Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip*

Update: June 19, 2017

9 Double Bruhat Cells

In this section, we describe the identification between double Bruhat cells and certain upper cluster algebra.

9.1 Notation and Definitions

Let $[1, r]:=\{1,2,3, \ldots, r\}$.

9.1.1 Lie Theory

- G a simply-connected, connected, semisimple complex algebraic group of rank r
- B, B_{-}the opposite Borel subgroups
- N, N_{-}the unipotent radicals
- $H=B \cap B_{-}$a maximal torus
- $W=\operatorname{Norm}_{G}(H) / H$ the Weyl group
- $\mathfrak{g}=\operatorname{Lie}(G)$ the Lie algebra
- $\mathfrak{h}=\operatorname{Lie}(H)$ the Cartan subalgebra
- A root system Φ and decomposition of root space: $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$
- $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset \mathfrak{h}^{*}$ the simple roots, such that $\mathfrak{g}_{\alpha_{i}} \subset \operatorname{Lie}(N)$.
- $\alpha_{i}^{\vee} \in \mathfrak{h}$ simple coroot, such that Cartan matrix is given by $c_{i j}=\alpha_{j}\left(\alpha_{i}^{\vee}\right)$

[^0]- $\phi_{i}: S L_{2} \longrightarrow G$ the embedding corresponding to $\mathfrak{s l}_{2} \simeq\left\langle\mathfrak{g}_{\alpha_{i}}, \mathfrak{g}_{-\alpha_{i}}\right\rangle \hookrightarrow \mathfrak{g}$
- The root subgroups are defined for $t \in \mathbb{C}$ by

$$
x_{i}(t):=\phi_{i}\left(\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right) \in N, \quad h_{i}(t):=\phi_{i}\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right) \in H, \quad x_{-i}(t):=\phi_{i}\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right) \in N_{-}
$$

9.1.2 Weyl group

Weyl group is generated by simple reflections s_{i}, and they can be represented by $s_{i}=\overline{s_{i}} H$ where

$$
\overline{s_{i}}=\phi_{i}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \in \operatorname{Norm}_{G}(H)
$$

Can also be written as

$$
\overline{s_{i}}=x_{i}(-1) x_{-i}(1) x_{i}(-1)
$$

- In general for $w \in W$, we write

$$
\bar{w} \in \operatorname{Norm}_{G}(H) \subset G
$$

for its representative in G given by products of $\overline{s_{i}}$.

- $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ is called a reduced word for $w \in W$ if $w=s_{i_{1}} \ldots s_{i_{l}}$ is a reduced expression.

In type $A_{r}, W \simeq \mathcal{S}_{r+1}$, and $\overline{s_{i}}$ is the permutation matrix (with appropriate signs).

9.1.3 $W \times W$

Now consider $W \times W$.

- We use $-1, \ldots,-r$ for the simple reflections on first copy of W, and $1, \ldots, r$ for second copy.
- A reduced word for $(u, v) \in W \times W$ is an arbitrary shuffle of reduced word for u written in $-[1, r]$ and reduced word for v written in $[1, r]$.
- Let $\epsilon(i)$ denote the sign of $i \in \pm[1, r]$.
- Let $\operatorname{Supp}(u, v)=\{i:(u, v)$ contains either i or $-i\} \subset[1, r]$ be the support.

9.1.4 Bruhat decompositions

Theorem 9.1. The group G has Bruhat decompositions

$$
G=\coprod_{u \in W} B u B=\coprod_{v \in W} B_{-} v B_{-}
$$

The double Bruhat cells are

$$
G^{u, v}=B u B \cap B_{-} v B_{-}
$$

Hence G is disjoint union of the double Bruhat cells.

Example 9.2. When $G=S L_{r+1}(\mathbb{C}), B$ (resp. B_{-}) can be chosen to be the upper (resp. lower) triangular matrix. Then Bruhat decompositions say that any element in G can be reduced to a permutation matrix after certain row and column operations.

There is an explicit description of the Bruhat cells for type A_{r} :
Proposition 9.3. For $G=S L_{r+1}(\mathbb{C}), x \in G$ belongs to $B w B$ iff

- $\Delta_{w([1, i]),[1, i])}(x) \neq 0$ for $i=1, \ldots, r$
- $\Delta_{w([1, i-1] \cup\{j\}),[1, i]}(x)=0$ for $i<j$ and $w(i)<w(j)$

This follows from the explicit description below in Prop 9.19.
Example 9.4. In particular for $G=S L_{3}(\mathbb{C})$, let $u=v=w_{0}=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$. Then $G^{w_{0}, w_{0}} \subset S L_{3}(\mathbb{C})$ consists of 3×3 matrices x with $\operatorname{det}(x)=1$ such that

$$
x_{13} \neq 0, \quad x_{31} \neq 0, \quad \operatorname{det}\left(\begin{array}{ll}
x_{12} & x_{13} \\
x_{22} & x_{23}
\end{array}\right) \neq 0, \quad \operatorname{det}\left(\begin{array}{ll}
x_{12} & x_{22} \\
x_{31} & x_{32}
\end{array}\right) \neq 0
$$

The following Theorem gives important structural properties of the double Bruhat cells:

Theorem 9.5. • $G^{u, v}$ is biregularly isomoprhic to a Zariski open subset of an affine space of dimension $r+l(u)+l(v)$.

- Let $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ be a reduced word for $(u, v) \in W \times W$. Define the map $x_{\mathbf{i}}: H \times \mathbb{C}^{N} \longrightarrow G$ by

$$
x_{\mathbf{i}}\left(a ; t_{1}, \ldots, t_{N}\right)=a x_{i_{1}}\left(t_{1}\right) \ldots x_{i_{N}}\left(t_{N}\right)
$$

Then the map $x_{\mathbf{i}}$ restricts to a biregular isomorphism between $H \times \mathbb{C}_{\neq 0}^{N}$ and a Zariski open subset of the double Bruhat cell $G^{u, v}$.

Proof. Let us show that $x_{\mathbf{i}}\left(H \times \mathbb{C}_{\neq 0}^{N}\right) \subset B_{-} v B_{-}$. Consider the part of the words $\left(i_{k_{1}}, \ldots, i_{k_{l}}\right)$ that form a reduced word for v (i.e. all those with $\epsilon=+$). Note that we have

$$
x_{i}(t) \in B_{-} s_{i} B_{-}, \quad x_{-i}(t) \in B_{-}
$$

Hence

$$
\begin{aligned}
& x_{\mathbf{i}}\left(a ; t_{1}, \ldots, t_{N}\right) \in B_{-} \cdot B_{-} s_{i_{k_{1}}} B_{-} \cdot B_{-} \cdots B_{-} \cdot B_{-} s_{i_{k_{l}}} B_{-} \cdot B_{-} \\
&=B_{-} v B_{-}
\end{aligned}
$$

since it is well-known that

$$
B_{-} w^{\prime} B_{-} \cdot B_{-} w^{\prime \prime} B_{-}=B_{-} w^{\prime} w^{\prime \prime} B_{-}
$$

whenever $l\left(w^{\prime} w^{\prime \prime}\right)=l\left(w^{\prime}\right)+l\left(w^{\prime \prime}\right)$.
It is also easy to see that this map is injective.

Example 9.6. Consider $G=S L_{3}(\mathbb{C})$. Consider $u=s_{1} s_{2}, v=e$. The image in $G^{s_{1} s_{2}, e}=B s_{1} s_{2} B \cap B_{-}$is

$$
\begin{aligned}
x_{(1,2)}\left(a ; t_{1}, t_{2}\right) & =\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
t_{1} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t_{2} & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} t_{1} & a_{2} & 0 \\
0 & a_{3} t_{2} & a_{3}
\end{array}\right)
\end{aligned}
$$

where $a_{1} a_{2} a_{3}=1$. We see that $B s_{1} s_{2} B \cap B_{-}$can be described by

$$
\Delta_{3,1}=0, \quad \Delta_{2,1} \neq 0, \quad \Delta_{3,2} \neq 0
$$

Furthermore, we can recover our parameters from some minors (say, with consecutive columns) by monomial transforms, e.g.

$$
a_{1}=\Delta_{1,1}, a_{2}=\frac{\Delta_{12,12}}{\Delta_{1,1}}, t_{1}=\frac{\Delta_{1,1} \Delta_{2,1}}{\Delta_{12,12}}, t_{2}=\frac{\Delta_{12,12} \Delta_{23,12}}{\Delta_{2,1}}
$$

Example 9.7. On the other hand, the image in $G^{s_{2} s_{1}, e}=B s_{2} s_{1} B \cap B_{-}$is

$$
\begin{aligned}
x_{(1,2)}\left(a ; t_{1}, t_{2}\right) & =\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & t_{1} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
t_{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
a_{2} t_{2} & a_{2} & 0 \\
a_{3} t_{1} t_{2} & a_{3} t_{1} & a_{3}
\end{array}\right)
\end{aligned}
$$

We see that in this case $B s_{2} s_{1} B \cap B_{-}$can be described by

$$
\Delta_{23,12}=0, \quad \Delta_{3,1} \neq 0, \quad \Delta_{3,2} \neq 0
$$

and similarly we can recover our parameters by monomial transforms:

$$
a_{1}=\Delta_{1,1}, a_{2}=\frac{\Delta_{12,12}}{\Delta_{1,1}}, t_{1}=\frac{\Delta_{12,12} \Delta_{13,12}}{\Delta_{1,1}}, t_{2}=\frac{\Delta_{1,1} \Delta_{2,1}}{\Delta_{12,12}}
$$

In general, the Bruhat cells can be described by conditions of the form $\Delta(x)=$ $0, \Delta(x) \neq 0$. (see Proposition 9.19) and the parameters can be recovered by certain collection $F(\mathbf{i})$ of minors (see Definition 9.21). More precisely,

$$
H \times \mathbb{C}_{\neq 0}^{m} \simeq_{\text {monomial }} G^{u^{-1}, v^{-1}} \simeq_{\text {twisting }} G^{u, v}
$$

for some twisting $G^{u, v} \longrightarrow G^{u^{-1}, v^{-1}}$ which is a biregular isomorphism, and the parameters of x^{\prime} can be expressed as Laurent monomials from the minors in $F(\mathbf{i})$.

9.2 Combinatorial data

From a reduced word $\mathbf{i}=\left(i_{1}, \ldots, i_{l(u)+l(v)}\right)$, we will construct a rectangular matrix $\widetilde{B}=\widetilde{B}(\mathbf{i})$ which defines our cluster algebra of geometric type.

Let

$$
M:=-[1, r] \cup[1, l(u)+l(v)]
$$

and let $m:=|M|=r+l(u)+l(v)$.

- Let us add i_{-r}, \ldots, i_{-1} at the beginning of \mathbf{i} by setting $i_{-j}=-j$ for $j \in[1, r]$
- For $k \in M$, let k^{+}be smallest index l such that $k<l$ and $\left|i_{l}\right|=\left|i_{k}\right|$. If it does not exist we set $k^{+}=l(u)+l(v)+1$.
- k is called \mathbf{i}-exchangeable if both $k, k^{+} \in[1, l(u), l(v)]$.
- Let $\mathbf{e}(\mathbf{i})$ be the set of \mathbf{i}-exchangeable indices. Let

$$
n:=|\mathbf{e}(\mathbf{i})|=l(u)+l(v)-|\operatorname{Supp}(u, v)|
$$

- Let $\widetilde{B}(\mathbf{i})$ be a $m \times n$ matrix. The rows are labeled by the set M and columns are labeled by the set $\mathbf{e}(\mathbf{i})$

Definition 9.8. The quiver $\Gamma(\mathbf{i})$ has vertices set M. For vertices k, l with $k<l$, it is connected by an edge iff either k or (or both) are \mathbf{i}-exchangeable, and
(1) $l=k^{+}$
(2) $l<k^{+}<l^{+}, c_{\left|i_{k}\right|,\left|i_{l}\right|} \neq 0$ and $\epsilon\left(i_{l}\right)=\epsilon\left(i_{k^{+}}\right)$
(3) $l<l^{+}<k^{+}, c_{\left|i_{k}\right|,\left|i_{l}\right|} \neq 0$ and $\epsilon\left(i_{l}\right)=-\epsilon\left(i_{l^{+}}\right)$

- In case (1), the (horizontal) edge is $k \longrightarrow l$ if $\epsilon\left(i_{l}\right)=+$, and vice versa.
- In case (2) and (3), the (inclined) edge is $k \longrightarrow l$ if $\epsilon\left(i_{l}\right)=-$, and vice versa.
(1)

(2)

(3)

Figure 1: $\Gamma(\mathbf{i})$ for $S L_{3}^{w_{0}, w_{0}}$

Definition 9.9. The matrix \widetilde{B} is defined by
(1) $b_{k l}=0$ iff there are no edges connecting k and l.
(2) $b_{k l}>0$ if $k \longrightarrow l, b_{k l}<0$ if $k \longleftarrow l$
(3) $\left|b_{k l}\right|= \begin{cases}1 & \left|i_{k}\right|=\left|i_{l}\right| \quad \text { (horizontal edge) } \\ -c_{\left|i_{k}\right|,\left|i_{i}\right|} & \left|i_{k}\right| \neq\left|i_{l}\right| \quad \text { (inclined edge) }\end{cases}$

Example 9.10. For $G=S L_{3}, r=2$. Take $u=v=w_{0}$. We have $l(u)=l(v)=3$, $m=8, n=4$. Take $\mathbf{i}=(1,2,1,-1,-2,-1)$. Then $\boldsymbol{e}(\mathbf{i})=\{1,2,3,4\}$. The graph has vertices $\{-2,-1,1,2,3,4,5,6\}$ but we label them by \mathbf{i}. The vertices $\in \boldsymbol{e}(\mathbf{i})$ is highlighted in red. Then \widetilde{B} is given by

	1	2	3	4
-2	-1	1	0	0
-1	1	0	0	0
1	0	-1	1	0
2	1	0	-1	1
3	-1	1	0	-1
4	0	-1	1	0
5	0	1	0	-1
6	0	0	0	1

with the (skew-symmetric) principal part B highlighted in red.
Proposition 9.11. The matrix $\widetilde{B}(\mathbf{i})$ has full rank n. Its principal part $B(\mathbf{i})$ is skew-symmetrizable.

Proof. Enough to show that the determinant of the $n \times n$ submatrix Δ of \widetilde{B} labeled by the row set

$$
\mathbf{e}(\mathbf{i})^{-}:=\left\{k \in M: k^{+} \in \mathbf{e}(\mathbf{i})\right\}
$$

is nonzero. Note that if $k \in \mathbf{e}(\mathbf{i})^{-}$and $l \in \mathbf{e}(\mathbf{i})$, then

$$
\left|b_{k l}\right|=\left\{\begin{array}{ll}
1 & k^{+}=l \\
0 & k^{+}<l
\end{array},\right.
$$

hence Δ is triangular (after reindexing) with diagonal entries $\neq 0$.

$$
\text { The matrix } \Delta \text { (-1 and }-2 \text { interchanged): } \begin{array}{cc|cccc}
& & 1 & 2 & 3 & 4 \\
\hline-1 & 1 & 0 & 0 & 0 \\
-2 & -1 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 & 0 \\
3 & -1 & 1 & 0 & -1
\end{array}
$$

Cartan matrix is symmetrizable $\Longrightarrow B(\mathbf{i})$ is skew-symmetrizable by our definition.

Hence by previous results, the matrix $\widetilde{B}(\mathbf{i})$ give rise to a well-defined upper cluster algebra $\overline{\mathcal{A}(\mathbf{i})}$ of geometric type, which coincides with the upper bound $\mathcal{U}(\mathcal{S})$ for the seed $\mathcal{S}(\mathbf{i})=(\mathbf{x}, \widetilde{B}(\mathbf{i}))$. The ambient field \mathcal{F} of $\overline{\mathcal{A}}(\mathbf{i})$ is the field of rational functions over \mathbb{Q} in m independent variables $\widetilde{\mathbf{x}}=\left\{x_{k}: k \in M\right\}$. The cluster variables in \mathbf{x} are labeled by the set $\mathbf{e}(\mathbf{i})$, and the coefficient group \mathbb{P} is generated by the remaining indices.

Example 9.12. In our previous example for $\mathbf{i}=(-2,-1,1,2,1,-1,-2,-1)$, we have $\mathbf{x}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, \mathbb{P}=\left\langle x_{-2}^{ \pm}, x_{-1}^{ \pm}, x_{5}^{ \pm}, x_{6}^{ \pm}\right\rangle$, and the exchange relation

$$
\begin{array}{r}
x_{1} x_{1}^{\prime}=x_{-1} x_{2}+x_{-2} x_{3} \\
x_{2} x_{2}^{\prime}=x_{-2} x_{3} x_{5}+x_{1} x_{4} \\
x_{3} x_{3}^{\prime}=x_{1} x_{4}+x_{2} \\
x_{4} x_{4}^{\prime}=x_{2} x_{6}+x_{3} x_{5}
\end{array}
$$

The algebra $\overline{\mathcal{A}}(\mathbf{i})$ consists of all rational functions in $\mathcal{F}=\mathbb{Q}\left(x_{-2}, x_{-1}, x_{1}, \ldots, x_{6}\right)$ that can be written as Laurent polynomials in each of the 5 clusters:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \mathbf{x}_{1}=\left(x_{1}^{\prime}, x_{2}, x_{3}, x_{4}\right), \cdots, \mathbf{x}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}^{\prime}\right)
$$

References

[CA-III] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51
[FZ] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, JAmer. Math. Soc. 12 (1999), 335-380
[Z] A. Zelevinsky, Connected components of real double Bruhat cells, Int. Math. Res. Not. 2000 (21), (2000), 1131-1153

[^0]: *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan
 Email: ivan.ip@math.kyoto-u.ac.jp

