplus \beta^{\prime}$ has no common cluster components
(3) If $\left[\beta \uplus \beta^{\prime}: \alpha_{i}\right]>0$, then $\left[\beta+\beta^{\prime}: \alpha_{i}\right]>0$.
(4) All cluster components of $\beta+\beta^{\prime}$ and $\beta \uplus \beta^{\prime}$ are compatible with both β and β^{\prime}
(5) A root $\alpha \neq \beta, \beta^{\prime}$ is compatible with both β, β^{\prime} iff compatible with all cluster components of $\beta+\beta^{\prime}$ and $\beta \uplus \beta^{\prime}$.
(6) If $\alpha \in-\Pi$ is compatible with all cluster components of $\beta+\beta^{\prime}$, then it is compatible with all cluster components of $\beta \uplus \beta^{\prime}$.

Proof. (1) - Assume $\beta+\beta^{\prime}$ has cluster expansion in the cluster C. If $-\alpha_{i} \in C$, all other elements of C has no α_{i} components.

- If $\left[\beta+\beta^{\prime}:-\alpha_{i}\right]_{C}>0$, then $\left[\beta+\beta^{\prime}: \alpha_{i}\right]<0$.
- This means β or $\beta^{\prime}=-\alpha_{i}$. Let $\beta=-\alpha_{i}$.
- Then $\left(\beta \| \beta^{\prime}\right)=1 \Longrightarrow\left[\beta+\beta^{\prime}: \alpha_{i}\right]=0(!)$
(2) - Let α be the common cluster component. Apply $\sigma \in \mathcal{D}$ and assume $\alpha=-\alpha_{i}$.
- If $\sigma\left(\beta+\beta^{\prime}\right)=\sigma(\beta)+\sigma\left(\beta^{\prime}\right)$, then by part 1 it is impossible.
- Otherwise $\sigma\left(\beta \uplus \beta^{\prime}\right)=\sigma(\beta)+\sigma\left(\beta^{\prime}\right)$, again by part 1 it is impossible.
(3) is [CFZ, Theorem 1.17]. It is proved case by case for each Dynkin types, with 8 pages of calculations...
(4) - Let α be cluster component of $\beta+\beta^{\prime}$. Apply $\sigma \in \mathcal{D}$ with $\sigma(\beta)=-\alpha_{i}$.
- Suffices to show $\left(-\alpha_{i} \| \sigma(\alpha)\right)=0$.
$-\sigma(\beta)=-\alpha_{i}$ and $1=\left(\beta \| \beta^{\prime}\right)=\left(\sigma(\beta) \| \sigma\left(\beta^{\prime}\right)\right)=\left(-\alpha_{i} \| \sigma\left(\beta^{\prime}\right)\right)=\left[\sigma\left(\beta^{\prime}\right): \alpha_{i}\right]$ $\Longrightarrow\left[\sigma(\beta)+\sigma\left(\beta^{\prime}\right): \alpha_{i}\right]=0$
$-\mathrm{By}(3) \Longrightarrow\left[\sigma(\beta) \uplus \sigma\left(\beta^{\prime}\right): \alpha_{i}\right] \leq 0$
- In either case, $\left[\sigma\left(\beta+\beta^{\prime}\right): \alpha_{i}\right] \leq 0 . \sigma(\alpha)$ is cluster component of $\sigma\left(\beta+\beta^{\prime}\right)$.
- Hence $\left[\sigma(\alpha): \alpha_{i}\right] \leq 0$, hence $\left(-\alpha_{i} \| \sigma(\alpha)\right)=0$
$-\sigma\left(\beta \uplus \beta^{\prime}\right)=\sigma(\beta)+\sigma\left(\beta^{\prime}\right)$ for some $\sigma \in \mathcal{D}$.
$-\alpha$ is cluster component of $\beta \uplus \beta^{\prime} \Longrightarrow \sigma(\alpha)$ is cluster component of $\sigma(\beta)+$ $\sigma\left(\beta^{\prime}\right)$
- Hence $\sigma(\alpha)$ is compatible with $\sigma(\beta)$ and $\sigma\left(\beta^{\prime}\right)$, hence α compatible with β and β^{\prime}.
(5) (if) Similar argument to (4).
(6) follows from (3)

Proposition 7.25. If β, β^{\prime} are exchangeable, then there exists two adjacent clusters C and $C^{\prime}=C-\{\beta\} \cup\left\{\beta^{\prime}\right\}$.

Proof. Follows from Lemma 7.5 (4), (5).

- The set consisting of β and all cluster components of $\beta+\beta^{\prime}$ and $\beta \uplus \beta^{\prime}$ is compatible. Hence there exists a cluster C containing this set.
- Every element of $C-\{\beta\}$ is compatible with β^{\prime} hence $C-\{\beta\} \cup\left\{\beta^{\prime}\right\}$ is a cluster.

7.3 Exchange matrix $B(C)$

Finally we define the exchange matrix $B(C)$. Let us start with the initial seed where $A=A\left(B_{0}\right)$ with B_{0} giving an alternate orientation. Then the mutations $\mu_{ \pm}=\prod_{i \in I_{ \pm}} \mu_{i}$ gives $\mu_{ \pm}\left(B_{0}\right)=-B_{0}$. From this we can determine the signs of $B(C)$. To summarize:

Lemma 7.26. There exists unique sign function $\epsilon\left(\beta, \beta^{\prime}\right)$ on pair of exchangeable roots

$$
\begin{aligned}
& \epsilon\left(-\alpha_{j}, \beta^{\prime}\right)=-\epsilon(j) \\
& \epsilon\left(\tau \beta, \tau \beta^{\prime}\right)=-\epsilon\left(\beta, \beta^{\prime}\right), \quad \beta, \beta^{\prime} \notin\left\{-\alpha_{j}: \tau\left(-\alpha_{j}\right)=-\alpha_{j}\right\}
\end{aligned}
$$

It is skew-symmetric

$$
\epsilon\left(\beta^{\prime}, \beta\right)=-\epsilon\left(\beta, \beta^{\prime}\right)
$$

Pictorially it is defined by

$$
\begin{aligned}
& -\alpha_{i} \cdots \cdots \cdots \cdots \xrightarrow{\tau_{-\epsilon}} \beta \underbrace{\tau_{\epsilon} \ldots \stackrel{\tau_{ \pm}}{\longrightarrow}}_{k_{\epsilon}(\beta)}-\alpha_{j} \\
& -\alpha_{i}^{\prime} \cdots \xrightarrow{\tau_{-\epsilon}} \beta^{\prime} \underbrace{\tau_{\epsilon} \ldots \ldots \ldots \stackrel{\tau_{ \pm}}{\longrightarrow}}_{k_{\epsilon}\left(\beta^{\prime}\right)}-\alpha_{j}^{\prime}
\end{aligned}
$$

Then $k_{\epsilon}(\beta)<k_{\epsilon}\left(\beta^{\prime}\right) \Longrightarrow \epsilon\left(\beta, \beta^{\prime}\right):=\epsilon$.
Since τ_{+}, τ_{-}covers all the roots of $\Phi_{\geq-1}$, it also gives a combinatorial description of $B(C)$ for any C. The explicit expression for $B(C)$ is given as follows:

Definition 7.27. Let $C^{\prime}=C-\{\beta\} \cup\left\{\beta^{\prime}\right\}$ be an adjancent cluster of C by exchanging β. Define the matrix $B(C)$ for each cluster of $\Delta(\Phi)$ as

$$
\begin{aligned}
b_{\alpha \beta}(C) & =\epsilon\left(\beta, \beta^{\prime}\right) \cdot\left[\left(\beta+\beta^{\prime}\right)-\left(\beta \uplus \beta^{\prime}\right): \alpha\right]_{C} \\
& =\epsilon\left(\beta, \beta^{\prime}\right) \cdot\left(\left[\beta+\beta^{\prime}: \alpha\right]_{\text {clus }}-\left[\beta \uplus \beta^{\prime}: \alpha\right]_{\text {clus }}\right)
\end{aligned}
$$

Hence the exchange relation is of the form

$$
x_{\beta} x_{\beta^{\prime}}=p(C) x_{\beta+\beta^{\prime}}+p^{\prime}(C) x_{\beta \uplus \beta^{\prime}}
$$

for some coefficients $p(C), p^{\prime}(C) \in \mathbb{P}$
Let $C_{0}=\left\{-\alpha_{1}, \ldots,-\alpha_{n}\right\}$ be the initial seed.
Lemma 7.28. The exchange matrix defined above satisfies

$$
\begin{gathered}
b_{-\alpha_{i},-\alpha_{j}}\left(C_{0}\right)= \begin{cases}0 & i=j \\
\epsilon(j) a_{i j} & i \neq j\end{cases} \\
b_{\tau \alpha, \tau \beta}(\tau C)=-b_{\alpha \beta}(C)
\end{gathered}
$$

In particular, $A\left(B\left(C_{0}\right)\right)$ is a Cartan matrix.
Proof. Let us prove the first statement. By definition,

$$
\begin{aligned}
\epsilon\left(-\alpha_{j}, \beta\right) & =-\epsilon(j) \\
-\alpha_{j} \uplus \beta & =-\alpha_{j}+\beta+\sum_{k \neq j} a_{k j} \alpha_{k}
\end{aligned}
$$

Hence

$$
\begin{aligned}
b_{-\alpha_{i},-\alpha_{j}}\left(C_{0}\right) & =\epsilon\left(-\alpha_{j}, \alpha_{j}\right) \cdot\left[\left(-\alpha_{j}+\beta\right)-\left(-\alpha_{j} \uplus \beta\right):-\alpha_{i}\right]_{C_{0}} \\
& =-\epsilon(j) \cdot\left[-\sum_{k \neq j} a_{k j} \alpha_{k}:-\alpha_{i}\right]_{C_{0}} \\
& = \begin{cases}0 & i=j \\
-\epsilon(j) a_{i j} & i \neq j\end{cases}
\end{aligned}
$$

Theorem 7.29. $B(C)$ gives a seed attachment for (the dual complex of) $\Delta(\Phi)$. i.e.
(1) $B(C)$ is sign-skew-symmetric:

$$
b_{\alpha \beta} b_{\beta \alpha}<0 \text { or } b_{\alpha \beta}=b_{\beta \alpha}=0
$$

(2) If $C^{\prime}=C-\{\gamma\} \cup\left\{\gamma^{\prime}\right\}$ is an adjancent cluster, then $B\left(C^{\prime}\right)$ is obtained from $B(C)$ by matrix mutation

$$
b_{\alpha \beta}\left(C^{\prime}\right)=\mu_{\gamma}\left(b_{\alpha \beta}(C)\right)
$$

(3) The dual graph of $\Delta(\Phi)$ has 2-dimensional face given by 4,5,6,8-gon, with the corresponding $B(C)$ matrix having type $0,1,2,3$.

Hence \mathcal{A} is of finite type by Proposition ??.
Proof. Mostly using the $\tau \in \mathcal{D}$ invariance of b and ϵ to reduce to checking the case for $\alpha=-\alpha_{i}$.
(3) is proved by induction on the rank of the root system:

- Rank 2 is known (4,5,6,8-gon correspond to type $A_{1} \times A_{1}, A_{2}, B_{2}, G_{2}$ respectively). Assume $n \geq 3$.
- If L is a loop, all the vertices share $n-2$ common elements.
- Use τ to bring one of them to $-\alpha_{i}$. The type does not change by τ-invariance of b.
- Since remaining elements are compatible with $-\alpha_{i}$, they do not have α_{i} components. Hence one can remove α_{i} and consider a lower rank root system with the same loop L.

7.4 Denominator Theorem

We have established a surjection $\alpha \mapsto x[\alpha]$ from vertex of $\Phi_{\geq-1}$ to the cluster variables by the previous Theorem. The denominator Theorem tells us that in fact this is a bijection, where each $x[\alpha]$ has different denominators. Here $-\alpha_{i}$ correspond to x_{i} of the initial seed \mathbf{x}_{0}. We now proceed to prove the denominator theorem.

Proof of Denominator Theorem. We will prove that

$$
x[\alpha]:=\frac{P_{\alpha}\left(\mathbf{x}_{0}\right)}{\mathbf{x}_{0}^{\alpha}}
$$

By induction on

$$
k(\alpha)=\min \left(k_{+}(\alpha), k_{-}(\alpha)\right) \geq 0
$$

- If $k(\alpha)=0, \alpha$ is negative root.
- Assume $k(\alpha)=k \geq 1$ and the theorem holds for all roots α^{\prime} with $k\left(\alpha^{\prime}\right)<k$.
- We have

$$
\alpha=\tau_{\epsilon(j)}^{(k)}\left(-\alpha_{j}\right)=\tau_{-\epsilon(j)}^{(k-1)}\left(\alpha_{j}\right)
$$

for some $j \in I$. Since α_{j} and $-\alpha_{j}$ are exchangeable, so are $\alpha, \tau\left(-\alpha_{j}\right)$ where $\tau:=\tau_{-\epsilon(j)}^{(k-1)}$.

- Then we have the exchange relation

$$
x[\alpha] x\left[\tau\left(-\alpha_{j}\right)\right]=q \prod_{i \neq j} x\left[\tau\left(-\alpha_{j}\right)\right]^{-a_{i j}}+r
$$

for some $q, r \in \mathbb{P}$.

- For $k=1$ we have $\alpha=\alpha_{j}$ and

$$
x\left[\alpha_{j}\right]=\frac{q \prod_{i \neq j} x_{i}^{-a_{i j}}+r}{x_{j}}
$$

- For $k \geq 2$, all roots appearing above has $k\left(\alpha^{\prime}\right)<k$, hence by induction we have

$$
x[\alpha]=x^{\tau\left(-\alpha_{j}\right)-\gamma} \cdot \frac{q \prod_{i \neq j} P_{\tau\left(-\alpha_{i}\right)}^{-a_{i j}}+r x^{\gamma}}{P_{\tau\left(-\alpha_{j}\right)}}
$$

where $P_{\alpha^{\prime}}$ are polynomials in \mathbf{x}_{0}, and we denote

$$
\gamma=\sum_{i \neq j}\left(-a_{i j}\right) \cdot \tau\left(-\alpha_{i}\right)
$$

- Since $x[\alpha]$ is a Laurent polynomial, the fraction is actually a polynomial. We have

$$
\gamma=\tau\left(\sum_{i \neq j} a_{i j} \alpha_{i}\right)=\tau\left(\alpha_{j} \uplus\left(-\alpha_{j}\right)\right)=\tau\left(\alpha_{j}\right)+\tau\left(-\alpha_{j}\right)=\alpha+\tau\left(-\alpha_{j}\right)
$$

References

[CFZ] F. Chapoton, S. Fomin, A. Zelevinsky, Polytopal Realization of Generalized Associahedra, Canadian Mathematical Bulletin, 45(4), 537-566.
[FZ-ClusterII] S. Fomin, A. Zelevinsky, Cluster Algebras II: Finite Type Classification, Inventiones mathematicae 154.1 (2003): 63-121.
[FZ-YSystem] S. Fomin, A. Zelevinsky, Y System and Generalized Associahedra, Annals of Mathematics 158.3 (2003): 977-1018.

[^0]: * Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

