# Lecture Notes Introduction to Cluster Algebra

Ivan C.H. Ip\*

Update: June 23, 2017

### 9.3 Generalized minors

Consider the weight lattice  $P \subset \mathfrak{h}^*$  of G given by weights  $\gamma \in \mathfrak{h}^*$  such that  $\gamma(\alpha_i^{\vee}) \in \mathbb{Z}$  for all i = 1, ..., r. P has a basis given by the fundamental weights  $\{\omega_1, ..., \omega_r\}$  such that

$$\omega_j(\alpha_i^{\vee}) = \delta_{ij}.$$

 $\gamma \in \mathfrak{h}^*$  can be treated as multiplicative characters  $H \longrightarrow \mathbb{C}$  written as

$$a \mapsto \gamma(a) :=: a^{\gamma} \in \mathbb{C}, \qquad a \in H$$

**Definition 9.13.** Let  $G_0 = N_-HN$  be the open subset of elements  $x \in G$  that have Gaussian decomposition. We write

$$x = [x]_{-}[x]_{0}[x]_{+}, \qquad [x]_{-} \in N_{-}, [x]_{0} \in H, [x]_{+} \in N$$

**Definition 9.14.** Let  $\Delta^{\omega_i}$  be a regular function on G whose restriction to  $G_0$  is given by

$$\Delta^{\omega_i}(x) := [x]_0^{\omega_i}.$$

The generalized minor  $\Delta_{u\omega_i,v\omega_i}$  is the regular function on G whose restriction to the open set  $\overline{u}G_0\overline{v}^{-1}$  is given by

$$\Delta_{u\omega_i,v\omega_i}(x) = \Delta^{\omega_i}(\overline{u}^{-1}x\overline{v})$$

By definition we have for any  $x \in G, n^- \in N_-, n^+ \in N, a \in H$ :

$$\Delta^{\omega_i}(n^- x) = \Delta^{\omega_i}(xn^+) = \Delta^{\omega_i}(x)$$

$$\Delta^{\omega_i}(ax) = \Delta^{\omega_i}(xa) = a^{\omega_i}\Delta^{\omega_i}(x)$$
(9.1)

<sup>\*</sup>Center for the Promotion of Interdisciplinary Education and Research/

Department of Mathematics, Graduate School of Science, Kyoto University, Japan Email: ivan.ip@math.kyoto-u.ac.jp

**Remark 9.15.** There is a representation theoretic meaning to the generalized minors. The above formula says that  $\Delta^{\omega_i}$  is invariant under the action of  $N^+$  on the right, and is an eigenvector for the action of H. Hence this says that  $\Delta^{\omega_i} \in \mathbb{C}[G]$  is a highest weight vector of weight  $\omega_i$ , where G acts on  $\mathbb{C}[G]$  by right translations. Some results can be proved using this language:

**Lemma 9.16.**  $\Delta_{u\omega_i,v\omega_i}$  depends only on the weights  $u\omega_i, v\omega_i$  and not on the choice of u or v.

*Proof.* We consider the case for v. The case for u is similar. Recall that  $s_j(w_i) = w_i$  for  $i \neq j$ . Hence we only need to show for  $i \neq j$ ,

$$\Delta^{\omega_i}(x\overline{s_j}) = \Delta^{\omega_i}(x).$$

Recall  $\overline{s_i} = x_i(-1)x_{-i}(1)x_i(-1)$ . Since  $\Delta^{\omega_i}$  is highest weight vector of weight  $\omega_i$ , it is trivial with respect to  $\phi_i(SL_2)$  since  $\omega_i(h_j) = 0$ . Therefore we have

$$\Delta^{\omega_i}(xx_{-j}(t)) = \Delta^{\omega_i}(x)$$

and also by (9.1) gives the claim.

**Proposition 9.17.**  $\Delta^{\omega_i}$  can be extended from  $G_0$  to the whole G by

$$\Delta^{\omega_i}(x) = \begin{cases} a^{\omega_i} & w\omega_i = \omega_i \\ 0 & otherwise \end{cases}$$

where  $x = x^{-}a\overline{w}x^{+}$  for some  $x_{-} \in N_{-}, a \in H, w \in W, x^{+} \in N$  by the Bruhat decomposition.

In particular,  $x \in G_0$  (i.e. w = e) iff  $\Delta^{\omega_i}(x) \neq 0$  for any  $i \in [1, r]$ .

*Proof.* Since  $\Delta^{\omega_i}(x^- a\overline{w}x^+) = a^{\omega_i} \Delta^{\omega_i}(\overline{w})$ , only need to show

$$\Delta^{\omega_i}(\overline{w}) = \begin{cases} 1 & w\omega_i = \omega_i \\ 0 & otherwise \end{cases}$$

This is done by induction on l(w) and direct calculation.

**Example 9.18.** In type  $A_r$ ,  $\Delta_{u\omega_i,v\omega_i}(x)$  is the determinant of the submatrix of x whose row (resp. columns) are labeled by elements of the set u([1,i]) (resp. v([1,i])) where  $u, v \in W \simeq S_{r+1}$ .

Each (double) Bruhat cell can be defined inside G by a collection of conditions of the form  $\Delta(x) = 0$  and  $\Delta(x) \neq 0$  where  $\Delta$  is a generalized minor. It can be described explicitly as

**Theorem 9.19.** The Bruhat cell  $BuB \subset G$  is given by conditions

- $\Delta_{u'\omega_i,\omega_i} = 0$  whenever  $u'\omega_i \leq u\omega_i$  in the Bruhat order
- $\Delta_{u\omega_i,\omega_i} \neq 0$

Similarly the Bruhat cell  $B_v B_- \subset G$  is given by conditions

- $\Delta_{\omega_i,v'\omega_i} = 0$  whenever  $v'\omega_i \nleq v^{-1}\omega_i$  in the Bruhat order
- $\Delta_{\omega_i, v^{-1}\omega_i} \neq 0$

where the Bruhat order on weights  $w\omega_i$  are induced from the Bruhat order on W. (Bruhat order on W: for  $u, v \in W$ ,  $u < v \iff l(v) = l(u) + l(u^{-1}v)$ )

**Example 9.20.** In type  $A_r$ ,  $u'\omega_i \leq u\omega_i \iff u'([1,i]) \leq u([1,i])$  where the partial order on *i*-element set is defined by

 $\{j_1 < \dots < j_i\} \le \{k_1 < \dots < k_i\} \iff (j_1 \le k_1, \dots, j_i \le k_i)$ 

Next we introduce the family of minors that should be grouped as cluster.

**Definition 9.21.** We define elements  $u_{\leq k} \in W, v_{>k} \in W$  by

$$u_{\leq k} := u_{\leq k}(\mathbf{i}) := \prod_{\substack{l=1,\dots,k\\\epsilon(i_l)=-}} s_{|i_l|}$$
$$v_{>k} := v_{>k}(\mathbf{i}) := \prod_{\substack{l=l(u)+l(v),\dots,k+1\\\epsilon(i_l)=+}} s_{|i_l|}$$

(The product is increasing (resp. decreasing) in l for  $u_{\leq j}$  (resp.  $v_{>k}$ ). (i.e. they are truncated words for u and v)

For  $k \in -[1, r]$ , we define  $u_{\leq k} = e, v_{>k} = v^{-1}$ . For  $k \in M$ , we set

$$\Delta(k;\mathbf{i}) := \Delta_{u \leq k \omega_{i_k}, v > k \omega_{|i_k|}}$$

and define

$$F(\mathbf{i}) := \{\Delta(k; \mathbf{i}) : k \in M\}$$

the set of m = r + l(u) + l(v) minors associated with the fixed reduced word **i**.

**Example 9.22.** Continuing our example for  $G = SL_3$ ,  $u = v = w_0$  and  $\mathbf{i} = (-2, -1, 1, 2, 1, -1, -2, -1)$ . Recall  $u\omega_i := u([1, i])$ .

| k                      | -2               | -1             | 1              | 2                | 3              | 4              | 5                | 6              |
|------------------------|------------------|----------------|----------------|------------------|----------------|----------------|------------------|----------------|
| $i_k$                  | -2               | -1             | 1              | 2                | 1              | -1             | -2               | -1             |
| $u_{\leq k}$           | e                | e              | e              | e                | e              | $s_1$          | $s_{1}s_{2}$     | $s_1 s_2 s_1$  |
| $v_{>k}$               | $s_1 s_2 s_1$    | $s_1 s_2 s_1$  | $s_{1}s_{2}$   | $s_1$            | e              | e              | e                | e              |
| $u_{\leq k}[1, i_k ]$  | 12               | 1              | 1              | 12               | 1              | 2              | 23               | 3              |
| $v_{>k}[1,  i_k ]$     | 23               | 3              | 2              | 12               | 1              | 1              | 12               | 1              |
| $\Delta(k;\mathbf{i})$ | $\Delta_{12,23}$ | $\Delta_{1,3}$ | $\Delta_{1,2}$ | $\Delta_{12,12}$ | $\Delta_{1,1}$ | $\Delta_{2,1}$ | $\Delta_{23,12}$ | $\Delta_{3,1}$ |

Note that these are all the initial minors.

## 9.4 Cluster algebra structures in $\mathbb{C}[G^{u,v}]$

Let us extend by scalar and consider the upper cluster algebra  $\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}} := \overline{\mathcal{A}}(\mathbf{i}) \otimes \mathbb{C}$ over the ambient field  $\mathcal{F}_{\mathbb{C}} := \mathcal{F} \otimes \mathbb{C}$ .

**Theorem 9.23.**  $F(\mathbf{i})$  is an algebraically independent generating set for the field of rational functions  $\mathbb{C}(G^{u,v})$ .

Proof. Note that  $|F(\mathbf{i})| = \dim G^{u,v} = r + l(u) + l(v)$  so the dimension is correct. By Theorem 9.5  $\mathbb{C}(G^{u,v}) \simeq \mathbb{C}(H \times C^{l(u)+l(v)}_{\neq 0})$  is generated by  $a, t_1, ..., t_m$ . These parameters can be expressed explicitly by invertible monomial transforms in the minors of  $F(\mathbf{i})$ , see Example 9.6 and [FZ].

We can state the main result:

**Theorem 9.24.** Let **i** be a reduced word for  $(u, v) \in W \times W$ . The isomorphism of fields  $\mathcal{F}_{\mathbb{C}} \longrightarrow \mathbb{C}(G^{u,v})$  defined by

$$\phi(x_k) \mapsto \Delta(k; \mathbf{i}), \quad k \in M$$

restricts to an isomorphism of algebras  $\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}} \longrightarrow \mathbb{C}[G^{u,v}]$ 

**Remark 9.25.** Recently it was shown by Goodearl-Yakimov (2013) that in fact the upper cluster algebra coincides with the cluster algebra:  $\overline{\mathcal{A}}(\mathbf{i}) = \mathcal{A}(\mathbf{i})$ . It is shown for a large class of quantized cluster algebra, in which the coordinate ring of double Bruhat cell is a classical limit of a special case.

**Example 9.26.** Let us calculate the image of  $\phi$  in our Example 9.12. We have the correspondence:

$$\phi(x'_1) = \phi\left(\frac{x_{-1}x_2 + x_{-2}x_3}{x_1}\right)$$
$$= \frac{x_{13}\Delta_{12,12} + \Delta_{12,23}x_{11}}{x_{12}}$$
$$= \Delta_{12,13}$$

However, not all of them become minors, but they are all regular functions on  $G = SL_3(\mathbb{C})$ 

$$\phi(x'_{2}) = x_{21}\Delta_{13,23} - x_{31}\Delta_{12,23}$$
  
$$\phi(x'_{3}) = x_{22}$$
  
$$\phi(x'_{4}) = \Delta_{13,12}$$

**Remark 9.27.**  $\overline{\mathcal{A}}(\mathbf{i})$  is finitely generated (since  $\overline{\mathcal{A}}(\mathbf{i})$  is isomorphic to a  $\mathbb{Z}$ -form of the coordinate ring of a quasi-affine algebraic variety  $G^{u,v}$ ), although it may not have acyclic seed.

**Remark 9.28.** The collection of minors  $F(\mathbf{i})$  gives a total positivity criterion in  $G^{u,v}$ :  $x \in G^{u,v}$  is totally positive iff  $\Delta(x) > 0$  for every  $\Delta \in F(\mathbf{i})$ .

**Example 9.29.** From the quiver (red part) in the Figure of Example 9.10, we see that  $\mathbb{C}[SL_3^{w_0,w_0}]$  is cluster algebra of type  $D_4$ . It has 16 cluster variables and 50 clusters, each consisting of 4 variables.

- 14 minors (19 minors det 4 frozen minors)
- 2 regular functions:  $x_{21}\Delta_{13,23} x_{31}\Delta_{12,23}$  and  $\Delta_{12,13}x_{32} \Delta_{12,23}x_{31}$

**Example 9.30.** Let  $c \in W$  be the Coxeter element with reduced word (1, 2, 3..., r). Then  $\mathbb{C}[G^{c,c}]$  is a cluster algebra of type  $A_1^r$ , because for  $\mathbf{i} = (-1, -2, ..., -r, 1, 2..., r)$ , the mutable (red) part of the quiver  $\Gamma(\mathbf{i})$  consists of r disconnected vertices, i.e.  $B(\mathbf{i})$  is a zero matrix.

**Example 9.31.** Consider  $\mathbb{C}[G^{c,c^{-1}}]$ , choose  $\mathbf{i} = (-1, ..., -r, r, ..., 1)$ . Then  $B(\mathbf{i})$  is given by

$$b_{ij} = \begin{cases} -a_{ij} & i < j \\ a_{ij} & i > j \end{cases}$$

Hence the mutable part of  $\Gamma(\mathbf{i})$  is a Dynkin graph of G, so that  $\mathbb{C}[G^{c,c^{-1}}]$  is a cluster algebra of type G. This gives a geometric construction of cluster algebra of any finite type.

**Example 9.32.** The double cell  $G^{e,w_0}$  is natually identified with open subset of the base affine space  $N_- \setminus G$  given by

$$\Delta_{\omega_i,\omega_i} \neq 0, \qquad \Delta_{\omega_i,w_0\omega_i} \neq 0, \qquad \forall i = 1, ..., r$$

Then we have

| Cartan-Killing type of G                | $A_2$ | $A_3$ | $A_4$ | $B_2$ | other    |
|-----------------------------------------|-------|-------|-------|-------|----------|
| Cluster type of $\mathbb{C}[G^{e,w_0}]$ | $A_1$ | $A_3$ | $D_6$ | $B_2$ | infinite |

Idea: show that for other types, the quiver contains the extended Dynkin tree diagram (see Lecture 6), hence it is not 2-finite.



Figure 1: The mutatble part of  $\Gamma(\mathbf{i})$  for  $\mathbb{C}[G^{e,w_0}]$  in type  $A_5$  for  $\mathbf{i} = (1,3,5,2,4,1,3,5,2,4,1,3,5,2,4)$ . It contains the subdiagram  $E_7^{(1)}$ , hence it is of infinite type.

**Example 9.33.** For the open double Bruhat cell  $G^{w_0,w_0}$ , it is described by

 $\Delta_{w_0\omega_i,\omega_i} \neq 0, \qquad \Delta_{\omega_i,w_0\omega_i} \neq 0, \qquad \forall i = 1, \dots, r$ 

We have

| Cartan-Killing type of G                  | $A_1$ | $A_2$ | other    |
|-------------------------------------------|-------|-------|----------|
| Cluster type of $\mathbb{C}[G^{w_0,w_0}]$ | $A_1$ | $D_4$ | infinite |

### 9.5 Proof of Theorem 9.24

We outline some ingredients in the proof of the main theorem.

**Lemma 9.34.** (1) The minors  $\Delta(k; \mathbf{i})(x) \neq 0$  for  $k \notin e(\mathbf{i})$  and any  $x \in G^{u,v}$ .

(2) The map  $G^{u,v} \longrightarrow \mathbb{C}^{r+l(u)+l(v)}$  defined by  $g \mapsto (\Delta(g))_{\Delta \in F(\mathbf{i})}$  restricts to a biregular isomorphism  $U(\mathbf{i}) \longrightarrow \mathbb{C}_{\neq 0}^{r+l(u)+l(v)}$  where

$$U(\mathbf{i}) = \{ g \in G^{u,v} : \Delta(g) \neq 0, \quad \forall \Delta \in F(\mathbf{i}) \}$$

*Proof.* In (1), if  $k \notin \mathbf{e}(\mathbf{i})$ , then either  $u_{\leq k} = e$  or  $v_{>k} = e$  (cf. Example 9.22) and  $\Delta(k; \mathbf{i})$  turns into  $\Delta_{u\omega_i,\omega_i}$  or  $\Delta_{\omega_i,v^{-1}\omega_i}$ . Hence this is the statement of Theorem 9.19. We can see e.g. that  $\Delta_{\omega_i,v^{-1}\omega_i} \neq 0$  follows from Proposition 9.17 and the fact that  $B_-vB_-v^{-1} \subset G_0$ .

(2) is a restatement of Theorem 9.5, where the parameters  $a, t_1, ..., t_N$  can be expressed in terms of minors from  $F(\mathbf{i})$ .

**Lemma 9.35.** (3) The rational functions  $\Delta'(\ell; \mathbf{i}) := \phi(x'_{\ell})$  are regular, i.e. belongs to  $\mathbb{C}[G^{u,v}]$  (4) The map  $G^{u,v} \longrightarrow \mathbb{C}^{r+l(u)+l(v)}$  defined by  $g \mapsto (\Delta(g))_{\Delta \in F_{\ell}(\mathbf{i})}$  restricts to a biregular isomorphism  $U_{\ell}(\mathbf{i}) \longrightarrow \mathbb{C}_{\neq 0}^{r+l(u)+l(v)}$  where

$$F_{\ell}(\mathbf{i}) := F(\mathbf{i}) - \{\Delta(\ell; \mathbf{i})\} \cup \{\Delta'(\ell; \mathbf{i})\}$$

and

$$U_{\ell}(\mathbf{i}) := \{ g \in G^{u,v} : \Delta(g) \neq 0, \quad \forall \Delta \in F_{\ell}(\mathbf{i}) \}$$

*Proof.* This follows from hard calculations involving identities between the generalized minors developed in [Z, Section 4], see the proof of Lemma 2.12 in [FZ]. Let us outline a special case:

We have the following identity for the generalized minors: if  $l(us_i) = l(u) + 1$ and  $l(vs_i) = l(v) + 1$ , then

$$\Delta_{u\omega_i,v\omega_i}\Delta_{us_i\omega_i,vs_i\omega_i} - \Delta_{us_i\omega_i,v\omega_i}\Delta_{u\omega_i,vs_i\omega_i} = \prod_{j\neq i} \Delta_{u\omega_j,v\omega_j}^{-c_{ji}}$$

which follows from the case for u = v = e.

Recall in our example for  $SL_3^{w_0,w_0}$ , we have

$$x_2 x_2' = x_{-2} x_3 x_5 + x_1 x_4$$

which translates to

$$\begin{split} \Delta_{12,12}\Delta' &= \Delta_{12,23}\Delta_{23,12}\Delta_{1,1} + \Delta_{1,2}\Delta_{2,1} \\ &= \Delta_{12,23}\Delta_{23,12}(\Delta_{12,12}\Delta_{13,13} - \Delta_{13,12}\Delta_{12,13}) \\ &+ (\Delta_{12,12}\Delta_{13,23} - \Delta_{13,12}\Delta_{12,23})(\Delta_{12,12}\Delta_{23,13} - \Delta_{23,12}\Delta_{12,13}) \\ &= \Delta_{12,12}\det\begin{pmatrix} \Delta_{12,23} & \Delta_{12,13} & \Delta_{12,12} \\ \Delta_{13,23} & \Delta_{13,13} & \Delta_{13,12} \\ 0 & \Delta_{23,13} & \Delta_{23,12} \end{pmatrix} \end{split}$$

Hence  $\Delta'$  is a regular function on  $G^{u,v}$ .

**Fact 9.36.** Let X be normal variety and  $Y \subset X$  a subvariety of codimension at least 2. Then any rational function on X regular on X - Y extends to a regular function on X.

Lemma 9.37. Let

$$U := U(\mathbf{i}) \cup \bigcup_{\ell \in e(\mathbf{i})} U_{\ell}(\mathbf{i})$$

The complement  $G^{u,v} - U$  has complex codimension at least 2 in  $G^{u,v}$ .

*Proof.* Let  $x \in G^{u,v} - U$ . Since  $x \notin U(\mathbf{i})$ ,  $\Delta(k;\mathbf{i}) = 0$  for some  $k \in \mathbf{e}(\mathbf{i})$ . Since  $x \notin U_k(\mathbf{i})$ , either  $\Delta(l;\mathbf{i}) = 0$  for some  $l \in \mathbf{e}(\mathbf{i})$ , or  $\Delta'(k;\mathbf{i}) = 0$ . Hence  $G^{u,v} - U$  is the union of finitely many subvarieties, each given by two distinct irreducible equations.

Let  $\widetilde{\mathbf{x}}_{\ell} = \widetilde{\mathbf{x}} - \{x_{\ell}\} \cup \{x'_{\ell}\}$ . We have

$$\overline{\mathcal{A}}(\mathbf{i})_{\mathbb{C}} = \mathbb{C}[\widetilde{\mathbf{x}}^{\pm}] \cap \bigcap_{\ell \in \mathbf{e}(\mathbf{i})} \mathbb{C}[\widetilde{\mathbf{x}}_{\ell}^{\pm}]$$

Hence we only need to show  $\mathcal{C} = \mathbb{C}[G^{u,v}]$  where

$$\mathcal{C} = \phi(\mathbb{C}[\widetilde{\mathbf{x}}^{\pm}]) \cap \bigcap_{\ell \in \mathbf{e}(\mathbf{i})} \phi(\mathbb{C}[\widetilde{\mathbf{x}}_{\ell}^{\pm}])$$

By Lemma (2) and (4) we have

$$\phi(\mathbb{C}[\widetilde{\mathbf{x}}^{\pm}]) = \mathbb{C}[U(\mathbf{i})], \qquad \phi(\mathbb{C}[\widetilde{\mathbf{x}}_{\ell}^{\pm}]) = \mathbb{C}[U_{\ell}(\mathbf{i})]$$

so C consists of rational functions on  $G^{u,v}$  that is regular on U. By Lemma 9.37, these are functions regular on the whole double cell  $G^{u,v}$ .

# References

- [CA-III] A. Berenstein, S. Fomin, A. Zelevinsky, Cluster Algebras III: Upper bounds and double Bruhat cells, Duke Mathematical Journal, 126 (1), (2005): 1-51
- [FZ] S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, JAmer. Math. Soc. 12 (1999), 335-380
- [Z] A. Zelevinsky, Connected components of real double Bruhat cells, Int. Math. Res. Not. 2000 (21), (2000), 1131-1153