Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: June 12, 2017

8.6 Proof of Theorem 8.4

Theorem. Assume \mathcal{S} and \mathcal{S}^{\prime} are related by seed mutation and are both coprime. Then

$$
\mathcal{U}(\mathcal{S})=\mathcal{U}\left(\mathcal{S}^{\prime}\right)
$$

Proof. It follows from several Lemma. The main technique is to restrict attention to just x_{1} and x_{2}, treating other variables as "coefficients".

Lemma 8.30. For arbitrary seed:

$$
\begin{equation*}
\mathcal{U}(\mathcal{S})=\bigcap_{j=1}^{n} \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, \ldots, x_{j-1}^{ \pm}, x_{j}, x_{j}^{\prime}, x_{j+1}^{ \pm}, \ldots, x_{n}^{ \pm}\right] \tag{8.1}
\end{equation*}
$$

\Longleftrightarrow Enought to show $\mathbb{Z} \mathbb{P}\left[\mathbf{x}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[\mathbf{x}_{1}^{ \pm}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$.
Proof. - \supset obvious.

- For $y \in \mathbb{Z} \mathbb{P}\left[\mathbf{x}^{ \pm}\right], y=\sum_{m=-N}^{N} c_{m} x_{1}^{m}, c_{m} \in \mathbb{Z} \mathbb{P}\left[x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$.
- $y=\sum_{m=0}^{N} c_{m} P_{1}^{m} x_{1}^{\prime-m}+\sum_{m=1}^{N} \frac{c_{-m}}{P_{1}^{m}} x_{1}^{\prime}{ }^{m}$
- If $y \in Z \mathbb{P}\left[\mathbf{x}_{1}^{ \pm}\right]$then $\frac{c_{-m}}{P_{1}^{m}} \in \mathbb{Z} \mathbb{P}\left[x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$.

[^0]Lemma 8.31. If P_{1} is coprime with $P_{j}, j=2, \ldots, n$:

$$
\begin{equation*}
\mathcal{U}(\mathcal{S})=\bigcap_{j=2}^{n} \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}, \ldots, x_{j-1}^{ \pm}, x_{j}, x_{j}^{\prime}, x_{j+1}^{ \pm}, \ldots, x_{n}^{ \pm}\right] \tag{8.2}
\end{equation*}
$$

\Longleftrightarrow By Lemma 8.30, enough to show $\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]$
Proof. If $b_{12}=b_{21}=0$, then $x_{1} x_{1}^{\prime}=P_{1}, x_{2} x_{2}^{\prime}=P_{2}$:

$$
y=\sum c_{m_{1}, m_{2}} x_{1}^{m_{1}} x_{2}^{m_{2}} \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]
$$

- $c_{m_{1}, m_{2}}$ is divisible by $P_{1}^{-m_{1}}$ for $m_{1}<0 \leq m_{2}$,
- $c_{m_{1}, m_{2}}$ is divisible by $P_{2}^{-m_{2}}$ for $m_{2}<0 \leq m_{1}$,
- $c_{m_{1}, m_{2}}$ is divisible by $P_{1}^{-m_{1}} P_{2}^{-m_{2}}$ for $m_{1}, m_{2}<0$
- From Lemma 8.30, this is the same description of $\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right]$ if P_{1} and P_{2} are coprime.

If $b_{12} \neq 0$, then exchange relation is

$$
\begin{aligned}
& x_{1} x_{1}^{\prime}=P_{1}=q_{2} x_{2}^{c}+r_{2}, \\
& x_{2} x_{2}^{\prime}=P_{2}=q_{1} x_{1}^{b}+r_{1}
\end{aligned}
$$

Show that

$$
\begin{equation*}
\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}, x_{2}^{\prime}\right] \tag{8.3}
\end{equation*}
$$

- \supset obvious.
- For $y \in \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right]$, write

$$
y=\sum_{m \in \mathbb{Z}} x_{1}^{m}\left(c_{m}+c_{m}^{\prime}\left(x_{2}\right)+c_{m}^{\prime \prime}\left(x_{2}^{\prime}\right)\right)
$$

where $c_{m}^{\prime}, c_{m}^{\prime \prime}$ are $\mathbb{Z} \mathbb{P}$-polynomials without constant term.

- By substituting x_{2}^{\prime}, show that if $y \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{ \pm}\right]$also, then smallest degree of x_{1} must be ≥ 0

Show that

$$
\begin{equation*}
\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]+\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{ \pm}\right] \tag{8.4}
\end{equation*}
$$

\supset obvious.
\subset Enough to show that $x_{1}^{\prime}{ }^{N} x_{2}^{-M} \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]+\mathbb{Z P}\left[x_{1}, x_{2}^{ \pm}\right]$for $N, M>0$

- Let $p=-\frac{q_{1}}{r_{1}}$. Rewrite $x_{2}^{-1}=p x_{1}^{b} x_{2}^{-1}+r_{1}^{-1} x_{2}^{\prime} \equiv p x_{1}^{b} x_{2}^{-1} \bmod \mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{\prime}\right]$
- Conclude $x_{2}^{-1}=p^{N} x_{1}{ }^{N b} x_{2}^{-1} \bmod \mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{\prime}\right]$
- Conclude $x_{2}^{-M} \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{\prime}\right]+x_{1}^{N} \mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{-1}\right]$

Obvious:

$$
\begin{equation*}
\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right] \subset \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right] \tag{8.5}
\end{equation*}
$$

(8.3), (8.4), (8.5) implies

$$
\begin{aligned}
& \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right] \\
& =\left(\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]+\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{ \pm}\right]\right) \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right] \\
& =\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]+\left(\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}^{ \pm}\right] \cap \mathbb{Z} \mathbb{P}\left[x_{1}^{ \pm}, x_{2}, x_{2}^{\prime}\right]\right) \\
& =\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]+\mathbb{Z} \mathbb{P}\left[x_{1}, x_{2}, x_{2}^{\prime}\right] \\
& =\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]
\end{aligned}
$$

Lemma 8.32. Let $\mathcal{S}^{\prime}=\mu_{1}(\mathcal{S})$. Let $x_{2}^{\prime \prime}=\mu_{2}\left(x_{2}\left(\mathcal{S}^{\prime}\right)\right)$. Then

$$
\begin{equation*}
\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}, x_{3}^{ \pm}, \ldots, x_{n}^{ \pm}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime \prime}, x_{3}^{ \pm}, \ldots, x_{n}^{ \pm}\right] \tag{8.6}
\end{equation*}
$$

\Longleftrightarrow Enough to show $\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]=\mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime \prime}\right]$
\Longleftrightarrow Enough to show $x_{2}^{\prime \prime} \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]$ by symmetry.

- if $b_{12}=0, x_{2}^{\prime \prime}=p x_{2}^{\prime}$ for some $p \in \mathbb{P}$. Obvious.
- Otherwise $x_{2} x_{2}^{\prime \prime}=q_{3} x_{1}^{\prime b}+r_{3}$. Mutation rule implies $r_{1} r_{3}=q_{1} q_{3} r_{2}^{b}$, and calculate directly

$$
x_{2}^{\prime \prime}=q_{3} r_{1}^{-1}\left(x_{1}^{\prime}\right)^{b} x_{2}^{\prime}-q_{1} q_{3} r_{1}^{-1} \frac{\left(q_{2} x_{2}^{c}+r_{2}\right)^{b}-r_{2}^{b}}{x_{2}} \in \mathbb{Z} \mathbb{P}\left[x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right]
$$

Combine all 3 Lemmas to give the proof of Theorem 8.4.

References

[ClusterIII] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51

[^0]: *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

