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7.2 Properties of Exchangeable roots

The notion of exchangeable is explained as follows

Proposition 7.20. If C and C ′ = C − {β} ∪ {β′} are two adjacent clusters, then
β, β′ are exchangeable

Proof. • We have single linear relation

mββ +mβ′β
′ =

∑
γ∈C∩C′

mγγ, mβ ,mβ′ ,mγ ∈ Z≥0

• Since cluster is Z basis, mβ = mβ′ = 1.

• Use τ to bring β = −αi.

• Then γ ∈ C ∩ C ′ has no αi components since it is compatible with −αi.

• Hence (β||β′) =τ (−αi||β′′) = 1

The exchange relation of two exchangeable roots in the clusters C,C ′ with C ′ =
C − {β} ∪ {β′} are of the form

x[β]x[β′] = pX[γ] + p′X[γ′]

for some polynomials in x(C ∩ C ′) and some coefficients (depending on β, β′, C)
p, p′ ∈ P. We can think of it as represented by some elements in the root lattice Q:

X[γ] = xm1
1 ...xmkk 7→ γ = m1γ1 + ...+mkγk

where γi are the elements of C ∩C ′ and mi ≥ 0. It turns out that one can describe
γ and γ′ explicitly.
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Theorem 7.21. Let β, β′ be exchangeable. Define

β +σ β
′ := σ−1(σ(β) + σ(β′))

If Φ is not of type A1, then the set

E(β, β′) := {β +σ β
′ : σ ∈ D}

consists of two elements {β + β′, β ] β′}. If Φ = A1, E(−α, α) = {0}.

Lemma 7.22. If β, β′ are both positive, or τε(β), τε(β
′) are both positive, then

β +τε β
′ = β + β′

since τε = tε is linear when the root is positive.

Example 7.23. In the special case where β′ = −αj,

(−αj) ] β = β − αj +
∑
i6=j

aijαi

Using this Lemma, one can determine when β +σ β
′ is β + β′ or β ] β′.

We list some properties of β + β′ and β ] β′:

Lemma 7.24. Let β, β′ be exchangeable.

(1) No negative simple root can be cluster component of β + β′.

(2) The vectors β + β′ and β ] β′ has no common cluster components

(3) If [β ] β′ : αi] > 0, then [β + β′ : αi] > 0.

(4) All cluster components of β+β′ and β ]β′ are compatible with both β and β′

(5) A root α 6= β, β′ is compatible with both β, β′ iff compatible with all cluster
components of β + β′ and β ] β′.

(6) If α ∈ −Π is compatible with all cluster components of β + β′, then it is
compatible with all cluster components of β ] β′.

Proof. (1) – Assume β+β′ has cluster expansion in the cluster C. If −αi ∈ C,
all other elements of C has no αi components.

– If [β + β′ : −αi]C > 0, then [β + β′ : αi] < 0.

– This means β or β′ = −αi. Let β = −αi.
– Then (β||β′) = 1 =⇒ [β + β′ : αi] = 0 (!)

(2) – Let α be the common cluster component. Apply σ ∈ D and assume
α = −αi.

– If σ(β + β′) = σ(β) + σ(β′), then by part 1 it is impossible.
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– Otherwise σ(β ] β′) = σ(β) + σ(β′), again by part 1 it is impossible.

(3) is [CFZ, Theorem 1.17]. It is proved case by case for each Dynkin types, with
8 pages of calculations...

(4) – Let α be cluster component of β + β′. Apply σ ∈ D with σ(β) = −αi.
– Suffices to show (−αi||σ(α)) = 0.

– σ(β) = −αi and 1 = (β||β′) = (σ(β)||σ(β′)) = (−αi||σ(β′)) = [σ(β′) : αi]
=⇒ [σ(β) + σ(β′) : αi] = 0

– By (3) =⇒ [σ(β) ] σ(β′) : αi] ≤ 0

– In either case, [σ(β+β′) : αi] ≤ 0. σ(α) is cluster component of σ(β+β′).

– Hence [σ(α) : αi] ≤ 0, hence (−αi||σ(α)) = 0

– σ(β ] β′) = σ(β) + σ(β′) for some σ ∈ D.

– α is cluster component of β]β′ =⇒ σ(α) is cluster component of σ(β)+
σ(β′)

– Hence σ(α) is compatible with σ(β) and σ(β′), hence α compatible with
β and β′.

(5) (if) Similar argument to (4).

(6) follows from (3)

Proposition 7.25. If β, β′ are exchangeable, then there exists two adjacent clusters
C and C ′ = C − {β} ∪ {β′}.

Proof. Follows from Lemma 7.5 (4), (5).

• The set consisting of β and all cluster components of β + β′ and β ] β′ is
compatible. Hence there exists a cluster C containing this set.

• Every element of C − {β} is compatible with β′ hence C − {β} ∪ {β′} is a
cluster.

7.3 Exchange matrix B(C)

Finally we define the exchange matrix B(C). Let us start with the initial seed
where A = A(B0) with B0 giving an alternate orientation. Then the mutations
µ± =

∏
i∈I± µi gives µ±(B0) = −B0. From this we can determine the signs of

B(C). To summarize:
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Lemma 7.26. There exists unique sign function ε(β, β′) on pair of exchangeable
roots

ε(−αj , β′) = −ε(j)
ε(τβ, τβ′) = −ε(β, β′), β, β′ /∈ {−αj : τ(−αj) = −αj}

It is skew-symmetric
ε(β′, β) = −ε(β, β′)

Pictorially it is defined by

−αi · · · · · · · · ·
τ−ε−−→ β

τε−→ · · · τ±−−→︸ ︷︷ ︸
kε(β)

−αj

−α′i · · ·
τ−ε−−→ β′

τε−→ · · · · · · · · · τ±−−→︸ ︷︷ ︸
kε(β′)

−α′j

Then kε(β) < kε(β
′) =⇒ ε(β, β′) := ε.

Since τ+, τ− covers all the roots of Φ≥−1, it also gives a combinatorial description
of B(C) for any C. The explicit expression for B(C) is given as follows:

Definition 7.27. Let C ′ = C − {β} ∪ {β′} be an adjancent cluster of C by ex-
changing β. Define the matrix B(C) for each cluster of ∆(Φ) as

bαβ(C) = ε(β, β′) · [(β + β′)− (β ] β′) : α]C

= ε(β, β′) · ([β + β′ : α]clus − [β ] β′ : α]clus)

Hence the exchange relation is of the form

xβxβ′ = p(C)xβ+β′ + p′(C)xβ]β′

for some coefficients p(C), p′(C) ∈ P

Let C0 = {−α1, ...,−αn} be the initial seed.

Lemma 7.28. The exchange matrix defined above satisfies

b−αi,−αj (C0) =

{
0 i = j
ε(j)aij i 6= j

bτα,τβ(τC) = −bαβ(C)

In particular, A(B(C0)) is a Cartan matrix.

Proof. Let us prove the first statement. By definition,

ε(−αj , β) = −ε(j)

−αj ] β = −αj + β +
∑
k 6=j

akjαk
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Hence

b−αi,−αj (C0) = ε(−αj , αj) · [(−αj + β)− (−αj ] β) : −αi]C0

= −ε(j) · [−
∑
k 6=j

akjαk : −αi]C0

=

{
0 i = j
−ε(j)aij i 6= j

Theorem 7.29. B(C) gives a seed attachment for (the dual complex of) ∆(Φ).
i.e.

(1) B(C) is sign-skew-symmetric:

bαβbβα < 0 or bαβ = bβα = 0

(2) If C ′ = C − {γ} ∪ {γ′} is an adjancent cluster, then B(C ′) is obtained from
B(C) by matrix mutation

bαβ(C ′) = µγ(bαβ(C))

(3) The dual graph of ∆(Φ) has 2-dimensional face given by 4,5,6,8-gon, with the
corresponding B(C) matrix having type 0, 1, 2, 3.

Hence A is of finite type by Proposition ??.

Proof. Mostly using the τ ∈ D invariance of b and ε to reduce to checking the case
for α = −αi.

(3) is proved by induction on the rank of the root system:

• Rank 2 is known (4,5,6,8-gon correspond to type A1 ×A1, A2, B2, G2 respec-
tively). Assume n ≥ 3.

• If L is a loop, all the vertices share n− 2 common elements.

• Use τ to bring one of them to −αi. The type does not change by τ -invariance
of b.

• Since remaining elements are compatible with −αi, they do not have αi com-
ponents. Hence one can remove αi and consider a lower rank root system
with the same loop L.
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7.4 Denominator Theorem

We have established a surjection α 7→ x[α] from vertex of Φ≥−1 to the cluster
variables by the previous Theorem. The denominator Theorem tells us that in fact
this is a bijection, where each x[α] has different denominators. Here −αi correspond
to xi of the initial seed x0. We now proceed to prove the denominator theorem.

Proof of Denominator Theorem. We will prove that

x[α] :=
Pα(x0)

xα0

By induction on
k(α) = min(k+(α), k−(α)) ≥ 0

• If k(α) = 0, α is negative root.

• Assume k(α) = k ≥ 1 and the theorem holds for all roots α′ with k(α′) < k.

• We have
α = τ

(k)
ε(j)(−αj) = τ

(k−1)
−ε(j) (αj)

for some j ∈ I. Since αj and −αj are exchangeable, so are α, τ(−αj) where

τ := τ
(k−1)
−ε(j) .

• Then we have the exchange relation

x[α]x[τ(−αj)] = q
∏
i 6=j

x[τ(−αj)]−aij + r

for some q, r ∈ P.

• For k = 1 we have α = αj and

x[αj ] =
q
∏
i 6=j x

−aij
i + r

xj

• For k ≥ 2, all roots appearing above has k(α′) < k, hence by induction we
have

x[α] = xτ(−αj)−γ ·
q
∏
i6=j P

−aij
τ(−αi) + rxγ

Pτ(−αj)

where Pα′ are polynomials in x0, and we denote

γ =
∑
i6=j

(−aij) · τ(−αi)

• Since x[α] is a Laurent polynomial, the fraction is actually a polynomial. We
have

γ = τ(
∑
i 6=j

aijαi) = τ(αj ] (−αj)) = τ(αj) + τ(−αj) = α+ τ(−αj)
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