Vector Spaces and Linear Transformations

Beifang Chen

Fall 2006

1 Vector spaces

A vector space is a nonempty set V, whose objects are called vectors, equipped with two operations, called addition and scalar multiplication: For any two vectors $\boldsymbol{u}, \boldsymbol{v}$ in V and a scalar c, there are unique vectors $\boldsymbol{u}+\boldsymbol{v}$ and $c \boldsymbol{u}$ in V such that the following properties are satisfied.

1. $\boldsymbol{u}+\boldsymbol{v}=\boldsymbol{v}+\boldsymbol{u}$,
2. $(\boldsymbol{u}+\boldsymbol{v})+\boldsymbol{w}=\boldsymbol{u}+(\boldsymbol{v}+\boldsymbol{w})$,
3. There is a vector $\mathbf{0}$, called the zero vector, such that $\boldsymbol{u}+\mathbf{0}=\boldsymbol{u}$,
4. For any vector \boldsymbol{u} there is a vector $-\boldsymbol{u}$ such that $\boldsymbol{u}+(-\boldsymbol{u})=\mathbf{0}$;
5. $c(\boldsymbol{u}+\boldsymbol{v})=c \boldsymbol{u}+c \boldsymbol{v}$,
6. $(c+d) \boldsymbol{u}=c \boldsymbol{u}+d \boldsymbol{u}$,
7. $c(d \boldsymbol{u})=(c d) \boldsymbol{u}$,
8. $\boldsymbol{1} \boldsymbol{u}=\boldsymbol{u}$.

By definition of vector space it is easy to see that for any vector \boldsymbol{u} and scalar c,

$$
0 \boldsymbol{u}=\mathbf{0}, \quad c \mathbf{0}=\mathbf{0}, \quad-\boldsymbol{u}=(-1) \boldsymbol{u}
$$

For instance,

$$
\begin{aligned}
0 \boldsymbol{u} & \stackrel{(3)}{=} 0 \boldsymbol{u}+\mathbf{0} \stackrel{(4)}{=} 0 \boldsymbol{u}+(0 \boldsymbol{u}+(-0 \boldsymbol{u})) \stackrel{(2)}{=}(0 \boldsymbol{u}+0 \boldsymbol{u})+(-0 \boldsymbol{u}) \\
& \stackrel{(6)}{=}(0+0) \boldsymbol{u}+(-0 \boldsymbol{u})=0 \boldsymbol{u}+(-0 \boldsymbol{u}) \stackrel{(4)}{=} \mathbf{0} \\
c \mathbf{0} & =c(0 \boldsymbol{u}) \stackrel{(7)}{=}(c 0) \boldsymbol{u}=0 \boldsymbol{u}=\mathbf{0} \\
-\boldsymbol{u} & =-\boldsymbol{u}+\mathbf{0}=-\boldsymbol{u}+(1-1) \boldsymbol{u}=-\boldsymbol{u}+\boldsymbol{u}+(-1) \boldsymbol{u}=\mathbf{0}+(-1) \boldsymbol{u}=(-1) \boldsymbol{u}
\end{aligned}
$$

Example 1.1. (a) The Euclidean space \mathbb{R}^{n} is a vector space under the ordinary addition and scalar multiplication.
(b) The set \mathbf{P}_{n} of all polynomials of degree less than or equal to n is a vector space under the ordinary addition and scalar multiplication of polynomials.
(c) The set $\mathbf{M}(m, n)$ of all $m \times n$ matrices is a vector space under the ordinary addition and scalar multiplication of matrices.
(d) The set $C[a, b]$ of all continuous functions on the closed interval $[a, b]$ is a vector space under the ordinary addition and scalar multiplication of functions.

Definition 1.1. Let V and W be vector spaces, and $W \subseteq V$. If the addition and scalar multiplication in W are the same as the addition and scalar multiplication in V, then W is called a subspace of V.

If H is a subspace of V, then H is closed for the addition and scalar multiplication of V, i.e., for any $\boldsymbol{u}, \boldsymbol{v} \in H$ and scalar $c \in \mathbb{R}$, we have

$$
\boldsymbol{u}+\boldsymbol{v} \in H, \quad c \boldsymbol{v} \in H
$$

For a nonempty set S of a vector space V, to verify whether S is a subspace of V, it is required to check (1) whether the addition and scalar multiplication are well defined in the given subset S, that is, whether they are closed under the addition and scalar multiplication of V; (2) whether the eight properties (1-8) are satisfied. However, the following theorem shows that we only need to check (1), that is, to check whether the addition and scalar multiplication are closed in the given subset S.

Theorem 1.2. Let H be a nonempty subset of a vector space V. Then H is a subspace of V if and only if H is closed under addition and scalar multiplication, i.e.,
(a) For any vectors $\boldsymbol{u}, \boldsymbol{v} \in H$, we have $\boldsymbol{u}+\boldsymbol{v} \in H$,
(b) For any scalar c and a vector $\boldsymbol{v} \in H$, we have $c \boldsymbol{v} \in H$.

Example 1.2. (a) For a vector space V, the set $\{\mathbf{0}\}$ of the zero vector and the whole space V are subspaces of V; they are called the trivial subspaces of V.
(b) For an $m \times n$ matrix A, the set of solutions of the linear system $A \boldsymbol{x}=\mathbf{0}$ is a subspace of \mathbb{R}^{n}. However, if $\boldsymbol{b} \neq \mathbf{0}$, the set of solutions of the system $A \boldsymbol{x}=\boldsymbol{b}$ is not a subspace of \mathbb{R}^{n}.
(c) For any vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ in \mathbb{R}^{n}, the span $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ is a subspace of \mathbb{R}^{n}.
(d) For any linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the image

$$
T\left(\mathbb{R}^{n}\right)=\left\{T(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{n}\right\}
$$

of T is a subspace of \mathbb{R}^{m}, and the inverse image

$$
T^{-1}(\mathbf{0})=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: T(\boldsymbol{x})=\mathbf{0}\right\}
$$

is a subspace of \mathbb{R}^{n}.

2 Some special subspaces

Lecture 15

Let A be an $m \times n$ matrix. The null space of A, denoted by $\operatorname{Nul} A$, is the space of solutions of the linear system $A \boldsymbol{x}=\mathbf{0}$, that is,

$$
\mathrm{Nul} A=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A \boldsymbol{x}=\mathbf{0}\right\} .
$$

The column space of A, denoted by $\operatorname{Col} A$, is the span of the column vectors of A, that is, if $A=$ $\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right]$, then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}
$$

The row space of A is the span of the row vectors of A, and is denoted by Row A.
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\boldsymbol{x})=A \boldsymbol{x}$, be a linear transformation. Then Nul A is the set of inverse images of $\mathbf{0}$ under T and $\operatorname{Col} A$ is the image of T, that is,

$$
\operatorname{Nul} A=T^{-1}(\mathbf{0}) \quad \text { and } \quad \operatorname{Col} A=T\left(\mathbb{R}^{n}\right)
$$

3 Linear transformations

Let V and W be vector spaces. A function $T: V \rightarrow W$ is called a linear transformation if for any vectors $\boldsymbol{u}, \boldsymbol{v}$ in V and scalar c,
(a) $T(\boldsymbol{u}+\boldsymbol{v})=T(\boldsymbol{u})+T(\boldsymbol{v})$,
(b) $T(c \boldsymbol{u})=c T(\boldsymbol{u})$.

The inverse images $T^{-1}(\mathbf{0})$ of $\mathbf{0}$ is called the kernel of T and $T(V)$ is called the range of T.
Example 3.1. (a) Let A is an $m \times m$ matrix and B an $n \times n$ matrix. The function

$$
F: \mathbf{M}(m, n) \rightarrow \mathbf{M}(m, n), \quad F(X)=A X B
$$

is a linear transformation. For instance, for $m=n=2$, let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right], \quad X=\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right] .
$$

Then $F: \mathbf{M}(2,2) \rightarrow \mathbf{M}(2,2)$ is given by

$$
F(X)=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4} & x_{1}+3 x_{2}+2 x_{3}+6 x_{4} \\
2 x_{1}+2 x_{2}+6 x_{3}+6 x_{4} & x_{1}+3 x_{2}+3 x_{3}+9 x_{4}
\end{array}\right]
$$

(b) The function $D: \mathbf{P}_{3} \rightarrow \mathbf{P}_{2}$, defined by

$$
D\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=a_{1}+2 a_{2} t+3 a_{3} t^{2}
$$

is a linear transformation.
Proposition 3.1. Let $T: V \rightarrow W$ be a linear transformation. Then $T^{-1}(\mathbf{0})$ is a subspace of V and $T(V)$ is a subspace of W. Moreover,
(a) If V_{1} is a subspace of V, then $T\left(V_{1}\right)$ is a subspace of W;
(b) If W_{1} is a subspace of W, then $T^{-1}\left(W_{1}\right)$ is a subspace of V.

Proof. By definition of subspaces.
Theorem 3.2. Let $T: V \rightarrow W$ be a linear transformation. Given vectors $v_{1}, v_{2}, \ldots, v_{k}$ in V.
(a) If $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent, then $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)$ are linearly dependent;
(b) If $T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{k}\right)$ are linearly independent, then $v_{1}, v_{2}, \ldots, v_{k}$ are linearly independent.

4 Independent sets and bases

Definition 4.1. Vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}$ of a vector space V are called linearly independent if, whenever there are constants $c_{1}, c_{2}, \ldots, c_{p}$ such that

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{p} \boldsymbol{v}_{p}=\mathbf{0}
$$

we have

$$
c_{1}=c_{2}=\cdots=c_{p}=0
$$

The vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}$ are called linearly dependent if there exist constants $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{p} \boldsymbol{v}_{p}=\mathbf{0}
$$

Any family of vectors that contains the zero vector $\mathbf{0}$ is linearly dependent. A single vector \boldsymbol{v} is linearly independent if and only if $\boldsymbol{v} \neq \mathbf{0}$.

Theorem 4.2. Vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}(k \geq 2)$ are linearly dependent if and only if one of the vectors is a linear combination of the others, i.e., there is one i such that

$$
\boldsymbol{v}_{i}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{i-1} \boldsymbol{v}_{i-1}+a_{i+1} \boldsymbol{v}_{i+1}+\cdots+a_{k} \boldsymbol{v}_{k} .
$$

Proof. Since the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ are linearly dependent, there are constants $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, such that

$$
c_{1} \boldsymbol{v}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}=\mathbf{0} .
$$

Let $c_{i} \neq 0$. Then

$$
\boldsymbol{v}_{i}=\left(-\frac{c_{1}}{c_{i}}\right) \boldsymbol{v}_{1}+\cdots+\left(-\frac{c_{i-1}}{c_{i}}\right) \boldsymbol{v}_{i-1}+\left(-\frac{c_{i+1}}{c_{i}}\right) \boldsymbol{v}_{i+1}+\cdots+\left(-\frac{c_{k}}{c_{i}}\right) \boldsymbol{v}_{k} .
$$

Note 1. The condition $\boldsymbol{v}_{1} \neq \mathbf{0}$ can not be omitted. For instance, the set $\left\{\mathbf{0}, \boldsymbol{v}_{2}\right\}\left(\boldsymbol{v}_{2} \neq \mathbf{0}\right)$ is a dependent set, but \boldsymbol{v}_{2} is not a linear combination of the zero vector $\boldsymbol{v}_{1}=\mathbf{0}$.

Theorem 4.3. Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a subset of independent vectors in a vector space V. If a vector \boldsymbol{v} can be written in two linear combinations of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$, say,

$$
\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{k} \boldsymbol{v}_{k}=d_{1} \boldsymbol{v}_{1}+d_{2} \boldsymbol{v}_{2}+\cdots+d_{k} \boldsymbol{v}_{k}
$$

then

$$
c_{1}=d_{1}, \quad c_{2}=d_{2}, \quad \ldots, \quad c_{k}=d_{k} .
$$

Proof. If $\left(c_{1}, c_{2}, \ldots, c_{k}\right) \neq\left(d_{1}, d_{2}, \ldots, d_{k}\right)$, then one of the entries in $\left(c_{1}-d_{1}, c_{2}-d_{2}, \ldots, c_{k}-d_{k}\right)$ is nonzero, and

$$
\left(c_{1}-d_{1}\right) \boldsymbol{v}_{1}+\left(c_{2}-d_{2}\right) \boldsymbol{v}_{2}+\cdots+\left(c_{k}-d_{k}\right) \boldsymbol{v}_{k}=\mathbf{0} .
$$

This means that the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}$ are linearly dependent. This is a contradiction.
Definition 4.4. Let H be a subspace of a vector space V. An ordered set $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ of vectors in V is called a basis for H if
(a) \mathcal{B} is a linearly independent set, and
(b) \mathcal{B} spans H, that is, $H=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$.

Example 4.1. (a) The set $\left\{1, t, t^{2}\right\}$ is basis of \mathbf{P}_{2}.
(b) The set $\left\{1, t+1, t^{2}+t\right\}$ is basis of \mathbf{P}_{2}.
(c) The set $\{1, t+1, t-1\}$ is not a basis of \mathbf{P}_{2}.

Proposition 4.5 (Spanning Theorem). Let H be a nonzero subspace of a vector space V and $H=$ Span $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$.
(a) If some \boldsymbol{v}_{k} is a linear combination of the other vectors of $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$, then

$$
H=\operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}, \boldsymbol{v}_{k+1}, \ldots, \boldsymbol{v}_{p}\right\}
$$

(b) If $H \neq\{0\}$, then some subsets of $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ are bases for H.

Proof. It is clear that $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}, \boldsymbol{v}_{k+1}, \ldots, \boldsymbol{v}_{p}\right\}$ is contained in H. Write

$$
\boldsymbol{v}_{k}=c_{1} \boldsymbol{v}_{1}+\cdots+c_{k-1} \boldsymbol{v}_{k-1}+c_{k+1} \boldsymbol{v}_{k+1}+\cdots+c_{p} \boldsymbol{v}_{p} .
$$

Then for any vector $\boldsymbol{v}=a_{1} \boldsymbol{v}_{1}+\cdots+a_{k} \boldsymbol{v}_{k}+\cdots+a_{p} \boldsymbol{v}_{p}$ in H, we have

$$
\begin{aligned}
\boldsymbol{v}= & \left(a_{1}+a_{k} c_{1}\right) \boldsymbol{v}_{1}+\cdots+\left(a_{k-1}+a_{k} c_{k-1}\right) \boldsymbol{v}_{k-1} \\
& +\left(a_{k+1}+a_{k} c_{k+1}\right) \boldsymbol{v}_{k+1}+\cdots+\left(a_{p}+a_{k} c_{p}\right) \boldsymbol{v}_{p} .
\end{aligned}
$$

This means that \boldsymbol{v} is contained in $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}, \boldsymbol{v}_{k+1}, \ldots, \boldsymbol{v}_{p}\right\}$.

Example 4.2. The vector space $\mathbf{P}(t)$ of polynomials of degree ≤ 2 has a basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$. The set $\mathcal{B}_{1}=\left\{1, t+1, t^{2}\right\}$ is also a basis of $\mathbf{P}(t)$. However, $\{1, t+1, t-1\}$ is not a basis of $\mathbf{P}(t)$.

Example 4.3. The vector space $\mathbf{M}(2,2)$ of 2×2 matrices has a basis

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

The following set

$$
\mathcal{C}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

is also a basis of $\mathbf{M}(2,2)$.

5 Bases of null and column spaces

Example 5.1. Consider the matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 4 & 0 & 2 & 4 \\
-1 & -4 & 1 & -3 & -2 \\
2 & 8 & 1 & 3 & 10 \\
1 & 4 & 1 & 1 & 6
\end{array}\right]=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}\right]
$$

Its reduced row echelon form is the matrix

$$
B=\left[\begin{array}{rrrrr}
1 & 4 & 0 & 2 & 4 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}, \boldsymbol{b}_{5}\right]
$$

Since $A \boldsymbol{x}=\mathbf{0}$ is equivalent to $B \boldsymbol{x}=\mathbf{0}$, that is,

$$
x_{1} \boldsymbol{a}_{1}+x_{2} \boldsymbol{a}_{2}+x_{3} \boldsymbol{a}_{3}+x_{4} \boldsymbol{a}_{4}+x_{5} \boldsymbol{a}_{5}=\mathbf{0} \quad \Longleftrightarrow x_{1} \boldsymbol{b}_{1}+x_{2} \boldsymbol{b}_{2}+x_{3} \boldsymbol{b}_{3}+x_{4} \boldsymbol{b}_{4}+x_{5} \boldsymbol{b}_{5}=\mathbf{0} .
$$

This means that the linear relations among the vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}$ are the same as the linear relations among the vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}, \boldsymbol{b}_{4}, \boldsymbol{b}_{5}$. For instance,

$$
\begin{array}{ll}
\boldsymbol{b}_{2}=4 \boldsymbol{b}_{1} & \longleftrightarrow \boldsymbol{a}_{2}=4 \boldsymbol{a}_{1} \\
\boldsymbol{b}_{4}=2 \boldsymbol{b}_{1}-\boldsymbol{b}_{3} & \longleftrightarrow \\
\boldsymbol{b}_{5}=4 \boldsymbol{b}_{1}+2 \boldsymbol{b}_{3} & \longleftrightarrow \boldsymbol{a}_{4}=2 \boldsymbol{a}_{1}-\boldsymbol{a}_{3} \\
\boldsymbol{a}_{4}=4 \boldsymbol{a}_{1}+2 \boldsymbol{a}_{3} .
\end{array}
$$

This shows that row operations do not change the linear relations among the column vectors of a matrix.
Note 2. Let A and B be matrix such that $A \sim B$, that is, A is equivalent to B. Then

$$
\operatorname{Nul} A=\operatorname{Nul} B, \quad \operatorname{Row} A=\operatorname{Row} B, \quad \text { but } \quad \operatorname{Col} A \neq \operatorname{Col} B
$$

Theorem 5.1 (Column Space Theorem). The column vectors of a matrix A corresponding to its pivot positions form a basis of $\operatorname{Col} A$.

Proof. Let $B=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}\right]$ denote the reduced row echelon form of $A=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right]$. Let $\boldsymbol{b}_{i_{1}}, \boldsymbol{b}_{i_{2}}, \ldots, \boldsymbol{b}_{i_{k}}$ be the column vectors of B containing the pivot positions. It is clear that $\boldsymbol{b}_{i_{1}}, \boldsymbol{b}_{i_{2}}, \ldots, \boldsymbol{b}_{i_{k}}$ are linearly independent and every column vector of B is a linear combination of the vectors $\boldsymbol{b}_{i_{1}}, \boldsymbol{b}_{i_{2}}, \ldots, \boldsymbol{b}_{i_{k}}$.

Let $\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{k}}$ be the corresponding column vectors of A. It suffices to prove that a linear relation for $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}$ is also a linear relation for $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$, and vice versa. Notice that a linear relation among the vectors $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{n}$ is just a solution of the system $B \boldsymbol{x}=\mathbf{0}$; and the systems $A \boldsymbol{x}=\mathbf{0}$ and $B \boldsymbol{x}=\mathbf{0}$ have the same solution set. Thus $\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{k}}$ are linearly independent and every column vector of A is a linear combination of $\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{k}}$. So $\boldsymbol{a}_{i_{1}}, \boldsymbol{a}_{i_{2}}, \ldots, \boldsymbol{a}_{i_{k}}$ form a basis of $\operatorname{Col} A$.

6 Coordinate systems

Lecture 17

Theorem 6.1. Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of a vector space V. Then for each vector v in V, there exists a unique set of scalars $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}
$$

Proof. Trivial.
Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of a vector space V. Then every vector \boldsymbol{v} of V has a unique expression

$$
\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}
$$

The scalars $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of \boldsymbol{v} relative to the basis \mathcal{B} (or \mathcal{B}-coordinates of \boldsymbol{v}); and the vector

$$
[\boldsymbol{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is called the coordinate vector of \boldsymbol{v} relative to \mathcal{B} (or the \mathcal{B}-coordinate vector of \boldsymbol{v}). We may write

$$
\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\mathcal{B}[\boldsymbol{v}]_{\mathcal{B}}
$$

Example 6.1. Any two linearly independent vectors of \mathbb{R}^{2} form a basis for \mathbb{R}^{2}. For instance, the set

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}
$$

is basis of \mathbb{R}^{2}. The vector $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ has the \mathcal{B}-coordinate vector $\left[\begin{array}{r}2 \\ -1\end{array}\right]$. However, the coordinate vector of $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is just itself under the standard basis

$$
\mathcal{E}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Theorem 6.2. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ be a basis of a subspace H of \mathbb{R}^{n}. Let $P_{\mathcal{B}}$ be the matrix

$$
P_{\mathcal{B}}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right]
$$

Then for any vector \boldsymbol{v} in \mathbb{R}^{n},

$$
\boldsymbol{v}=P_{\mathcal{B}}[\boldsymbol{v}]_{\mathcal{B}}
$$

The matrix $P_{\mathcal{B}}$, which transfers the \mathcal{B}-coordinate vector $[\boldsymbol{v}]_{\mathcal{B}}$ of \boldsymbol{v} to its standard coordinate vector $\boldsymbol{v}=[\boldsymbol{v}]_{\mathcal{E}}$, is called the change-of-coordinate matrix from \mathcal{B} to \mathcal{E}.

Proof. Let $\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}$. Then

$$
\boldsymbol{v}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{p}
\end{array}\right]=P_{\mathcal{B}}[\boldsymbol{v}]_{\mathcal{B}}
$$

Theorem 6.3. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of a vector space V. Then the coordinate transformation,

$$
V \rightarrow \mathbb{R}^{n}, \quad \boldsymbol{v} \mapsto[\boldsymbol{v}]_{\mathcal{B}}
$$

is linear, one-to-one, and onto.
Proof. For vectors $\boldsymbol{v}, \boldsymbol{w}$ of V and scalar a, if

$$
\begin{aligned}
\boldsymbol{v} & =c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n} \\
\boldsymbol{w} & =d_{1} \boldsymbol{v}_{1}+d_{2} \boldsymbol{w}_{2}+\cdots+d_{n} \boldsymbol{v}_{n}
\end{aligned}
$$

then

$$
\begin{gathered}
\boldsymbol{v}+\boldsymbol{w}=\left(c_{1}+d_{1}\right) \boldsymbol{v}_{1}+\left(c_{2}+d_{2}\right) \boldsymbol{v}_{2}+\cdots+\left(c_{n}+d_{n}\right) \boldsymbol{v}_{n} \\
a \boldsymbol{v}=a\left(c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}\right)=\left(a c_{1}\right) \boldsymbol{v}_{1}+\left(a c_{2}\right) \boldsymbol{v}_{2}+\cdots+\left(a c_{n}\right) \boldsymbol{v}_{n} .
\end{gathered}
$$

Thus

$$
\begin{gathered}
{[\boldsymbol{v}+\boldsymbol{w}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
c_{2}+d_{2} \\
\vdots \\
c_{n}+d_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right],} \\
{[c \boldsymbol{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c c_{1} \\
\vdots \\
c c_{n}
\end{array}\right]=c\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c[\boldsymbol{v}]_{\mathcal{B}}}
\end{gathered}
$$

So the coordinate transformation is a linear transformation.
Now for any vector

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right] \quad \text { in } \quad \mathbb{R}^{n}
$$

consider the vector $\boldsymbol{v}=c_{1} \boldsymbol{v}_{1}+c_{2} \boldsymbol{v}_{2}+\cdots+c_{n} \boldsymbol{v}_{n}$ in V. The coordinate vector of \boldsymbol{v} relative to \mathcal{B} is

$$
[\boldsymbol{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Thus the transformation is onto. The linear independence of $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ implies that the transformation is also one-to-one.

A one-to-one and onto linear transformation from a vector space V to a vector space W is called an isomorphism.

Example 6.2. The vector space \mathbf{P}_{3} of polynomials of degree at most 3 in variable t is isomorphic to the vector space \mathbb{R}^{4}, and $\left\{1, t, t^{2}, t^{3}\right\}$ is a basis of \mathbf{P}_{3}.

Proof. The map $F: \mathbf{P}_{3} \rightarrow \mathbb{R}^{4}$, defined by

$$
F[p(t)]=F\left(c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}\right)=\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

is a one-to-one linear transformation from \mathbf{P}_{3} onto \mathbb{R}^{4}.

Example 6.3. The vector space $\mathbf{M}(2,2)$ of 2×2 matrices is isomorphic to \mathbb{R}^{4}, and the matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

form a basis of $\mathbf{M}(2,2)$. In fact, the map $F: \mathbf{M}(2,2) \rightarrow \mathbb{R}^{4}$, defined by

$$
F(M)=F\left(\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]\right)=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]
$$

is a one-to-one linear transformation from $\mathbf{M}(2,2)$ onto \mathbb{R}^{4}.
Theorem 6.4. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of a vector space V. Then any set of V consisting more than n vectors are linearly dependent.

Proof. Let $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{p}\right\}$ be a set of vectors with $p>n$. Since any set of more than n vectors of \mathbb{R}^{n} is linearly dependent, the vectors $\left[\boldsymbol{u}_{1}\right]_{\mathcal{B}},\left[\boldsymbol{u}_{2}\right]_{\mathcal{B}}, \ldots,\left[\boldsymbol{u}_{p}\right]_{\mathcal{B}}$ of \mathbb{R}^{n} must be linearly dependent. Then there exist constants $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1}\left[\boldsymbol{u}_{1}\right]_{\mathcal{B}}+c_{2}\left[\boldsymbol{u}_{2}\right]_{\mathcal{B}}+\cdots+c_{p}\left[\boldsymbol{u}_{p}\right]_{\mathcal{B}}=\mathbf{0}
$$

Thus

$$
\left[c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{p} \boldsymbol{u}_{p}\right]_{\mathcal{B}}=c_{1}\left[\boldsymbol{u}_{1}\right]_{\mathcal{B}}+c_{2}\left[\boldsymbol{u}_{2}\right]_{\mathcal{B}}+\cdots+c_{p}\left[\boldsymbol{u}_{p}\right]_{\mathcal{B}}=\mathbf{0}=[\mathbf{0}]_{\mathcal{B}}
$$

Note that the coordinate transformation is one-to-one. It follows that

$$
c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{p} \boldsymbol{u}_{p}=\mathbf{0}
$$

This means that the vectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{p}$ are linearly dependent by definition.
Theorem 6.5. If $\mathcal{B}_{1}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ and $\mathcal{B}_{2}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ are bases of a vector space V, then $n=p$.
Proof. Suppose $n<p$. By Theorem 6.4, $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right\}$ is linearly dependent, contrary to the properties for a basis. Thus $n \geq p$. A similar argument shows that $n \leq p$. Hence $n=p$.

7 Dimensions of vector spaces

Lecture 18

A vector space V is said to be finite dimensional if it can be spanned by a set of finite number of vectors. The dimension of V, denoted by $\operatorname{dim} V$, is the number of vectors of a basis of V. The dimension of the zero vector space $\{\boldsymbol{0}\}$ is zero. If V cannot be spanned by any finite set of vectors, then V is said to be infinite dimensional.

Theorem 7.1. Let H be a subspace of a finite dimensional vector space V. Then any linearly independent subset of H can be expanded to a basis of H. Moreover, H is finite dimensional and $\operatorname{dim} H \leq \operatorname{dim} V$.

Proof. Let $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be a set of linearly independent vectors of H. If Span $S=H$, then S is a basis of H by definition. Otherwise, there exists a vector \boldsymbol{v}_{k+1} in H such that \boldsymbol{v}_{k+1} is not in Span S. Then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}, \boldsymbol{v}_{k+1}\right\}$ is a linearly independent set of H. Now set $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k+1}\right\}$. If $\operatorname{Span} S=H$, then S is a basis of H. Otherwise, continue to add one vector of $H-\operatorname{Span} S$ to S in this way until Span $S=H$. Since H is of finite dimensional, the extension ends in finite number of steps.

Theorem 7.2 (Basis Theorem). Given a set $S=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ of n vectors of an n-dimensional vector space V.
(a) If $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is linearly independent, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.
(b) If $\operatorname{Span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}=V$, then $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ is a basis of V.

Proof. (a) By Theorem 7.1, S can be extended to a basis of V. Since S has n vectors and all bases have the same number of vectors. It follows that no vectors were added to S to be extended a basis of V. Hence S itself must be a basis.
(b) We need to show that S is linearly independent. Note that if S is not a basis, then S is linearly dependent. Thus S contains a linearly independent proper subset S^{\prime} such that Span $S^{\prime}=V$. So S^{\prime} is a basis of V; therefore $\#\left(S^{\prime}\right) \geq n$, contradict to $\#\left(S^{\prime}\right)<n$.

8 Rank

Theorem 8.1. For any rectangular matrix A,

$$
\operatorname{dim} \operatorname{Row} A=\operatorname{dim} \operatorname{Col} A=\#(\text { pivot positions of } A)
$$

Definition 8.2. The rank of a rectangular matrix A is the number pivot positions of A, that is, the dimension of the row space and the column space of A. For a linear transformation $T: V \rightarrow W$, the rank of T is the dimension of the subspace $T(V)$.
Theorem 8.3 (Rank Theorem). For any $m \times n$ matrix A,

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

Proof. The rank of A is the number of pivot positions of A and the dimension of the null space of A is the number of free variables of the system $A \boldsymbol{x}=\mathbf{0}$. It is clear that

$$
\#(\text { pivot positions })+\#(\text { free variables })=n .
$$

Theorem 8.4. Let A be an $n \times n$ invertible matrix. Then

$$
\begin{gathered}
\operatorname{dim} \text { Row } A=\operatorname{dim} \operatorname{Col} A=\operatorname{rank} A=n, \\
\operatorname{dim} \operatorname{Nul} A=0
\end{gathered}
$$

Proof. The invertibility of A implies that the number of pivot positions of A is n. So $\operatorname{rank} A=n$ and $\operatorname{dim} \operatorname{Nul} A=0$.

9 Matrices of linear transformations

Definition 9.1. Let $T: V \rightarrow W$ be a linear transformation from a vector space V with basis $\mathcal{B}=$ $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ to a vector space W basis $\mathcal{C}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$. Let

$$
\left\{\begin{aligned}
T\left(\boldsymbol{v}_{1}\right) & =a_{11} \boldsymbol{w}_{1}+a_{21} \boldsymbol{w}_{2}+\cdots+a_{m 1} \boldsymbol{w}_{m} \\
T\left(\boldsymbol{v}_{2}\right) & =a_{12} \boldsymbol{w}_{1}+a_{22} \boldsymbol{w}_{2}+\cdots+a_{m 2} \boldsymbol{w}_{m} \\
& \vdots \\
T\left(\boldsymbol{v}_{n}\right) & =a_{1 n} \boldsymbol{w}_{1}+a_{2 n} \boldsymbol{w}_{2}+\cdots+a_{m n} \boldsymbol{w}_{m}
\end{aligned}\right.
$$

writing more compactly,

$$
\left[T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{n}\right)\right]=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right] A
$$

The $m \times n$ matrix A is called the matrix of T relative to the basis \mathcal{B} of V and the basis \mathcal{C} of W. Alternatively, the matrix A can be defined as

$$
A=\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{\mathcal{C}},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{\mathcal{C}}, \ldots,\left[T\left(\boldsymbol{v}_{n}\right)\right]_{\mathcal{C}}\right] .
$$

Consider the isomorphisms

$$
\begin{array}{lll}
T_{1}: V \longrightarrow \mathbb{R}^{n} & \text { by } \quad T_{1}(\boldsymbol{v})=[\boldsymbol{v}]_{\mathcal{B}} \tag{9.1}\\
T_{2}: W \longrightarrow \mathbb{R}^{m} & \text { by } & T_{2}(\boldsymbol{w})=[\boldsymbol{w}]_{\mathcal{C}}
\end{array}
$$

The composition

$$
T_{2} \circ T \circ T_{1}^{-1}: \mathbb{R}^{n} \xrightarrow{T_{1}^{-1}} V \xrightarrow{T} W \xrightarrow{T_{2}} \mathbb{R}^{m}
$$

is a linear transformation. For any vector \boldsymbol{x} of \mathbb{R}^{n}, let \boldsymbol{v} be the vector of V whose coordinate vector is \boldsymbol{x}, i.e., $[\boldsymbol{v}]_{\mathcal{B}}=\boldsymbol{x}$, or

$$
\boldsymbol{v}=x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] \boldsymbol{x}
$$

Then

$$
\begin{aligned}
T(\boldsymbol{v}) & =T\left(x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\cdots+x_{n} \boldsymbol{v}_{n}\right) \\
& =x_{1} T\left(\boldsymbol{v}_{1}\right)+x_{2} T\left(\boldsymbol{v}_{2}\right)+\cdots+x_{n} T\left(\boldsymbol{v}_{n}\right) \\
& =\left[T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{n}\right)\right] \boldsymbol{x} \\
& =\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right] A \boldsymbol{x} .
\end{aligned}
$$

The coordinate vector of $T(\boldsymbol{v})$ relative to the basis \mathcal{C} is $A \boldsymbol{x}$. Thus

$$
\left(T_{2} \circ T \circ T_{1}^{-1}\right)(\boldsymbol{x})=T_{2}\left(T\left(T_{1}^{-1}(\boldsymbol{x})\right)\right)=T_{2}(T(\boldsymbol{v}))=[T(\boldsymbol{v})]_{\mathcal{C}}=A \boldsymbol{x}
$$

This means that A is the standard matrix of the linear transformation $T_{2} \circ T \circ T_{1}^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$.
In particular, for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, T(\boldsymbol{x})=A \boldsymbol{x}$. Let $\mathcal{E}_{n}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ be the standard basis of \mathbb{R}^{n}, and let $\mathcal{E}_{m}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{m}\right\}$ be the standard basis of \mathbb{R}^{m}. Then

$$
\left[T\left(\boldsymbol{e}_{1}\right), T\left(\boldsymbol{e}_{2}\right), \ldots, T\left(\boldsymbol{e}_{n}\right)\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{m}\right] A
$$

Example 9.1. Let $T: \mathbf{P}_{3} \rightarrow \mathbf{P}_{2}$ be a linear transformation defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left(a_{0}+a_{3}\right)+\left(a_{1}+a_{2}\right) t+\left(a_{0}+a_{1}+a_{2}+a_{3}\right) t^{2}
$$

It is clear that \mathbf{P}_{3} has a basis

$$
\mathcal{B}=\{1, t, t(t+1), t(t+1)(t+2)\}
$$

and \mathbf{P}_{2} has a basis

$$
\mathcal{C}=\{1, t, t(t-1)\}
$$

The matrix of T relative to the bases \mathcal{B} and \mathcal{C} can be found as follows:
which is equivalent to

$$
[T(1), T(t), T(t(t+1)), T(t(t+1)(t+2))]=[1, t, t(t-1)]\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 2 & 4 & 11 \\
1 & 1 & 2 & 6
\end{array}\right]
$$

Thus the matrix of T relative to the bases \mathcal{B} and \mathcal{C} is

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 2 & 4 & 11 \\
1 & 1 & 2 & 6
\end{array}\right] .
$$

Theorem 9.2. Let V be an l-dimensional subspace of \mathbb{R}^{n} with a basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{l}\right\}$, and let W be a k-dimensional subspace of \mathbb{R}^{m} with a basis $\mathcal{C}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{k}\right\}$. Let $T: V \rightarrow W$ be a linear transformation. Then the matrix A of T relative to the bases \mathcal{B} and \mathcal{C} is given by

$$
\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{k} \mid T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{l}\right)\right] \sim\left[\begin{array}{c|c}
I_{k} & A \\
\hline 0 & 0
\end{array}\right] .
$$

Corollary 9.3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be a basis of \mathbb{R}^{n}, and let $\mathcal{C}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$ be a basis of \mathbb{R}^{m}. If

$$
\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m} \mid T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{n}\right)\right] \sim\left[I_{m} \mid A\right]
$$

then A is the matrix of T relative to the bases \mathcal{B} and \mathcal{C}.
Example 9.2. Let V be the subspace of \mathbb{R}^{4} defined by the linear equation $x_{1}+x_{2}+x_{3}+x_{4}=0$, and let W be the subspace of \mathbb{R}^{3} defined by $y_{1}+2 y_{2}+y_{3}=0$. Let $T: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ be defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(3 x_{1}+x_{2}, x_{2}+x_{3}, x_{3}+3 x_{4}\right)
$$

(a) Show that T is a linear transformation from V to W.
(b) Verify that

$$
\mathcal{B}=\left\{\boldsymbol{v}_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{r}
1 \\
0 \\
0 \\
-1
\end{array}\right]\right\}
$$

is basis of V, and

$$
\mathcal{C}=\left\{\boldsymbol{w}_{1}=\left[\begin{array}{r}
0 \\
1 \\
-2
\end{array}\right], \boldsymbol{w}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]\right\}
$$

is basis of W.
(c) Find the matrix of T relative to the basis \mathcal{B} of V and the basis \mathcal{C} of W.

Solution. (a) Let $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T} \in V$, i.e., $x_{1}+x_{2}+x_{3}+x_{4}=0$. We have

$$
\left(2 x_{1}+x_{2}\right)+2\left(x_{2}+x_{3}\right)+\left(x_{3}+2 x_{3}\right)=3\left(x_{1}+x_{2}+x_{3}+x_{4}\right)=0 .
$$

So T is a well-defined linear transformation from V to W. (b) Trivial. (c) Consider the matrix

$$
\begin{gathered}
{\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \mid T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), T\left(\boldsymbol{v}_{3}\right)\right]=\left[\begin{array}{rr|rrr}
0 & 1 & 2 & 3 & 3 \\
1 & -1 & -1 & -1 & 0 \\
-2 & 1 & 0 & -1 & -3
\end{array}\right] \sim} \\
{\left[\begin{array}{rr|rrr}
1 & -1 & -1 & -1 & 0 \\
0 & 1 & 2 & 3 & 3 \\
-2 & 1 & 0 & -1 & -3
\end{array}\right] \sim\left[\begin{array}{rr|rrr}
1 & -1 & -1 & -1 & 0 \\
0 & 1 & 2 & 3 & 3 \\
0 & -1 & -2 & -3 & -3
\end{array}\right] \sim\left[\begin{array}{ll|lll}
1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3 & 3 \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right] .}
\end{gathered}
$$

The matrix of T relative to the basis \mathcal{B} and the basis \mathcal{C} is

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 3
\end{array}\right] .
$$

10 Matrices of linear operators

Let V be an n-dimensional vector space with a basis $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$. A linear transformation $T: V \rightarrow V$ is called a linear operator on V. The matrix

$$
A=\left[\left[T\left(\boldsymbol{v}_{1}\right)\right]_{\mathcal{B}},\left[T\left(\boldsymbol{v}_{2}\right)\right]_{\mathcal{B}}, \ldots,\left[T\left(\boldsymbol{v}_{n}\right)\right]_{\mathcal{B}}\right]
$$

is called the matrix of T relative to the basis \mathcal{B}.
Theorem 10.1. Let $T: V \rightarrow V$ be a linear transformation from a finite dimensional vector space V to itself. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\}$ be bases of V with the transition matrix P, that is,

$$
\left[\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] P
$$

Let A be the matrix of T relative to the basis \mathcal{B}, and let A^{\prime} be the matrix of T relative to the basis \mathcal{B}^{\prime}. Then

$$
A^{\prime}=P^{-1} A P
$$

Corollary 10.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, T \boldsymbol{x}=A \boldsymbol{x}$, be a linear transformation. Let $\mathcal{E}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ be the standard basis of \mathbb{R}^{n}, and let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be another basis. Then

$$
\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right] P
$$

where $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]$, and the matrix of T relative to the basis \mathcal{B} is

$$
P^{-1} A P
$$

Example 10.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by

$$
T(\boldsymbol{x})=\left[\begin{array}{rr}
7 & -10 \\
5 & -8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Find the matrix of T relative to the basis

$$
\mathcal{B}=\left\{\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} .
$$

Solution. Since

$$
\begin{gathered}
T\left(\boldsymbol{v}_{1}\right)=\left[\begin{array}{rr}
7 & -10 \\
5 & -8
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3
\end{array}\right]=-3 \boldsymbol{v}_{1}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]\left[\begin{array}{r}
-3 \\
0
\end{array}\right], \\
T\left(\boldsymbol{v}_{2}\right)=\left[\begin{array}{rr}
1 & -10 \\
5 & -8
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=2 \boldsymbol{v}_{2}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{gathered}
$$

then

$$
\left[T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right)\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]\left[\begin{array}{rr}
-3 & 0 \\
0 & 2
\end{array}\right]
$$

The matrix of T relative to the basis \mathcal{B} is $\left[\begin{array}{rr}-3 & 0 \\ 0 & 2\end{array}\right]$.
Let $\mathcal{E}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}$. Then $\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right] P$, where $P=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$. One verifies

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{rr}
7 & -10 \\
5 & -8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{rr}
-3 & 0 \\
0 & 2
\end{array}\right]
$$

We say that the matrix the matrix $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ diagonalizes the matrix $\left[\begin{array}{rr}7 & -10 \\ 5 & -8\end{array}\right]$.
Definition 10.3. An $n \times n$ matrix A is said to be similar to an $n \times n$ matrix B if there is an invertible matrix P such that

$$
P^{-1} A P=B
$$

Theorem 10.4. For a finite dimensional vector space V and a linear transformation $T: V \rightarrow V$, the matrices of T relative to various bases are similar. In other words, the matrices of the same linear transformation from a vector space to itself under different bases are similar.

11 Change of basis

Let $\mathcal{B}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ be bases of a vector space V. Then

$$
\begin{aligned}
\boldsymbol{v}_{1} & =p_{11} \boldsymbol{u}_{1}+p_{21} \boldsymbol{u}_{2}+\cdots+p_{n 1} \boldsymbol{u}_{n} \\
\boldsymbol{v}_{2} & =p_{12} \boldsymbol{u}_{1}+p_{22} \boldsymbol{u}_{2}+\cdots+p_{n 2} \boldsymbol{u}_{n} \\
& \vdots \\
\boldsymbol{v}_{n} & =p_{1 n} u_{1}+p_{2 n} u_{2}+\cdots+p_{n n} \boldsymbol{u}_{n}
\end{aligned}
$$

We may write this more compactly as

$$
\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right]=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right]\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right]=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right] P
$$

The matrix P is called the transition matrix from the basis \mathcal{B} to the basis \mathcal{C}. Clearly, the transition matrix from the basis \mathcal{C} to the basis \mathcal{B} is the inverse matrix P^{-1}.

Let $\mathcal{B}=\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right\}$ and $\mathcal{C}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right\}$ be bases for a k-dimensional subspace V of \mathbb{R}^{n}. Then there is a $k \times k$ invertible matrix P such that

$$
\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right]=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right] P
$$

The matrix P is called the transition matrix from the basis \mathcal{B} to the basis \mathcal{C}. For a vector \boldsymbol{v} in V, let \boldsymbol{x} and \boldsymbol{y} be the coordinate vectors of \boldsymbol{v} relative to the bases \mathcal{B} and \mathcal{C}, respectively, i.e.,

$$
\boldsymbol{v}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right] \boldsymbol{x}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right] \boldsymbol{y}
$$

Then

$$
\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right] \boldsymbol{x}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right] P \boldsymbol{y} .
$$

It follows that

$$
\boldsymbol{x}=P \boldsymbol{y} \quad \text { or } \quad \boldsymbol{y}=P^{-1} \boldsymbol{x} .
$$

The matrix P^{-1} is also called the change-of-coordinate matrix from the basis \mathcal{B} to the basis \mathcal{C}.
To find the invertible matrix P, we set

$$
P=\left[\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{k}\right], \quad B=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k}\right], \quad C=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right]
$$

Then

$$
B \boldsymbol{p}_{1}=\boldsymbol{v}_{1}, \quad B \boldsymbol{p}_{2}=\boldsymbol{v}_{2}, \quad \ldots, \quad B \boldsymbol{p}_{k}=\boldsymbol{v}_{k}
$$

This means that $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{k}$ are solutions of the linear systems

$$
B \boldsymbol{x}=\boldsymbol{v}_{1}, \quad B \boldsymbol{x}=\boldsymbol{v}_{2}, \quad \ldots, \quad B \boldsymbol{x}=\boldsymbol{v}_{k}
$$

respectively. The linear systems can be solved simultaneously as follows:

$$
\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{k} \mid \boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{k}\right] \sim\left[\begin{array}{c|c}
I_{k} & P \\
\hline 0 & 0
\end{array}\right] .
$$

Example 11.1. Let V be a subspace of \mathbb{R}^{5} with two bases

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
6 \\
6 \\
2 \\
4 \\
5
\end{array}\right],\left[\begin{array}{l}
5 \\
7 \\
3 \\
3 \\
4
\end{array}\right],\left[\begin{array}{r}
3 \\
0 \\
-1 \\
2 \\
3
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0 \\
1 \\
2
\end{array}\right]\right\}
$$

Let \boldsymbol{v} be a vector of V whose coordinate vector relative to the basis \mathcal{B} is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find the coordinate vector of \boldsymbol{v} relative to the basis \mathcal{C}.

Solution. Performing the row operations to the n-by- n matrix $[A \mid B]$, we have

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 6 & 5 & 3 \\
2 & 1 & 2 & 6 & 7 & 0 \\
1 & 0 & 1 & 2 & 3 & -1 \\
2 & 1 & 0 & 4 & 3 & 2 \\
0 & 2 & 1 & 5 & 4 & 3
\end{array}\right] \quad \begin{array}{c}
\\
R_{2}-2 R_{1} \\
R_{3}-R_{1} \\
\rightarrow \\
R_{4}-2 R_{1}
\end{array}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 6 & 5 & 3 \\
0 & -3 & 0 & -6 & -3 & -6 \\
0 & -2 & 0 & -4 & -2 & -4 \\
0 & -3 & -2 & -8 & -7 & -4 \\
0 & 2 & 1 & 5 & 4 & 3
\end{array}\right] \quad \begin{array}{c}
\\
R_{2} /(-3) \\
\rightarrow
\end{array}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 6 & 5 & 3 \\
0 & 1 & 0 & 2 & 1 & 2 \\
0 & 2 & 1 & 5 & 4 & 3 \\
0 & -3 & -2 & -8 & -7 & -4 \\
0 & -2 & 0 & -4 & -2 & -4
\end{array}\right] \quad \begin{array}{c}
\\
R_{3}-2 R_{2} \\
R_{4}+3 R_{2} \\
\rightarrow \\
R_{5}+2 R_{2}
\end{array}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 1 & 6 & 5 & 3 \\
0 & 1 & 0 & 2 & 1 & 2 \\
0 & 0 & 1 & 1 & 2 & -1 \\
0 & 0 & -2 & -2 & -4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
\\
R_{4}+2 R_{3} \\
R_{1}-R_{3} \\
\rightarrow \\
R_{1}-2 R_{2}
\end{array}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 2 & 1 & 2 \\
0 & 0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Then $B=C P$, where

$$
P=\left[\begin{array}{rrr}
1 & 1 & 0 \\
2 & 1 & 2 \\
1 & 2 & -1
\end{array}\right]
$$

So the coordinate vector of \boldsymbol{v} relative to \mathcal{C} is

$$
\left[\begin{array}{rrr}
1 & 1 & 0 \\
2 & 1 & 2 \\
1 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
1
\end{array}\right]
$$

Example 11.2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T(\boldsymbol{x})=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Consider two bases

$$
\mathcal{B}=\left\{\boldsymbol{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \boldsymbol{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \boldsymbol{u}_{3}=\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]\right\}
$$

$$
\mathcal{C}=\left\{\boldsymbol{v}_{1}=\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right], \boldsymbol{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \boldsymbol{v}_{3}=\left[\begin{array}{r}
3 \\
-1 \\
6
\end{array}\right]\right\} .
$$

Then

$$
\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right]=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 2 \\
1 & 1 & 2
\end{array}\right] .
$$

Theorem 11.1. Let $\mathcal{B}=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right\}$ be bases of V with the transition matrix P, that is,

$$
\left[\boldsymbol{v}_{1}^{\prime}, \boldsymbol{v}_{2}^{\prime}, \ldots, \boldsymbol{v}_{n}^{\prime}\right]=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right] P
$$

Let $\mathcal{C}=\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right\}$ and $\mathcal{C}^{\prime}=\left\{\boldsymbol{w}_{1}^{\prime}, \boldsymbol{w}_{2}^{\prime}, \ldots, \boldsymbol{w}_{m}^{\prime}\right\}$ be bases of W with the connection matrix Q, that is,

$$
\left[\boldsymbol{w}_{1}^{\prime}, \boldsymbol{w}_{2}^{\prime}, \ldots, \boldsymbol{w}_{m}^{\prime}\right]=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right] Q
$$

Let $T: V \rightarrow W$ be a linear transformation with the matrix A relative to the bases \mathcal{B} and \mathcal{C}, then the matrix of T relative to the bases \mathcal{B}^{\prime} and \mathcal{C}^{\prime} is given by

$$
Q^{-1} A P
$$

Proof. Let A^{\prime} denote the matrix of T relative to the bases \mathcal{B}^{\prime} and \mathcal{C}. Then

$$
\left[T\left(\boldsymbol{v}_{1}^{\prime}\right), T\left(\boldsymbol{v}_{2}^{\prime}\right), \ldots, T\left(\boldsymbol{v}_{n}^{\prime}\right)\right]=\left[\boldsymbol{w}_{1}^{\prime}, \boldsymbol{w}_{2}^{\prime}, \ldots, \boldsymbol{w}_{m}^{\prime}\right] A^{\prime}=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right] Q A^{\prime}
$$

On the other hand, since

$$
\begin{aligned}
\boldsymbol{v}_{1}^{\prime} & =p_{11} \boldsymbol{v}_{1}+p_{21} \boldsymbol{v}_{2}+\cdots+p_{n 1} \boldsymbol{v}_{n} \\
\boldsymbol{v}_{2}^{\prime} & =p_{12} \boldsymbol{v}_{1}+p_{22} \boldsymbol{v}_{2}+\cdots+p_{n 2} \boldsymbol{v}_{n} \\
& \vdots \\
\boldsymbol{v}_{n}^{\prime} & =p_{1 n} \boldsymbol{v}_{1}+p_{2 n} \boldsymbol{v}_{2}+\cdots+p_{n n} \boldsymbol{v}_{n}
\end{aligned}
$$

then

$$
\begin{aligned}
T\left(\boldsymbol{v}_{1}^{\prime}\right) & =p_{11} T\left(\boldsymbol{v}_{1}\right)+p_{21} T\left(\boldsymbol{v}_{2}\right)+\cdots+p_{n 1} T\left(\boldsymbol{v}_{n}\right) \\
T\left(\boldsymbol{v}_{2}^{\prime}\right) & =p_{12} T\left(\boldsymbol{v}_{1}\right)+p_{22} T\left(\boldsymbol{v}_{2}\right)+\cdots+p_{n 2} T\left(\boldsymbol{v}_{n}\right) \\
& \vdots \\
T\left(\boldsymbol{v}_{n}^{\prime}\right) & =p_{1 n} T\left(\boldsymbol{v}_{1}\right)+p_{2 n} T\left(\boldsymbol{v}_{2}\right)+\cdots+p_{n n} T\left(\boldsymbol{v}_{n}\right)
\end{aligned}
$$

Thus

$$
\left[T\left(\boldsymbol{v}_{1}^{\prime}\right), T\left(\boldsymbol{v}_{2}^{\prime}\right), \ldots, T\left(\boldsymbol{v}_{n}^{\prime}\right)\right]=\left[T\left(\boldsymbol{v}_{1}\right), T\left(\boldsymbol{v}_{2}\right), \ldots, T\left(\boldsymbol{v}_{n}\right)\right] P=\left[\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right] A P
$$

Therefore $Q A^{\prime}=A P$, that is,

$$
A^{\prime}=Q^{-1} A P
$$

Example 11.3. Let $T: \mathbf{P}_{3} \rightarrow \mathbf{P}_{2}$ be a linear transformation defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}\right)=\left(a_{0}+a_{3}\right)+\left(a_{1}+a_{2}\right) t+\left(a_{0}+a_{1}+a_{2}+a_{3}\right) t^{2}
$$

Then the matrix of T relative to the bases

$$
\mathcal{B}=\{1, t, t(t+1), t(t+1)(t+2)\} \quad \text { and } \quad \mathcal{C}=\{1, t, t(t-1)\}
$$

is the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
1 & 2 & 4 & 11 \\
1 & 1 & 2 & 6
\end{array}\right]
$$

Given new bases

$$
\mathcal{B}^{\prime}=\{1, t, t(t-1), t(t-1)(t-2)\} \quad \text { and } \quad \mathcal{C}^{\prime}=\{1, t, t(t+1)\} .
$$

Since
the matrix of T relative to the bases \mathcal{B}^{\prime} and \mathcal{C}^{\prime} is

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 \\
1 & 1 & 0 & 0
\end{array}\right] .
$$

Note that

$$
\begin{gathered}
{[T(1), T(t), T(t(t+1)), T(t(t+1)(t+2))]=[1, t, t(t-1)]\left[\begin{array}{rrrc}
1 & 0 & 0 & 1 \\
1 & 2 & 4 & 11 \\
1 & 1 & 2 & 6
\end{array}\right],} \\
{[1, t, t(t-1), t(t-1)(t-2)]=[1, t, t(t+1), t(t+1)(t+2)]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 6 \\
0 & 0 & 1 & -6 \\
0 & 0 & 0 & 1
\end{array}\right],} \\
{[1, t, t(t+1)]=[1, t, t(t-1)]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right] .}
\end{gathered}
$$

One verifies that

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 \\
1 & 1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{rrrr}
1 & 0 & 0 & 1 \\
1 & 2 & 4 & 11 \\
1 & 1 & 2 & 6
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 6 \\
0 & 0 & 1 & -6 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

