Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: June 12, 2017

8.6 Proof of Theorem 8.4

Theorem . Assume $\mathcal S$ and $\mathcal S'$ are related by seed mutation and are both coprime. Then

$$\mathcal{U}(\mathcal{S}) = \mathcal{U}(\mathcal{S}')$$

Proof. It follows from several Lemma. The main technique is to restrict attention to just x_1 and x_2 , treating other variables as "coefficients".

Lemma 8.30. For arbitrary seed:

$$\mathcal{U}(\mathcal{S}) = \bigcap_{j=1}^{n} \mathbb{ZP}[x_1^{\pm}, ..., x_{j-1}^{\pm}, x_j, x_j', x_{j+1}^{\pm}, ..., x_n^{\pm}]$$
(8.1)

 \iff Enought to show $\mathbb{ZP}[\mathbf{x}^{\pm}] \cap \mathbb{ZP}[\mathbf{x}_1^{\pm}] = \mathbb{ZP}[x_1, x_1', x_2^{\pm}, ..., x_n^{\pm}].$

Proof. $\bullet \supset$ obvious.

- For $y \in \mathbb{ZP}[\mathbf{x}^{\pm}], y = \sum_{m=-N}^{N} c_m x_1^m, c_m \in \mathbb{ZP}[x_2^{\pm}, ..., x_n^{\pm}].$
- $y = \sum_{m=0}^{N} c_m P_1^m x_1'^{-m} + \sum_{m=1}^{N} \frac{c_{-m}}{P_1^m} x_1'^{m}$
- If $y \in \mathbb{ZP}[\mathbf{x}_1^{\pm}]$ then $\frac{c_{-m}}{P_1^m} \in \mathbb{ZP}[x_2^{\pm},...,x_n^{\pm}]$.

^{*}Center for the Promotion of Interdisciplinary Education and Research/Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

Lemma 8.31. If P_1 is coprime with P_j , j = 2, ..., n:

$$\mathcal{U}(\mathcal{S}) = \bigcap_{j=2}^{n} \mathbb{ZP}[x_1, x_1', x_2^{\pm}, ..., x_{j-1}^{\pm}, x_j, x_j', x_{j+1}^{\pm}, ..., x_n^{\pm}]$$
(8.2)

 $\Longleftrightarrow \textit{By Lemma 8.30, enough to show} \ \mathbb{ZP}[x_1, x_1', x_2^{\pm}] \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2'] = \mathbb{ZP}[x_1, x_1', x_2, x_2']$

Proof. If $b_{12} = b_{21} = 0$, then $x_1 x_1' = P_1, x_2 x_2' = P_2$:

$$y = \sum c_{m_1, m_2} x_1^{m_1} x_2^{m_2} \in \mathbb{ZP}[x_1, x_1', x_2, x_2']$$

- c_{m_1,m_2} is divisible by $P_1^{-m_1}$ for $m_1 < 0 \le m_2$,
- c_{m_1,m_2} is divisible by $P_2^{-m_2}$ for $m_2 < 0 \le m_1$,
- c_{m_1,m_2} is divisible by $P_1^{-m_1}P_2^{-m_2}$ for $m_1,m_2<0$
- From Lemma 8.30, this is the same description of $\mathbb{ZP}[x_1, x_1', x_2^{\pm}] \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2']$ if P_1 and P_2 are coprime.

If $b_{12} \neq 0$, then exchange relation is

$$x_1x_1' = P_1 = q_2x_2^c + r_2,$$

 $x_2x_2' = P_2 = q_1x_1^b + r_1$

Show that

$$\mathbb{ZP}[x_1, x_2^{\pm}] \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2'] = \mathbb{ZP}[x_1, x_2, x_2']$$
(8.3)

- $\bullet \supset$ obvious.
- For $y \in \mathbb{ZP}[x_1^{\pm}, x_2, x_2']$, write

$$y = \sum_{m \in \mathbb{Z}} x_1^m (c_m + c'_m(x_2) + c''_m(x'_2))$$

where c_m', c_m'' are \mathbb{ZP} -polynomials without constant term.

• By substituting x_2' , show that if $y \in \mathbb{ZP}[x_1, x_2^{\pm}]$ also, then smallest degree of x_1 must be ≥ 0

Show that

$$\mathbb{ZP}[x_1, x_1', x_2^{\pm}] = \mathbb{ZP}[x_1, x_1', x_2, x_2'] + \mathbb{ZP}[x_1, x_2^{\pm}]$$
(8.4)

 \supset obvious.

 \subset Enough to show that ${x_1'}^N x_2^{-M} \in \mathbb{ZP}[x_1, x_1', x_2, x_2'] + \mathbb{ZP}[x_1, x_2^{\pm}]$ for N, M > 0

• Let
$$p = -\frac{q_1}{r_1}$$
. Rewrite $x_2^{-1} = px_1^bx_2^{-1} + r_1^{-1}x_2' \equiv px_1^bx_2^{-1} \mod \mathbb{ZP}[x_1, x_2']$

• Conclude
$$x_2^{-1} = p^N x_1^{Nb} x_2^{-1} \mod \mathbb{ZP}[x_1, x_2']$$

• Conclude
$$x_2^{-M} \in \mathbb{ZP}[x_1, x_2'] + x_1^N \mathbb{ZP}[x_1, x_2^{-1}]$$

Obvious:

$$\mathbb{ZP}[x_1, x_1', x_2, x_2'] \subset \mathbb{ZP}[x_1^{\pm}, x_2, x_2'] \tag{8.5}$$

(8.3), (8.4), (8.5) implies

$$\begin{split} & \mathbb{ZP}[x_1, x_1', x_2^{\pm}] \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2'] \\ &= (\mathbb{ZP}[x_1, x_1', x_2, x_2'] + \mathbb{ZP}[x_1, x_2^{\pm}]) \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2'] \\ &= \mathbb{ZP}[x_1, x_1', x_2, x_2'] + (\mathbb{ZP}[x_1, x_2^{\pm}] \cap \mathbb{ZP}[x_1^{\pm}, x_2, x_2']) \\ &= \mathbb{ZP}[x_1, x_1', x_2, x_2'] + \mathbb{ZP}[x_1, x_2, x_2'] \\ &= \mathbb{ZP}[x_1, x_1', x_2, x_2'] \end{split}$$

Lemma 8.32. Let $S' = \mu_1(S)$. Let $x_2'' = \mu_2(x_2(S'))$. Then

$$\mathbb{ZP}[x_1, x_1', x_2, x_2', x_3^{\pm}, ..., x_n^{\pm}] = \mathbb{ZP}[x_1, x_1', x_2, x_2'', x_3^{\pm}, ..., x_n^{\pm}]$$
(8.6)

 \iff Enough to show $\mathbb{ZP}[x_1, x_1', x_2, x_2'] = \mathbb{ZP}[x_1, x_1', x_2, x_2'']$ \iff Enough to show $x_2'' \in \mathbb{ZP}[x_1, x_1', x_2, x_2']$ by symmetry.

- if $b_{12} = 0$, $x_2'' = px_2'$ for some $p \in \mathbb{P}$. Obvious.
- Otherwise $x_2x_2'' = q_3x_1'^b + r_3$. Mutation rule implies $r_1r_3 = q_1q_3r_2^b$, and calculate directly

$$x_2'' = q_3 r_1^{-1} (x_1')^b x_2' - q_1 q_3 r_1^{-1} \frac{(q_2 x_2^c + r_2)^b - r_2^b}{x_2} \in \mathbb{ZP}[x_1, x_1', x_2, x_2']$$

Combine all 3 Lemmas to give the proof of Theorem 8.4.

References

[ClusterIII] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51