Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip^*

Update: May 29, 2017

7.2 Properties of Exchangeable roots

The notion of exchangeable is explained as follows

Proposition 7.20. If C and $C' = C - \{\beta\} \cup \{\beta'\}$ are two adjacent clusters, then β , β' are exchangeable

Proof. • We have single linear relation

$$m_{\beta}\beta + m_{\beta'}\beta' = \sum_{\gamma \in C \cap C'} m_{\gamma}\gamma, \qquad m_{\beta}, m_{\beta'}, m_{\gamma} \in \mathbb{Z}_{\geq 0}$$

- Since cluster is \mathbb{Z} basis, $m_{\beta} = m_{\beta'} = 1$.
- Use τ to bring $\beta = -\alpha_i$.
- Then $\gamma \in C \cap C'$ has no α_i components since it is compatible with $-\alpha_i$.
- Hence $(\beta || \beta') =_{\tau} (-\alpha_i || \beta'') = 1$

The exchange relation of two exchangeable roots in the clusters C, C' with $C' = C - \{\beta\} \cup \{\beta'\}$ are of the form

$$x[\beta]x[\beta'] = pX[\gamma] + p'X[\gamma']$$

for some polynomials in $\mathbf{x}(C \cap C')$ and some coefficients (depending on β, β', C) $p, p' \in \mathbb{P}$. We can think of it as represented by some elements in the root lattice Q:

$$X[\gamma] = x_1^{m_1} \dots x_k^{m_k} \mapsto \gamma = m_1 \gamma_1 + \dots + m_k \gamma_k$$

where γ_i are the elements of $C \cap C'$ and $m_i \ge 0$. It turns out that one can describe γ and γ' explicitly.

*Center for the Promotion of Interdisciplinary Education and Research/

Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

Theorem 7.21. Let β , β' be exchangeable. Define

$$\beta +_{\sigma} \beta' := \sigma^{-1}(\sigma(\beta) + \sigma(\beta'))$$

If Φ is not of type A_1 , then the set

$$E(\beta, \beta') := \{\beta +_{\sigma} \beta' : \sigma \in \mathcal{D}\}$$

consists of two elements $\{\beta + \beta', \beta \uplus \beta'\}$. If $\Phi = A_1$, $E(-\alpha, \alpha) = \{0\}$.

Lemma 7.22. If β , β' are both positive, or $\tau_{\epsilon}(\beta), \tau_{\epsilon}(\beta')$ are both positive, then

$$\beta +_{\tau_{\epsilon}} \beta' = \beta + \beta'$$

since $\tau_{\epsilon} = t_{\epsilon}$ is linear when the root is positive.

Example 7.23. In the special case where $\beta' = -\alpha_j$,

$$(-\alpha_j) \uplus \beta = \beta - \alpha_j + \sum_{i \neq j} a_{ij} \alpha_i$$

Using this Lemma, one can determine when $\beta +_{\sigma} \beta'$ is $\beta + \beta'$ or $\beta \uplus \beta'$. We list some properties of $\beta + \beta'$ and $\beta \uplus \beta'$:

Lemma 7.24. Let β, β' be exchangeable.

- (1) No negative simple root can be cluster component of $\beta + \beta'$.
- (2) The vectors $\beta + \beta'$ and $\beta \uplus \beta'$ has no common cluster components
- (3) If $[\beta \uplus \beta' : \alpha_i] > 0$, then $[\beta + \beta' : \alpha_i] > 0$.
- (4) All cluster components of $\beta + \beta'$ and $\beta \uplus \beta'$ are compatible with both β and β'
- (5) A root $\alpha \neq \beta, \beta'$ is compatible with both β, β' iff compatible with all cluster components of $\beta + \beta'$ and $\beta \uplus \beta'$.
- (6) If $\alpha \in -\Pi$ is compatible with all cluster components of $\beta + \beta'$, then it is compatible with all cluster components of $\beta \uplus \beta'$.
- *Proof.* (1) Assume $\beta + \beta'$ has cluster expansion in the cluster C. If $-\alpha_i \in C$, all other elements of C has no α_i components.
 - $\text{ If } [\beta + \beta': -\alpha_i]_C > 0, \text{ then } [\beta + \beta': \alpha_i] < 0.$
 - This means β or $\beta' = -\alpha_i$. Let $\beta = -\alpha_i$.
 - Then $(\beta || \beta') = 1 \Longrightarrow [\beta + \beta' : \alpha_i] = 0$ (!)
 - (2) Let α be the common cluster component. Apply $\sigma \in \mathcal{D}$ and assume $\alpha = -\alpha_i$.
 - If $\sigma(\beta + \beta') = \sigma(\beta) + \sigma(\beta')$, then by part 1 it is impossible.

- Otherwise $\sigma(\beta \uplus \beta') = \sigma(\beta) + \sigma(\beta')$, again by part 1 it is impossible.

- (3) is [CFZ, Theorem 1.17]. It is proved case by case for each Dynkin types, with 8 pages of calculations...
- (4) Let α be cluster component of $\beta + \beta'$. Apply $\sigma \in \mathcal{D}$ with $\sigma(\beta) = -\alpha_i$. - Suffices to show $(-\alpha_i || \sigma(\alpha)) = 0$.
 - $\begin{aligned} &-\sigma(\beta) = -\alpha_i \text{ and } 1 = (\beta||\beta') = (\sigma(\beta)||\sigma(\beta')) = (-\alpha_i||\sigma(\beta')) = [\sigma(\beta') : \alpha_i] \\ &\implies [\sigma(\beta) + \sigma(\beta') : \alpha_i] = 0 \end{aligned}$
 - $By (3) \Longrightarrow [\sigma(\beta) \uplus \sigma(\beta') : \alpha_i] \le 0$
 - In either case, $[\sigma(\beta+\beta'):\alpha_i] \leq 0$. $\sigma(\alpha)$ is cluster component of $\sigma(\beta+\beta')$.
 - Hence $[\sigma(\alpha) : \alpha_i] \leq 0$, hence $(-\alpha_i || \sigma(\alpha)) = 0$
 - $\sigma(\beta \uplus \beta') = \sigma(\beta) + \sigma(\beta') \text{ for some } \sigma \in \mathcal{D}.$
 - $\alpha \text{ is cluster component of } \beta \uplus \beta' \Longrightarrow \sigma(\alpha) \text{ is cluster component of } \sigma(\beta) + \sigma(\beta')$
 - Hence $\sigma(\alpha)$ is compatible with $\sigma(\beta)$ and $\sigma(\beta')$, hence α compatible with β and β' .
- (5) (if) Similar argument to (4).
- (6) follows from (3)

Proposition 7.25. If β , β' are exchangeable, then there exists two adjacent clusters C and $C' = C - \{\beta\} \cup \{\beta'\}.$

Proof. Follows from Lemma 7.5(4), (5).

- The set consisting of β and all cluster components of $\beta + \beta'$ and $\beta \uplus \beta'$ is compatible. Hence there exists a cluster C containing this set.
- Every element of $C \{\beta\}$ is compatible with β' hence $C \{\beta\} \cup \{\beta'\}$ is a cluster.

7.3 Exchange matrix B(C)

Finally we define the exchange matrix B(C). Let us start with the initial seed where $A = A(B_0)$ with B_0 giving an alternate orientation. Then the mutations $\mu_{\pm} = \prod_{i \in I_{\pm}} \mu_i$ gives $\mu_{\pm}(B_0) = -B_0$. From this we can determine the signs of B(C). To summarize:

Lemma 7.26. There exists unique sign function $\epsilon(\beta, \beta')$ on pair of exchangeable roots

$$\begin{aligned} \epsilon(-\alpha_j, \beta') &= -\epsilon(j) \\ \epsilon(\tau\beta, \tau\beta') &= -\epsilon(\beta, \beta'), \qquad \beta, \beta' \notin \{-\alpha_j : \tau(-\alpha_j) = -\alpha_j\} \end{aligned}$$

It is skew-symmetric

$$\epsilon(\beta',\beta) = -\epsilon(\beta,\beta')$$

Pictorially it is defined by

$$\begin{array}{c} -\alpha_i \cdots \cdots \cdots \xrightarrow{\tau_{-\epsilon}} \beta \underbrace{\xrightarrow{\tau_{\epsilon}} \cdots \xrightarrow{\tau_{\pm}}}_{k_{\epsilon}(\beta)} -\alpha_j \\ -\alpha'_i \cdots \xrightarrow{\tau_{-\epsilon}} \beta' \underbrace{\xrightarrow{\tau_{\epsilon}} \cdots \cdots \xrightarrow{\tau_{\pm}}}_{k_{\epsilon}(\beta')} -\alpha'_j \end{array}$$

Then $k_{\epsilon}(\beta) < k_{\epsilon}(\beta') \Longrightarrow \epsilon(\beta, \beta') := \epsilon$.

Since τ_+, τ_- covers all the roots of $\Phi_{\geq -1}$, it also gives a combinatorial description of B(C) for any C. The explicit expression for B(C) is given as follows:

Definition 7.27. Let $C' = C - \{\beta\} \cup \{\beta'\}$ be an adjancent cluster of C by exchanging β . Define the matrix B(C) for each cluster of $\Delta(\Phi)$ as

$$b_{\alpha\beta}(C) = \epsilon(\beta, \beta') \cdot [(\beta + \beta') - (\beta \uplus \beta') : \alpha]_C$$

= $\epsilon(\beta, \beta') \cdot ([\beta + \beta' : \alpha]_{clus} - [\beta \uplus \beta' : \alpha]_{clus})$

Hence the exchange relation is of the form

$$x_{\beta}x_{\beta'} = p(C)x_{\beta+\beta'} + p'(C)x_{\beta\uplus\beta'}$$

for some coefficients $p(C), p'(C) \in \mathbb{P}$

Let $C_0 = \{-\alpha_1, ..., -\alpha_n\}$ be the initial seed.

Lemma 7.28. The exchange matrix defined above satisfies

$$b_{-\alpha_i,-\alpha_j}(C_0) = \begin{cases} 0 & i=j\\ \epsilon(j)a_{ij} & i\neq j \end{cases}$$
$$b_{\tau\alpha,\tau\beta}(\tau C) = -b_{\alpha\beta}(C)$$

In particular, $A(B(C_0))$ is a Cartan matrix.

Proof. Let us prove the first statement. By definition,

$$\epsilon(-\alpha_j,\beta) = -\epsilon(j)$$
$$-\alpha_j \uplus \beta = -\alpha_j + \beta + \sum_{k \neq j} a_{kj} \alpha_k$$

Hence

$$b_{-\alpha_i,-\alpha_j}(C_0) = \epsilon(-\alpha_j,\alpha_j) \cdot [(-\alpha_j + \beta) - (-\alpha_j \uplus \beta) : -\alpha_i]_{C_0}$$
$$= -\epsilon(j) \cdot [-\sum_{k \neq j} a_{kj}\alpha_k : -\alpha_i]_{C_0}$$
$$= \begin{cases} 0 & i = j \\ -\epsilon(j)a_{ij} & i \neq j \end{cases}$$

Theorem 7.29. B(C) gives a seed attachment for (the dual complex of) $\Delta(\Phi)$. *i.e.*

(1) B(C) is sign-skew-symmetric:

$$b_{\alpha\beta}b_{\beta\alpha} < 0 \text{ or } b_{\alpha\beta} = b_{\beta\alpha} = 0$$

(2) If $C' = C - \{\gamma\} \cup \{\gamma'\}$ is an adjancent cluster, then B(C') is obtained from B(C) by matrix mutation

$$b_{\alpha\beta}(C') = \mu_{\gamma}(b_{\alpha\beta}(C))$$

(3) The dual graph of Δ(Φ) has 2-dimensional face given by 4,5,6,8-gon, with the corresponding B(C) matrix having type 0,1,2,3.

Hence \mathcal{A} is of finite type by Proposition ??.

Proof. Mostly using the $\tau \in \mathcal{D}$ invariance of b and ϵ to reduce to checking the case for $\alpha = -\alpha_i$.

(3) is proved by induction on the rank of the root system:

- Rank 2 is known (4,5,6,8-gon correspond to type $A_1 \times A_1, A_2, B_2, G_2$ respectively). Assume $n \geq 3$.
- If L is a loop, all the vertices share n-2 common elements.
- Use τ to bring one of them to $-\alpha_i$. The type does not change by τ -invariance of b.
- Since remaining elements are compatible with $-\alpha_i$, they do not have α_i components. Hence one can remove α_i and consider a lower rank root system with the same loop L.

7.4 Denominator Theorem

We have established a surjection $\alpha \mapsto x[\alpha]$ from vertex of $\Phi_{\geq -1}$ to the cluster variables by the previous Theorem. The denominator Theorem tells us that in fact this is a bijection, where each $x[\alpha]$ has different denominators. Here $-\alpha_i$ correspond to x_i of the initial seed \mathbf{x}_0 . We now proceed to prove the denominator theorem.

Proof of Denominator Theorem. We will prove that

$$x[\alpha] := \frac{P_{\alpha}(\mathbf{x}_0)}{\mathbf{x}_0^{\alpha}}$$

By induction on

$$k(\alpha) = \min(k_+(\alpha), k_-(\alpha)) \ge 0$$

- If $k(\alpha) = 0$, α is negative root.
- Assume $k(\alpha) = k \ge 1$ and the theorem holds for all roots α' with $k(\alpha') < k$.
- We have

$$\alpha = \tau_{\epsilon(j)}^{(k)}(-\alpha_j) = \tau_{-\epsilon(j)}^{(k-1)}(\alpha_j)$$

for some $j \in I$. Since α_j and $-\alpha_j$ are exchangeable, so are $\alpha, \tau(-\alpha_j)$ where $\tau := \tau_{-\epsilon(j)}^{(k-1)}$.

• Then we have the exchange relation

$$x[\alpha]x[\tau(-\alpha_j)] = q \prod_{i \neq j} x[\tau(-\alpha_j)]^{-a_{ij}} + r$$

for some $q, r \in \mathbb{P}$.

• For k = 1 we have $\alpha = \alpha_j$ and

$$x[\alpha_j] = \frac{q \prod_{i \neq j} x_i^{-a_{ij}} + r}{x_j}$$

• For $k \ge 2$, all roots appearing above has $k(\alpha') < k$, hence by induction we have

$$x[\alpha] = x^{\tau(-\alpha_j)-\gamma} \cdot \frac{q \prod_{i \neq j} P_{\tau(-\alpha_i)}^{-a_{ij}} + rx^{\gamma}}{P_{\tau(-\alpha_j)}}$$

where $P_{\alpha'}$ are polynomials in \mathbf{x}_0 , and we denote

$$\gamma = \sum_{i \neq j} (-a_{ij}) \cdot \tau(-\alpha_i)$$

• Since $x[\alpha]$ is a Laurent polynomial, the fraction is actually a polynomial. We have

$$\gamma = \tau(\sum_{i \neq j} a_{ij}\alpha_i) = \tau(\alpha_j \uplus (-\alpha_j)) = \tau(\alpha_j) + \tau(-\alpha_j) = \alpha + \tau(-\alpha_j)$$

References

- [CFZ] F. Chapoton, S. Fomin, A. Zelevinsky, Polytopal Realization of Generalized Associahedra, Canadian Mathematical Bulletin, 45(4), 537-566.
- [FZ-ClusterII] S. Fomin, A. Zelevinsky, Cluster Algebras II: Finite Type Classification, Inventiones mathematicae 154.1 (2003): 63-121.
- [FZ-YSystem] S. Fomin, A. Zelevinsky, Y System and Generalized Associahedra, Annals of Mathematics 158.3 (2003): 977-1018.