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8 Upper Bounds and Lower Bounds

In this section, we study the properties of upper bound and lower bound of cluster
algebra. We will then identify the coordinate rings of double Bruhat cells with the
upper cluster algebra in the next section.

We will use the previous notion of cluster algebra with coefficients in P. P is
a semifield. The ambient field F = QP(u1, ..., un), a seed is a triple S = (x,y, B)
such that x = {x1, ..., xn} are the cluster variables, y = (y1, ..., yn) are elements of
P, and B = (bij) is skew-symmetrizable n× n integer matrix.

Remark 8.1. (1) In the original paper, the exchange matrix B is allowed to be
only sign-skew-symmetric (i.e. bij > 0⇐⇒ bji < 0 and bij = 0⇐⇒ bji = 0).
However for simplicity, we will assume B is skew-symmetrizable below.

(2) In the original paper, it allows more general coefficients p±1 , ..., p
±
n ∈ P such

that yi =
p+
i

p−i
, and forgets the semifield operation ⊕.

8.1 Upper bound

Fix an initial seed S = (x,y, B). Let xj be the adjancent cluster to x defined by

xj = x− {xj} ∪ {x′j}

Recall that the exchange relation is of the form

xjx
′
j = Pj(x)

for some polynomial Pj which does not depend on xj . Let

ZP[x] = ZP[x1, ..., xn]
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ZP[x±] = ZP[x±1 , ..., x
±
n ]

be the ring of polynomials and Laurent polynomials in the cluster variables with
coefficients in ZP.

Definition 8.2. The upper bound associated with the seed S is

U(S) = ZP[x±] ∩ ZP[x±1 ] ∩ · · · ∩ ZP[x±n ]

Definition 8.3. A seed S is called coprime if P1, ..., Pn is pairwise coprime in
ZP[x]. i.e., any common divisor of Pi and Pj belongs to P.

Theorem 8.4. Assume S and S ′ are related by seed mutation and are both coprime.
Then

U(S) = U(S ′)

Proof. See the supplementary notes.

Definition 8.5. Fix an initial seed S0. The upper cluster algbera A = A(S0) ⊂ F
is defined by

A(S0) :=
⋂
S∼S0

U(S)

Corollary 8.6. If all seeds mutation equivalent to S0 are coprime, then U(S) is
independent of choice of S, and

U(S) = U(S0) = A(S0)

Proposition 8.7. For cluster algebra of geometric type, if the m× n matrix B̃ of
a seed S has full rank, then all seeds mutation equivalent to S are coprime.

Proof. It follows from two Lemma:

Lemma 8.8. A seed of geometric type is coprime iff no two columns of B̃ is pro-
portional to each other with coefficient being a ratio of two odd integers.

Proof. Let B̃j be the j-th column of B̃.

• If B̃k = ± b
a B̃j for some odd and coprime integers a, b, then Pj = La + Ma,

Pk = Lb +M b and L+M is a common factor.

• Use Newton polytope. Assume Pj and Pk has a common factor. Then N(Pj)
and N(Pk) are parallel, and we must have the form Pj = La + Ma, Pk =
Lb + M b for some monomial L,M and some coprime integers a, b. Then it
follows from that fact that ta + 1 and tb + 1 have a common factor iff a, b are
odd.
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Lemma 8.9. Matrix mutations preserve the rank of B̃

Proof. Homework

Hence Theorem 8.4 and Corollary 8.6 are satisfied for cluster algbra of geometric
type if B̃ has full rank. An important class of examples is given by the coordinate
rings of double Bruhat cells Gu,v in a complex semisimple Lie group G.

8.2 Lower bound

Definition 8.10. Lower bound L(S) is given by

L(S) = ZP[x1, x
′
1, ..., xn, x

′
n] = ZP[x,x1, ...,xn]

The cluster algebra A = A(S0) is the union of all lower bounds

A(S0) =
⋃
S∼S0

L(S)

Corollary 8.11. We have for any seed S ∼ S0:

L(S) ⊂ A(S0) ⊂ A(S0) ⊂ U(S)

Note that the middle inclusion A(S0) ⊂ A(S0) is just the Laurent Phenomenon!

8.3 Acyclic case: Properties of L(S) ⊂ U(S)
We don’t need acyclicity for double Bruhat cell. So just skim through the easy
proofs!

Definition 8.12. Let Γ(S) be the quiver (or diagram) corresponding to the seed S.
A seed S is called acyclic if Γ(S) has no oriented cycles.

Fact 8.13. For an acyclic seed, one can reindex such that bij ≥ 0 for all i > j.
(i.e. “flowing” through the quiver)

Definition 8.14. A monomial in x1, x
′
1, ..., xn, x

′
n is called standard if it contains

no product of the form xjx
′
j. They span L(S) as ZP-module.

Theorem 8.15. The standard monomials in x1, x
′
1, ..., xn, x

′
n are linear indepen-

dent over ZP iff S is acyclic. In particular, xjx
′
j −Pj(x) generates all the relations

among x1, x
′
1, ..., xn, x

′
n.

Proof. If:

3



• Let m ∈ Zn, x〈m〉 := x
〈m1〉
1 ...x

〈mn〉
n where

x
〈mj〉
j :=

{
x
mj

j mj ≥ 0

(x′j)
−mj mj < 0

It is Laurent polynomial in x1, ..., xn.

• Order m lexicographically. ((4, 3, 2) > (4, 3, 1) > (3, 3, 1) etc.)

• Since bij ≥ 0 for i > j, the “lexicographically smallest” Laurent monomial

that appears in x
〈mj〉
j equals to x

mj

j times some monomial in xj+1, ..., xn.

• Hence if m < m′, then first monomial in x〈m〉 precedes the one in x〈m
′〉, i.e.

they have different ”leading term”

• =⇒ Linear independence.

Only if: [Technical, see [ClusterIII]]. If 1 −→ 2 −→ ... −→ ` −→ 1 is oriented cycle,
then

x′1...x
′
` =

∑
K({1,...,`}

fK(x1, ..., xn)
∏
k∈K

x′k

for some polynomials fK ∈ ZP[x]. By reducing xix
′
i on right hand side, we get

linear dependence of standard monomials.

Theorem 8.16. If S is coprime and acyclic, then

L(S) = U(S)

Proof. See [ClusterIII, Section 6] for a quite technical 7-page proof.

Corollary 8.17. If a cluster algebra possesses a coprime and acyclic seed, then it
coincides with the upper cluster algebra.

Theorem 8.18. A(S) = L(S) iff S is acyclic. In particular this applies to cluster
algberas of finite type. If S is coprime, then we have A = A

Hence to summarize, we have
coprime acyclic

× × L(S) ⊂ A ⊂ A ⊂ U(S)

X∀S × A = U(S)
× X L(S) = A
X X L(S) = A = A = U(S)
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8.4 Examples

Example 8.19. All rank n ≤ 2 cluster algebras is finitely generated, because all
seeds are acyclic, hence A = L(S) is finitely generated by x1, x

′
1, x2, x

′
2.

Example 8.20. A skew-symmetrizable cluster algebra of rank 3 is finitely generated
iff it has an acyclic seed.

Proof. If A has no acyclic seed, one construct a tropical valuation such that for
fixed t0 ∈ T3, for every r ∈ Z>0:

• νi(t) ≥ 0 for all i and all t ∈ T3 with d(t0, t) ≤ r

• νi(t) < 0 for some i and some t ∈ T3 with d(t0, t) = r + 1

where νi(t) := ν(xi(t)) and d(t, t′) is the distance between t and t′ in T3.

Example 8.21. For S corresponding to the Markov quiver, A(S) 6= A(S).

Proof. The exchange relation is of the form:

xkx
′
k = p−k x

2
i + p+k x

2
j , (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)

For any valuation, we have

ν(xk) + ν(x′k) = min(2ν(xi), 2ν(xj))

Hence one can construct a tropical valuation such that ν(x) = 1 for any cluster
variable x. In particular A becomes a graded algebra under ν with zero-degree
component ZP. Then one construct a nonconstant element y ∈ U(S) with ν(y) = 0
by

y : =
p+1 p

+
2 x

2
1 + p−1 p

−
2 x

2
2 + p+1 p

−
2 x

2
3

x1x2
∈ ZP[x±] ∩ ZP[x±3 ]

=
p+1 p

+
2 x1 + p−2 x

′
1

x2
∈ ZP[x±1 ]

=
p−1 p

−
2 x2 + p+1 x

′
2

x1
∈ ZP[x±2 ]

Hence y ∈ U(S) with ν(y) = 0 and y /∈ A.

Example 8.22 (D. Speyer). For S corresponding to

B =

 0 3 −3
−3 0 3
3 −3 0


the upper cluster algebra is not finitely generated.
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8.5 Newton Polytope and Tropical Valuation

Most part of the proof uses the notion of tropical valuation, which is some kind
of “degree” on A. In particular, if one can find a valuation ν such that ν(x) ≥ 0
for all x ∈ S ⊂ A but ν(y) < 0 for some y ∈ A, then y is not generated by S
(polynomially).

Definition 8.23. Let y = y(x1, ..., xn) be a Laurent polynomial. The Newton
polytope N(y) of y is the convex hull in Rn of all lattice points m = (m1, ...,mn)
such that the coefficients xm = xm1

1 ...xmn
n is nonzero in y.

Example 8.24. Let y = x31 + 1 + x1x
2
2 + x1x2 + 1

x1
+ 1

x1x2
2
. Then N(y) looks like:

We have some easy facts about Newton polytope:

Proposition 8.25. Let P,Q be two Laurent polynomials. Then

(1) N(PQ) = Minkowski sum N(P )+N(Q) := {x+y ∈ Rn|x ∈ N(P ), y ∈ N(Q)}

(2) N(P+Q) ⊂ Convex Hull of N(P )∪N(Q). Equality holds if P,Q ∈ Qsf (x1, ..., xn)
are subtraction-free rational functions.

Example 8.26. Let P = Lm + Mm′ be a sum of two Laurent monomials. Then
N(P ) is a straightline. If P ′ is a factor of P , then N(P ′) is also a straightline
parallel to N(P ).

Definition 8.27. Let Asf ⊂ A− {0} be the set of nonzero elements of A that can

be written as subtraction-free rational expressions (i.e. P (x)
Q(x) where P and Q has

coefficients in Z≥0P).

Definition 8.28. A tropical vaulation on A is a map

ν : A− {0} −→ R
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satisfying:

ν(p) = 0 p ∈ ZP (8.1)

ν(xy) = ν(x) + ν(y) x, y ∈ A− {0} (8.2)

ν(x+ y) ≥ min(ν(x), ν(y)) x, y, x+ y ∈ A− {0} (8.3)

ν(x+ y) = min(ν(x), ν(y)) x, y ∈ Asf (8.4)

Lemma 8.29. For any cluster x = {x1, ..., xn} of A and any (ν1, ..., νn) ∈ Rn,
there is a tropical valuation ν on A such that ν(xi) = νi for i = 1, ..., n.

Proof. Let y ∈ A− {0}. Then the tropical valuation is defined by

ν(y) = min
m=(m1,...,mn)∈N(y)

(m1ν1 + ...+mnνn)

When n = 1, ν looks like the “lowest degree” of a Laurent polynomial. In general,
it is the “lowest degree in the direction of (ν1, ..., νn)”.

Proof of Theorem 8.18. Theorem 8.16 shows that if S is acyclic and coprime, then
L(S) = A(S). The coprimality condition can be lifted by using “universal co-
efficients”, i.e. considering generic coefficients P, i.e. extending ZP to a bigger
coefficient group A, conclude that L(S) = A(S) in A, and restrict the formula back
to the case ZP.

Only if: Show that if a seed S is not acyclic, then L(S) 6= A. More precisely, if
a seed contains

1 −→ 2 −→ ... −→ ` −→ 1

let S(0),S(1), ...,S(`−1) be the sequence of seeds such that S(0) = S and S(k) is
mutation of S(k−1) in the direction of k. Then the cluster variable y such that
{y} = x`−1 − x`−2 does not belong to L(S).

• Construct a valuation ν such that ν(x) ≥ 0 for x ∈ L(S), but ν(y) < 0.

• Construct by induction on `.

• For ` = 3, set ν1 = min(|b21|, |b31|), ν2 = ν3 = 1, νi = 0 for i > 3. Then check
directly that ν(xi) ≥ 0, ν(x′i) ≥ 0 but ν(y) = −1 for y = x′′2 .

• For induction, apply the construction to S(1), which then consists of the
smaller cycle 2 −→ 3 −→ ... −→ ` −→ 2, and check that ν still satisfies the
condition we want.
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