Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip^*

Update: June 19, 2017

9 Double Bruhat Cells

In this section, we describe the identification between double Bruhat cells and certain upper cluster algebra.

9.1 Notation and Definitions

Let $[1, r] := \{1, 2, 3, ..., r\}.$

9.1.1 Lie Theory

- $\bullet~G$ a simply-connected, connected, semisimple complex algebraic group of rank r
- B, B_{-} the opposite Borel subgroups
- N, N_{-} the unipotent radicals
- $H = B \cap B_{-}$ a maximal torus
- $W = Norm_G(H)/H$ the Weyl group
- $\mathfrak{g} = Lie(G)$ the Lie algebra
- $\mathfrak{h}=Lie(H)$ the Cartan subalgebra
- A root system Φ and decomposition of root space: $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$
- $\Pi = \{\alpha_1, ..., \alpha_r\} \subset \mathfrak{h}^*$ the simple roots, such that $\mathfrak{g}_{\alpha_i} \subset Lie(N)$.
- $\alpha_i^{\vee} \in \mathfrak{h}$ simple coroot, such that Cartan matrix is given by $c_{ij} = \alpha_j(\alpha_i^{\vee})$

^{*}Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

- $\phi_i: SL_2 \longrightarrow G$ the embedding corresponding to $\mathfrak{sl}_2 \simeq \langle \mathfrak{g}_{\alpha_i}, \mathfrak{g}_{-\alpha_i} \rangle \hookrightarrow \mathfrak{g}$
- The root subgroups are defined for $t \in \mathbb{C}$ by

$$x_i(t) := \phi_i \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \in N, \qquad h_i(t) := \phi_i \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \in H, \qquad x_{-i}(t) := \phi_i \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \in N_-$$

9.1.2 Weyl group

Weyl group is generated by simple reflections s_i , and they can be represented by $s_i = \overline{s_i}H$ where

$$\overline{s_i} = \phi_i \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in Norm_G(H)$$

Can also be written as

$$\overline{s_i} = x_i(-1)x_{-i}(1)x_i(-1)$$

• In general for $w \in W$, we write

$$\overline{w} \in Norm_G(H) \subset G$$

for its representative in G given by products of $\overline{s_i}$.

• $\mathbf{i} = (i_1, ..., i_l)$ is called a reduced word for $w \in W$ if $w = s_{i_1}...s_{i_l}$ is a reduced expression.

In type A_r , $W \simeq S_{r+1}$, and $\overline{s_i}$ is the permutation matrix (with appropriate signs).

9.1.3 $W \times W$

Now consider $W \times W$.

- We use -1, ..., -r for the simple reflections on first copy of W, and 1, ..., r for second copy.
- A reduced word for $(u, v) \in W \times W$ is an arbitrary shuffle of reduced word for u written in -[1, r] and reduced word for v written in [1, r].
- Let $\epsilon(i)$ denote the sign of $i \in \pm[1, r]$.
- Let $Supp(u, v) = \{i : (u, v) \text{ contains either } i \text{ or } -i\} \subset [1, r] \text{ be the support.}$

9.1.4 Bruhat decompositions

Theorem 9.1. The group G has Bruhat decompositions

$$G = \coprod_{u \in W} BuB = \coprod_{v \in W} B_{-}vB_{-}$$

The double Bruhat cells are

$$G^{u,v} = BuB \cap B_- vB_-$$

Hence G is disjoint union of the double Bruhat cells.

Example 9.2. When $G = SL_{r+1}(\mathbb{C})$, B (resp. B_{-}) can be chosen to be the upper (resp. lower) triangular matrix. Then Bruhat decompositions say that any element in G can be reduced to a permutation matrix after certain row and column operations.

There is an explicit description of the Bruhat cells for type A_r :

Proposition 9.3. For $G = SL_{r+1}(\mathbb{C})$, $x \in G$ belongs to BwB iff

- $\Delta_{w([1,i]),[1,i])}(x) \neq 0$ for i = 1, ..., r
- $\Delta_{w([1,i-1] \cup \{j\}),[1,i]}(x) = 0$ for i < j and w(i) < w(j)

This follows from the explicit description below in Prop 9.19.

Example 9.4. In particular for $G = SL_3(\mathbb{C})$, let $u = v = w_0 = s_1s_2s_1 = s_2s_1s_2$. Then $G^{w_0,w_0} \subset SL_3(\mathbb{C})$ consists of 3×3 matrices x with det(x) = 1 such that

$$x_{13} \neq 0, \quad x_{31} \neq 0, \quad \det \begin{pmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \end{pmatrix} \neq 0, \quad \det \begin{pmatrix} x_{12} & x_{22} \\ x_{31} & x_{32} \end{pmatrix} \neq 0$$

The following Theorem gives important structural properties of the double Bruhat cells:

- **Theorem 9.5.** $G^{u,v}$ is biregularly isomoprhic to a Zariski open subset of an affine space of dimension r + l(u) + l(v).
 - Let $\mathbf{i} = (i_1, ..., i_N)$ be a reduced word for $(u, v) \in W \times W$. Define the map $x_{\mathbf{i}} : H \times \mathbb{C}^N \longrightarrow G$ by

$$x_{\mathbf{i}}(a; t_1, \dots, t_N) = a x_{i_1}(t_1) \dots x_{i_N}(t_N)$$

Then the map x_i restricts to a biregular isomorphism between $H \times \mathbb{C}^N_{\neq 0}$ and a Zariski open subset of the double Bruhat cell $G^{u,v}$.

Proof. Let us show that $x_i(H \times \mathbb{C}^N_{\neq 0}) \subset B_- v B_-$. Consider the part of the words $(i_{k_1}, ..., i_{k_l})$ that form a reduced word for v (i.e. all those with $\epsilon = +$). Note that we have

$$x_i(t) \in B_- s_i B_-, \qquad x_{-i}(t) \in B_-$$

Hence

$$x_{i}(a; t_{1}, ..., t_{N}) \in B_{-} \cdot B_{-} s_{i_{k_{1}}} B_{-} \cdot B_{-} \cdots B_{-} \cdot B_{-} s_{i_{k_{l}}} B_{-} \cdot B_{-}$$
$$= B_{-} v B_{-}$$

since it is well-known that

$$B_-w'B_- \cdot B_-w''B_- = B_-w'w''B_-$$

whenever l(w'w'') = l(w') + l(w'').

It is also easy to see that this map is injective.

Example 9.6. Consider $G = SL_3(\mathbb{C})$. Consider $u = s_1s_2, v = e$. The image in $G^{s_1s_2,e} = Bs_1s_2B \cap B_-$ is

$$\begin{aligned} x_{(1,2)}(a;t_1,t_2) &= \begin{pmatrix} a_1 & 0 & 0\\ 0 & a_2 & 0\\ 0 & 0 & a_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ t_1 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & t_2 & 1 \end{pmatrix} \\ &= \begin{pmatrix} a_1 & 0 & 0\\ a_2t_1 & a_2 & 0\\ 0 & a_3t_2 & a_3 \end{pmatrix} \end{aligned}$$

where $a_1a_2a_3 = 1$. We see that $Bs_1s_2B \cap B_-$ can be described by

$$\Delta_{3,1} = 0, \qquad \Delta_{2,1} \neq 0, \qquad \Delta_{3,2} \neq 0$$

Furthermore, we can recover our parameters from some minors (say, with consecutive columns) by monomial transforms, e.g.

$$a_1 = \Delta_{1,1}, a_2 = \frac{\Delta_{12,12}}{\Delta_{1,1}}, t_1 = \frac{\Delta_{1,1}\Delta_{2,1}}{\Delta_{12,12}}, t_2 = \frac{\Delta_{12,12}\Delta_{23,12}}{\Delta_{2,1}}$$

Example 9.7. On the other hand, the image in $G^{s_2s_1,e} = Bs_2s_1B \cap B_-$ is

$$\begin{aligned} x_{(1,2)}(a;t_1,t_2) &= \begin{pmatrix} a_1 & 0 & 0\\ 0 & a_2 & 0\\ 0 & 0 & a_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & t_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ t_2 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} a_1 & 0 & 0\\ a_2t_2 & a_2 & 0\\ a_3t_1t_2 & a_3t_1 & a_3 \end{pmatrix} \end{aligned}$$

We see that in this case $Bs_2s_1B \cap B_-$ can be described by

$$\Delta_{23,12} = 0, \qquad \Delta_{3,1} \neq 0, \qquad \Delta_{3,2} \neq 0.$$

and similarly we can recover our parameters by monomial transforms:

$$a_1 = \Delta_{1,1}, a_2 = \frac{\Delta_{12,12}}{\Delta_{1,1}}, t_1 = \frac{\Delta_{12,12}\Delta_{13,12}}{\Delta_{1,1}}, t_2 = \frac{\Delta_{1,1}\Delta_{2,1}}{\Delta_{12,12}}$$

In general, the Bruhat cells can be described by conditions of the form $\Delta(x) = 0, \Delta(x) \neq 0$. (see Proposition 9.19) and the parameters can be recovered by certain collection $F(\mathbf{i})$ of minors (see Definition 9.21). More precisely,

$$H \times \mathbb{C}^m_{\neq 0} \simeq_{monomial} G^{u^{-1}, v^{-1}} \simeq_{twisting} G^{u, v}$$

for some twisting $G^{u,v} \longrightarrow G^{u^{-1},v^{-1}}$ which is a biregular isomorphism, and the parameters of x' can be expressed as Laurent monomials from the minors in $F(\mathbf{i})$.

9.2 Combinatorial data

From a reduced word $\mathbf{i} = (i_1, ..., i_{l(u)+l(v)})$, we will construct a rectangular matrix $\widetilde{B} = \widetilde{B}(\mathbf{i})$ which defines our cluster algebra of geometric type.

Let

$$M := -[1,r] \cup [1,l(u)+l(v)]$$

and let m := |M| = r + l(u) + l(v).

- Let us add $i_{-r}, ..., i_{-1}$ at the beginning of **i** by setting $i_{-j} = -j$ for $j \in [1, r]$
- For $k \in M$, let k^+ be smallest index l such that k < l and $|i_l| = |i_k|$. If it does not exist we set $k^+ = l(u) + l(v) + 1$.
- k is called i-exchangeable if both $k, k^+ \in [1, l(u), l(v)]$.
- Let **e**(**i**) be the set of **i**-exchangeable indices. Let

$$n := |\mathbf{e}(\mathbf{i})| = l(u) + l(v) - |Supp(u, v)|$$

• Let $\tilde{B}(\mathbf{i})$ be a $m \times n$ matrix. The rows are labeled by the set M and columns are labeled by the set $\mathbf{e}(\mathbf{i})$

Definition 9.8. The quiver $\Gamma(\mathbf{i})$ has vertices set M. For vertices k, l with k < l, it is connected by an edge iff either k or l (or both) are \mathbf{i} -exchangeable, and

(1) $l = k^+$

(2)
$$l < k^+ < l^+, c_{|i_k|, |i_l|} \neq 0$$
 and $\epsilon(i_l) = \epsilon(i_{k^+})$

(3) $l < l^+ < k^+, c_{|i_k|, |i_l|} \neq 0$ and $\epsilon(i_l) = -\epsilon(i_{l^+})$

- In case (1), the (horizontal) edge is $k \rightarrow l$ if $\epsilon(i_l) = +$, and vice versa.
- In case (2) and (3), the (inclined) edge is $k \rightarrow l$ if $\epsilon(i_l) = -$, and vice versa.

Figure 1: $\Gamma(\mathbf{i})$ for $SL_3^{w_0,w_0}$

Definition 9.9. The matrix \widetilde{B} is defined by

- (1) $b_{kl} = 0$ iff there are no edges connecting k and l.
- (2) $b_{kl} > 0$ if $k \longrightarrow l$, $b_{kl} < 0$ if $k \longleftarrow l$
- $(3) |b_{kl}| = \begin{cases} 1 & |i_k| = |i_l| \quad (horizontal \ edge) \\ -c_{|i_k|,|i_l|} & |i_k| \neq |i_l| \quad (inclined \ edge) \end{cases}$

Example 9.10. For $G = SL_3$, r = 2. Take $u = v = w_0$. We have l(u) = l(v) = 3, m = 8, n = 4. Take $\mathbf{i} = (1, 2, 1, -1, -2, -1)$. Then $\mathbf{e}(\mathbf{i}) = \{1, 2, 3, 4\}$. The graph has vertices $\{-2, -1, 1, 2, 3, 4, 5, 6\}$ but we label them by \mathbf{i} . The vertices $\in \mathbf{e}(\mathbf{i})$ is highlighted in red. Then \widetilde{B} is given by

	1	2	3	4
-2	-1	1	0	0
-1	1	0	0	0
1	0	-1	1	0
2	1	0	-1	1
3	-1	1	0	$^{-1}$
4	0	-1	1	0
5	0	1	0	-1
6	0	0	0	1

with the (skew-symmetric) principal part B highlighted in red.

Proposition 9.11. The matrix $\tilde{B}(\mathbf{i})$ has full rank n. Its principal part $B(\mathbf{i})$ is skew-symmetrizable.

Proof. Enough to show that the determinant of the $n \times n$ submatrix Δ of \widetilde{B} labeled by the row set

$$\mathbf{e}(\mathbf{i})^- := \{k \in M : k^+ \in \mathbf{e}(\mathbf{i})\}\$$

is nonzero. Note that if $k \in \mathbf{e}(\mathbf{i})^-$ and $l \in \mathbf{e}(\mathbf{i})$, then

$$|b_{kl}| = \begin{cases} 1 & k^+ = l \\ 0 & k^+ < l \end{cases}$$

hence Δ is triangular (after reindexing) with diagonal entries $\neq 0$.

		1	2	3	4
		1			
The matrix Δ (-1 and -2 interchanged):	-2	-1	1	0	0
	1	0	-1	1	0
	3	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	1	0	-1

Cartan matrix is symmetrizable $\Longrightarrow B(\mathbf{i})$ is skew-symmetrizable by our definition.

Hence by previous results, the matrix $\widetilde{B}(\mathbf{i})$ give rise to a well-defined upper cluster algebra $\overline{\mathcal{A}(\mathbf{i})}$ of geometric type, which coincides with the upper bound $\mathcal{U}(S)$ for the seed $\mathcal{S}(\mathbf{i}) = (\mathbf{x}, \widetilde{B}(\mathbf{i}))$. The ambient field \mathcal{F} of $\overline{\mathcal{A}}(\mathbf{i})$ is the field of rational functions over \mathbb{Q} in m independent variables $\widetilde{\mathbf{x}} = \{x_k : k \in M\}$. The cluster variables in \mathbf{x} are labeled by the set $\mathbf{e}(\mathbf{i})$, and the coefficient group \mathbb{P} is generated by the remaining indices.

Example 9.12. In our previous example for $\mathbf{i} = (-2, -1, 1, 2, 1, -1, -2, -1)$, we have $\mathbf{x} = \{x_1, x_2, x_3, x_4\}$, $\mathbb{P} = \langle x_{-2}^{\pm}, x_{-1}^{\pm}, x_5^{\pm}, x_6^{\pm} \rangle$, and the exchange relation

$$x_1 x_1' = x_{-1} x_2 + x_{-2} x_3$$
$$x_2 x_2' = x_{-2} x_3 x_5 + x_1 x_4$$
$$x_3 x_3' = x_1 x_4 + x_2$$
$$x_4 x_4' = x_2 x_6 + x_3 x_5$$

The algebra $\overline{\mathcal{A}}(\mathbf{i})$ consists of all rational functions in $\mathcal{F} = \mathbb{Q}(x_{-2}, x_{-1}, x_1, ..., x_6)$ that can be written as Laurent polynomials in each of the 5 clusters:

$$\mathbf{x} = (x_1, x_2, x_3, x_4), \mathbf{x}_1 = (x'_1, x_2, x_3, x_4), \cdots, \mathbf{x}_4(x_1, x_2, x_3, x'_4)$$

References

- [CA-III] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51
- [FZ] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, JAmer. Math. Soc. 12 (1999), 335-380
- [Z] A. Zelevinsky, Connected components of real double Bruhat cells, Int. Math. Res. Not. 2000 (21), (2000), 1131-1153