# Lecture Notes Introduction to Cluster Algebra 

Ivan C.H. Ip*

Update: June 23, 2017

### 9.3 Generalized minors

Consider the weight lattice $P \subset \mathfrak{h}^{*}$ of $G$ given by weights $\gamma \in \mathfrak{h}^{*}$ such that $\gamma\left(\alpha_{i}^{\vee}\right) \in \mathbb{Z}$ for all $i=1, \ldots, r$. $P$ has a basis given by the fundamental weights $\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ such that

$$
\omega_{j}\left(\alpha_{i}^{\vee}\right)=\delta_{i j} .
$$

$\gamma \in \mathfrak{h}^{*}$ can be treated as multiplicative characters $H \longrightarrow \mathbb{C}$ written as

$$
a \mapsto \gamma(a):=: a^{\gamma} \in \mathbb{C}, \quad a \in H
$$

Definition 9.13. Let $G_{0}=N_{-} H N$ be the open subset of elements $x \in G$ that have Gaussian decomposition. We write

$$
x=[x]_{-}[x]_{0}[x]_{+}, \quad[x]_{-} \in N_{-},[x]_{0} \in H,[x]_{+} \in N
$$

Definition 9.14. Let $\Delta^{\omega_{i}}$ be a regular function on $G$ whose restriction to $G_{0}$ is given by

$$
\Delta^{\omega_{i}}(x):=[x]_{0}^{\omega_{i}} .
$$

The generalized minor $\Delta_{u \omega_{i}, v \omega_{i}}$ is the regular function on $G$ whose restriction to the open set $\bar{u} G_{0} \bar{v}^{-1}$ is given by

$$
\Delta_{u \omega_{i}, v \omega_{i}}(x)=\Delta^{\omega_{i}}\left(\bar{u}^{-1} x \bar{v}\right)
$$

By definition we have for any $x \in G, n^{-} \in N_{-}, n^{+} \in N, a \in H$ :

$$
\begin{align*}
& \Delta^{\omega_{i}}\left(n^{-} x\right)=\Delta^{\omega_{i}}\left(x n^{+}\right)=\Delta^{\omega_{i}}(x)  \tag{9.1}\\
& \Delta^{\omega_{i}}(a x)=\Delta^{\omega_{i}}(x a)=a^{\omega_{i}} \Delta^{\omega_{i}}(x)
\end{align*}
$$

[^0]Remark 9.15. There is a representation theoretic meaning to the generalized minors. The above formula says that $\Delta^{\omega_{i}}$ is invariant under the action of $N^{+}$on the right, and is an eigenvector for the action of $H$. Hence this says that $\Delta^{\omega_{i}} \in \mathbb{C}[G]$ is a highest weight vector of weight $\omega_{i}$, where $G$ acts on $\mathbb{C}[G]$ by right translations. Some results can be proved using this language:

Lemma 9.16. $\Delta_{u \omega_{i}, v \omega_{i}}$ depends only on the weights $u \omega_{i}, v \omega_{i}$ and not on the choice of $u$ or $v$.

Proof. We consider the case for $v$. The case for $u$ is similar. Recall that $s_{j}\left(w_{i}\right)=w_{i}$ for $i \neq j$. Hence we only need to show for $i \neq j$,

$$
\Delta^{\omega_{i}}\left(x \overline{s_{j}}\right)=\Delta^{\omega_{i}}(x) .
$$

Recall $\overline{s_{i}}=x_{i}(-1) x_{-i}(1) x_{i}(-1)$. Since $\Delta^{\omega_{i}}$ is highest weight vector of weight $\omega_{i}$, it is trivial with respect to $\phi_{j}\left(S L_{2}\right)$ since $\omega_{i}\left(h_{j}\right)=0$. Therefore we have

$$
\Delta^{\omega_{i}}\left(x x_{-j}(t)\right)=\Delta^{\omega_{i}}(x)
$$

and also by (9.1) gives the claim.

Proposition 9.17. $\Delta^{\omega_{i}}$ can be extended from $G_{0}$ to the whole $G$ by

$$
\Delta^{\omega_{i}}(x)= \begin{cases}a^{\omega_{i}} & w \omega_{i}=\omega_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where $x=x^{-} a \bar{w} x^{+}$for some $x_{-} \in N_{-}, a \in H, w \in W, x^{+} \in N$ by the Bruhat decomposition.

In particular, $x \in G_{0}$ (i.e. $w=e$ ) iff $\Delta^{\omega_{i}}(x) \neq 0$ for any $i \in[1, r]$.

Proof. Since $\Delta^{\omega_{i}}\left(x^{-} a \bar{w} x^{+}\right)=a^{\omega_{i}} \Delta^{\omega_{i}}(\bar{w})$, only need to show

$$
\Delta^{\omega_{i}}(\bar{w})= \begin{cases}1 & w \omega_{i}=\omega_{i} \\ 0 & \text { otherwise }\end{cases}
$$

This is done by induction on $l(w)$ and direct calculation.

Example 9.18. In type $A_{r}, \Delta_{u \omega_{i}, v \omega_{i}}(x)$ is the determinant of the submatrix of $x$ whose row (resp. columns) are labeled by elements of the set $u([1, i])$ (resp. $v([1, i])$ ) where $u, v \in W \simeq \mathcal{S}_{r+1}$.

Each (double) Bruhat cell can be defined inside $G$ by a collection of conditions of the form $\Delta(x)=0$ and $\Delta(x) \neq 0$ where $\Delta$ is a generalized minor. It can be described explicitly as

Theorem 9.19. The Bruhat cell $B u B \subset G$ is given by conditions

- $\Delta_{u^{\prime} \omega_{i}, \omega_{i}}=0$ whenever $u^{\prime} \omega_{i} \not \leq u \omega_{i}$ in the Bruhat order
- $\Delta_{u \omega_{i}, \omega_{i}} \neq 0$

Similarly the Bruhat cell $B_{-} v B_{-} \subset G$ is given by conditions

- $\Delta_{\omega_{i}, v^{\prime} \omega_{i}}=0$ whenever $v^{\prime} \omega_{i} \not \leq v^{-1} \omega_{i}$ in the Bruhat order
- $\Delta_{\omega_{i}, v^{-1} \omega_{i}} \neq 0$
where the Bruhat order on weights $w \omega_{i}$ are induced from the Bruhat order on $W$. (Bruhat order on $W:$ for $u, v \in W, u<v \Longleftrightarrow l(v)=l(u)+l\left(u^{-1} v\right)$ )
Example 9.20. In type $A_{r}, u^{\prime} \omega_{i} \leq u \omega_{i} \Longleftrightarrow u^{\prime}([1, i]) \leq u([1, i])$ where the partial order on $i$-element set is defined by

$$
\left\{j_{1}<\cdots<j_{i}\right\} \leq\left\{k_{1}<\cdots<k_{i}\right\} \Longleftrightarrow\left(j_{1} \leq k_{1}, \cdots, j_{i} \leq k_{i}\right)
$$

Next we introduce the family of minors that should be grouped as cluster.
Definition 9.21. We define elements $u_{\leq k} \in W, v_{>k} \in W$ by

$$
\begin{gathered}
u_{\leq k}:=u_{\leq k}(\mathbf{i}):=\prod_{\substack{l=1, \ldots, k \\
\epsilon\left(i_{l}\right)=-}} s_{\left|i_{l}\right|} \\
v_{>k}:=v_{>k}(\mathbf{i}):=\prod_{\substack{l=l(u)+l(v), \ldots, k+1 \\
\epsilon\left(i_{l}\right)=+}} s_{\left|i_{l}\right|}
\end{gathered}
$$

(The product is increasing (resp. decreasing) in $l$ for $u_{\leq j}\left(\right.$ resp. $v_{>k}$ ). (i.e. they are truncated words for $u$ and $v$ )

For $k \in-[1, r]$, we define $u_{\leq k}=e, v_{>k}=v^{-1}$. For $k \in M$, we set

$$
\Delta(k ; \mathbf{i}):=\Delta_{u_{\leq k} \omega_{i_{k}}, v_{>k} \omega_{\left|i_{k}\right|}}
$$

and define

$$
F(\mathbf{i}):=\{\Delta(k ; \mathbf{i}): k \in M\}
$$

the set of $m=r+l(u)+l(v)$ minors associated with the fixed reduced word $\mathbf{i}$.
Example 9.22. Continuing our example for $G=S L_{3}, u=v=w_{0}$ and $\mathbf{i}=$ $(-2,-1,1,2,1,-1,-2,-1)$. Recall $u \omega_{i}:=u([1, i])$.

| $k$ | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i_{k}$ | -2 | -1 | 1 | 2 | 1 | -1 | -2 | -1 |
| $u_{\leq k}$ | $e$ | $e$ | $e$ | $e$ | $e$ | $s_{1}$ | $s_{1} s_{2}$ | $s_{1} s_{2} s_{1}$ |
| $v_{>k}$ | $s_{1} s_{2} s_{1}$ | $s_{1} s_{2} s_{1}$ | $s_{1} s_{2}$ | $s_{1}$ | $e$ | $e$ | $e$ | $e$ |
| $u_{\leq k}\left[1,\left\|i_{k}\right\|\right]$ | 12 | 1 | 1 | 12 | 1 | 2 | 23 | 3 |
| $v_{>k}\left[1,\left\|i_{k}\right\|\right]$ | 23 | 3 | 2 | 12 | 1 | 1 | 12 | 1 |
| $\Delta(k ; \mathbf{i})$ | $\Delta_{12,23}$ | $\Delta_{1,3}$ | $\Delta_{1,2}$ | $\Delta_{12,12}$ | $\Delta_{1,1}$ | $\Delta_{2,1}$ | $\Delta_{23,12}$ | $\Delta_{3,1}$ |

Note that these are all the initial minors.

### 9.4 Cluster algebra structures in $\mathbb{C}\left[G^{u, v}\right]$

Let us extend by scalar and consider the upper cluster algebra $\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}}:=\overline{\mathcal{A}}(\mathbf{i}) \otimes \mathbb{C}$ over the ambient field $\mathcal{F}_{\mathbb{C}}:=\mathcal{F} \otimes \mathbb{C}$.

Theorem 9.23. $F(\mathbf{i})$ is an algebraically independent generating set for the field of rational functions $\mathbb{C}\left(G^{u, v}\right)$.

Proof. Note that $|F(\mathbf{i})|=\operatorname{dim} G^{u, v}=r+l(u)+l(v)$ so the dimension is correct. By Theorem 9.5 $\mathbb{C}\left(G^{u, v}\right) \simeq \mathbb{C}\left(H \times C_{\neq 0}^{l(u)+l(v)}\right)$ is generated by $a, t_{1}, \ldots, t_{m}$. These parameters can be expressed explicitly by invertible monomial transforms in the minors of $F(\mathbf{i})$, see Example 9.6 and [FZ].

We can state the main result:
Theorem 9.24. Let $\mathbf{i}$ be a reduced word for $(u, v) \in W \times W$. The isomoprhism of fields $\mathcal{F}_{\mathbb{C}} \longrightarrow \mathbb{C}\left(G^{u, v}\right)$ defined by

$$
\phi\left(x_{k}\right) \mapsto \Delta(k ; \mathbf{i}), \quad k \in M
$$

restricts to an isomorphism of algebras $\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}} \longrightarrow \mathbb{C}\left[G^{u, v}\right]$
Remark 9.25. Recently it was shown by Goodearl-Yakimov (2013) that in fact the upper cluster algebra coincides with the cluster algebra: $\overline{\mathcal{A}}(\mathbf{i})=\mathcal{A}(\mathbf{i})$. It is shown for a large class of quantized cluster algebra, in which the coordinate ring of double Bruhat cell is a classical limit of a special case.

Example 9.26. Let us calculate the image of $\phi$ in our Example 9.12. We have the correspondence:

$$
\begin{aligned}
\phi & x_{-2} \\
\hline & x_{-1} \\
\Delta_{12,23} & x_{13}
\end{aligned} x_{1} \left\lvert\, \begin{array}{c|c|c|c|c}
x_{2} & \Delta_{12,12} & x_{3} & x_{11} & x_{21} \\
\Delta_{23,12} & x_{31} \\
\phi\left(x_{1}^{\prime}\right) & =\phi\left(\frac{x_{-1} x_{2}+x_{-2} x_{3}}{x_{1}}\right) \\
& =\frac{x_{13} \Delta_{12,12}+\Delta_{12,23} x_{11}}{x_{12}} \\
& =\Delta_{12,13}
\end{array}\right.
$$

However, not all of them become minors, but they are all regular functions on $G=S L_{3}(\mathbb{C})$

$$
\begin{aligned}
& \phi\left(x_{2}^{\prime}\right)=x_{21} \Delta_{13,23}-x_{31} \Delta_{12,23} \\
& \phi\left(x_{3}^{\prime}\right)=x_{22} \\
& \phi\left(x_{4}^{\prime}\right)=\Delta_{13,12}
\end{aligned}
$$

Remark 9.27. $\overline{\mathcal{A}}(\mathbf{i})$ is finitely generated (since $\overline{\mathcal{A}}(\mathbf{i})$ is isomorphic to a $\mathbb{Z}$-form of the coordinate ring of a quasi-affine algebraic variety $G^{u, v}$ ), although it may not have acyclic seed.

Remark 9.28. The collection of minors $F(\mathbf{i})$ gives a total positivity criterion in $G^{u, v}: x \in G^{u, v}$ is totally positive iff $\Delta(x)>0$ for every $\Delta \in F(\mathbf{i})$.

Example 9.29. From the quiver (red part) in the Figure of Example 9.10, we see that $\mathbb{C}\left[S L_{3}^{w_{0}, w_{0}}\right]$ is cluster algebra of type $D_{4}$. It has 16 cluster variables and 50 clusters, each consisting of 4 variables.

- 14 minors ( 19 minors - det - 4 frozen minors)
- 2 regular functions: $x_{21} \Delta_{13,23}-x_{31} \Delta_{12,23}$ and $\Delta_{12,13} x_{32}-\Delta_{12,23} x_{31}$

Example 9.30. Let $c \in W$ be the Coxeter element with reduced word (1,2,3...,r). Then $\mathbb{C}\left[G^{c, c}\right]$ is a cluster algebra of type $A_{1}^{r}$, because for $\mathbf{i}=(-1,-2, \ldots,-r, 1,2 \ldots, r)$, the mutable (red) part of the quiver $\Gamma(\mathbf{i})$ consists of $r$ disconnected vertices, i.e. $B(\mathbf{i})$ is a zero matrix.

Example 9.31. Consider $\mathbb{C}\left[G^{c, c^{-1}}\right]$, choose $\mathbf{i}=(-1, \ldots,-r, r, \ldots, 1)$. Then $B(\mathbf{i})$ is given by

$$
b_{i j}= \begin{cases}-a_{i j} & i<j \\ a_{i j} & i>j\end{cases}
$$

Hence the mutable part of $\Gamma(\mathbf{i})$ is a Dynkin graph of $G$, so that $\mathbb{C}\left[G^{c, c^{-1}}\right]$ is a cluster algebra of type $G$. This gives a geometric construction of cluster algebra of any finite type.

Example 9.32. The double cell $G^{e, w_{0}}$ is natually identified with open subset of the base affine space $N_{-} \backslash G$ given by

$$
\Delta_{\omega_{i}, \omega_{i}} \neq 0, \quad \Delta_{\omega_{i}, w_{0} \omega_{i}} \neq 0, \quad \forall i=1, \ldots, r
$$

Then we have

| Cartan-Killing type of $G$ | $A_{2}$ | $A_{3}$ | $A_{4}$ | $B_{2}$ | other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cluster type of $\mathbb{C}\left[G^{e, w_{0}}\right]$ | $A_{1}$ | $A_{3}$ | $D_{6}$ | $B_{2}$ | infinite |

Idea: show that for other types, the quiver contains the extended Dynkin tree diagram (see Lecture 6), hence it is not 2-finite.


Figure 1: The mutatble part of $\Gamma(\mathbf{i})$ for $\mathbb{C}\left[G^{e, w_{0}}\right]$ in type $A_{5}$ for $\mathbf{i}=$ $(1,3,5,2,4,1,3,5,2,4,1,3,5,2,4)$. It contains the subdiagram $E_{7}^{(1)}$, hence it is of infinite type.

Example 9.33. For the open double Bruhat cell $G^{w_{0}, w_{0}}$, it is described by

$$
\Delta_{w_{0} \omega_{i}, \omega_{i}} \neq 0, \quad \Delta_{\omega_{i}, w_{0} \omega_{i}} \neq 0, \quad \forall i=1, \ldots, r
$$

We have

| Cartan-Killing type of $G$ | $A_{1}$ | $A_{2}$ | other |
| :---: | :---: | :---: | :---: |
| Cluster type of $\mathbb{C}\left[G^{w_{0}, w_{0}}\right]$ | $A_{1}$ | $D_{4}$ | infinite |

### 9.5 Proof of Theorem 9.24

We outline some ingredients in the proof of the main theorem.
Lemma 9.34. (1) The minors $\Delta(k ; \mathbf{i})(x) \neq 0$ for $k \notin \boldsymbol{e}(\mathbf{i})$ and any $x \in G^{u, v}$.
(2) The map $G^{u, v} \longrightarrow \mathbb{C}^{r+l(u)+l(v)}$ defined by $g \mapsto(\Delta(g))_{\Delta \in F(\mathbf{i})}$ restricts to a biregular isomorphism $U(\mathbf{i}) \longrightarrow \mathbb{C}_{\neq 0}^{r+l(u)+l(v)}$ where

$$
U(\mathbf{i})=\left\{g \in G^{u, v}: \Delta(g) \neq 0, \quad \forall \Delta \in F(\mathbf{i})\right\}
$$

Proof. In (1), if $k \notin \mathbf{e}(\mathbf{i})$, then either $u_{\leq k}=e$ or $v_{>k}=e$ (cf. Example 9.22) and $\Delta(k ; \mathbf{i})$ turns into $\Delta_{u \omega_{i}, \omega_{i}}$ or $\Delta_{\omega_{i}, v^{-1} \omega_{i}}$. Hence this is the statement of Theorem 9.19. We can see e.g. that $\Delta_{\omega_{i}, v^{-1} \omega_{i}} \neq 0$ follows from Proposition 9.17 and the fact that $B_{-} v B_{-} v^{-1} \subset G_{0}$.
(2) is a restatement of Theorem 9.5, where the parameters $a, t_{1}, \ldots, t_{N}$ can be expressed in terms of minors from $F(\mathbf{i})$.

Lemma 9.35. (3) The rational functions $\Delta^{\prime}(\ell ; \mathbf{i}):=\phi\left(x_{\ell}^{\prime}\right)$ are regular, i.e. belongs to $\mathbb{C}\left[G^{u, v}\right]$
(4) The map $G^{u, v} \longrightarrow \mathbb{C}^{r+l(u)+l(v)}$ defined by $g \mapsto(\Delta(g))_{\Delta \in F_{\ell}(\mathbf{i})}$ restricts to a biregular isomorphism $U_{\ell}(\mathbf{i}) \longrightarrow \mathbb{C}_{\neq 0}^{r+l(u)+l(v)}$ where

$$
F_{\ell}(\mathbf{i}):=F(\mathbf{i})-\{\Delta(\ell ; \mathbf{i})\} \cup\left\{\Delta^{\prime}(\ell ; \mathbf{i}\}\right.
$$

and

$$
U_{\ell}(\mathbf{i}):=\left\{g \in G^{u, v}: \Delta(g) \neq 0, \quad \forall \Delta \in F_{\ell}(\mathbf{i})\right\}
$$

Proof. This follows from hard calculations involving identities between the generalized minors developed in [Z, Section 4], see the proof of Lemma 2.12 in [FZ]. Let us outline a special case:

We have the following identity for the generalized minors: if $l\left(u s_{i}\right)=l(u)+1$ and $l\left(v s_{i}\right)=l(v)+1$, then

$$
\Delta_{u \omega_{i}, v \omega_{i}} \Delta_{u s_{i} \omega_{i}, v s_{i} \omega_{i}}-\Delta_{u s_{i} \omega_{i}, v \omega_{i}} \Delta_{u \omega_{i}, v s_{i} \omega_{i}}=\prod_{j \neq i} \Delta_{u \omega_{j}, v \omega_{j}}^{-c_{j i}}
$$

which follows from the case for $u=v=e$.
Recall in our example for $S L_{3}^{w_{0}, w_{0}}$, we have

$$
x_{2} x_{2}^{\prime}=x_{-2} x_{3} x_{5}+x_{1} x_{4}
$$

which translates to

$$
\begin{aligned}
\Delta_{12,12} \Delta^{\prime}= & \Delta_{12,23} \Delta_{23,12} \Delta_{1,1}+\Delta_{1,2} \Delta_{2,1} \\
= & \Delta_{12,23} \Delta_{23,12}\left(\Delta_{12,12} \Delta_{13,13}-\Delta_{13,12} \Delta_{12,13}\right) \\
& +\left(\Delta_{12,12} \Delta_{13,23}-\Delta_{13,12} \Delta_{12,23}\right)\left(\Delta_{12,12} \Delta_{23,13}-\Delta_{23,12} \Delta_{12,13}\right) \\
= & \Delta_{12,12} \operatorname{det}\left(\begin{array}{ccc}
\Delta_{12,23} & \Delta_{12,13} & \Delta_{12,12} \\
\Delta_{13,23} & \Delta_{13,13} & \Delta_{13,12} \\
0 & \Delta_{23,13} & \Delta_{23,12}
\end{array}\right)
\end{aligned}
$$

Hence $\Delta^{\prime}$ is a regular function on $G^{u, v}$.
Fact 9.36. Let $X$ be normal variety and $Y \subset X$ a subvariety of codimension at least 2. Then any rational function on $X$ regular on $X-Y$ extends to a regular function on $X$.

Lemma 9.37. Let

$$
U:=U(\mathbf{i}) \cup \bigcup_{\ell \in e(\mathbf{i})} U_{\ell}(\mathbf{i})
$$

The complement $G^{u, v}-U$ has complex codimension at least 2 in $G^{u, v}$.
Proof. Let $x \in G^{u, v}-U$. Since $x \notin U(\mathbf{i}), \Delta(k ; \mathbf{i})=0$ for some $k \in \mathbf{e}(\mathbf{i})$. Since $x \notin U_{k}(\mathbf{i})$, either $\Delta(l ; \mathbf{i})=0$ for some $l \in \mathbf{e}(\mathbf{i})$, or $\Delta^{\prime}(k ; \mathbf{i})=0$. Hence $G^{u, v}-U$ is the union of finitely many subvarieties, each given by two distinct irreducible equations.

Let $\widetilde{\mathbf{x}_{\ell}}=\widetilde{\mathbf{x}}-\left\{x_{\ell}\right\} \cup\left\{x_{\ell}^{\prime}\right\}$. We have

$$
\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}}=\mathbb{C}\left[\widetilde{\mathbf{x}}^{ \pm}\right] \cap \bigcap_{\ell \in \mathbf{e}(\mathbf{i})} \mathbb{C}\left[\widetilde{\mathbf{x}}_{\ell}^{ \pm}\right]
$$

Hence we only need to show $\mathcal{C}=\mathbb{C}\left[G^{u, v}\right]$ where

$$
\mathcal{C}=\phi\left(\mathbb{C}\left[\widetilde{\mathbf{x}}^{ \pm}\right]\right) \cap \bigcap_{\ell \in \mathbf{e}(\mathbf{i})} \phi\left(\mathbb{C}\left[\widetilde{\mathbf{x}}_{\ell}^{ \pm}\right]\right)
$$

By Lemma (2) and (4) we have

$$
\phi\left(\mathbb{C}\left[\widetilde{\mathbf{x}}^{ \pm}\right]\right)=\mathbb{C}[U(\mathbf{i})], \quad \phi\left(\mathbb{C}\left[\widetilde{\mathbf{x}}_{\ell}^{ \pm}\right]\right)=\mathbb{C}\left[U_{\ell}(\mathbf{i})\right]
$$

so $\mathcal{C}$ consists of rational functions on $G^{u, v}$ that is regular on $U$. By Lemma 9.37, these are functions regular on the whole double cell $G^{u, v}$.

## References

[CA-III] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51
[FZ] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, JAmer. Math. Soc. 12 (1999), 335-380
[Z] A. Zelevinsky, Connected components of real double Bruhat cells, Int. Math. Res. Not. 2000 (21), (2000), 1131-1153


[^0]:    *Center for the Promotion of Interdisciplinary Education and Research/ Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

